
FINITE ELEMENT CENTER

PREPRINT 2003–16

Edge stabilization for the generalized Stokes prob-
lem: a continuous interior penalty method

Erik Burman and Peter Hansbo

Chalmers Finite Element Center
CHALMERS UNIVERSITY OF TECHNOLOGY
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EDGE STABILIZATION FOR THE GENERALIZED STOKES

PROBLEM: A CONTINUOUS INTERIOR PENALTY METHOD

ERIK BURMAN AND PETER HANSBO

Abstract. In this note we introduce a new stabilized finite element method for the
generalized Stokes equation. The method uses least square stabilization of the gradient
jumps across element boundaries and can be seen as a higher order version of the Brezzi-
Pitkäranta penalty stabilization [6]. The method gives better resolution on the boundary
for the Stokes equation than does classical Galerkin Least Squares fomulation and has
quasi optimal convergence properties for the porous media models of Darcy and Brinkman.
Some numerical examples are given.

1. Introduction

The use of equal order interpolation of the pressure and the velocities for the Stokes prob-
lem are not stable if implemented without stabilization. Over the years many stabilization
methods have been proposed and stabilization is by now a well established discipline with
different well explored methods like the SUPG/SD-method [13], the residual free bubbles
[5] and more recent contributions like local projection methods [9, 3] for Stokes problem.
The relation between the different approaches is also well understood in most cases. In
this paper we present a method which stabilizes both Stokes problem and Darcy’s problem
by adding a least-squares term based on the jump in the gradient over element boundaries.
The method has many of the advantages of the above methods, but no additional degrees
of freedom are added, no hierarchical meshes are needed, the formulation remains symmet-
ric, and the mass can be lumped for efficient time marching and treatment of stiff source
terms. The price to pay is an increased number of non-zero elements in the jacobian due
to the fact that the gradient jump term couple neighboring elements. This method has
been successfully applied to the problem of convection–diffusion in [7] and it was noted
that the stabilization parameter was independent of the diffusion parameter, hence making
the method very well suited also for degenerate diffusion problems. For the Stokes prob-
lem the behavior is somewhat different and, depending on how the stabilization parameter
scales with respect to the meshsize h, the analysis gives different results. Using the optimal
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choice yields the following a priori error estimates for the Stokes’ and the Darcy’s problems
respectively,

• Stokes

‖u − uh‖0,Ω + h
(
‖∇(u − uh)‖0,Ω + ‖p − ph‖0,Ω

)
≤ Ch2

(
‖u‖2,Ω + ‖p‖1,Ω

)

• Darcy

‖u − uh‖0,Ω + ‖p − ph‖0,Ω + h1/2
(
‖∇ · (u − uh)‖0,Ω + ‖∇(p − ph)‖0,Ω

)

≤ Ch3/2
(
‖u‖2,Ω + ‖p‖2,Ω

)
.

We observe that this is optimal for the case of Stokes equation. For Darcy’s equation we
have optimality for the divergence of the velocities and the gradient of the pressure and
suboptimality with a gap of half a power of h for the pressures and the velocities in the
L2 norm. This result for the vanishing viscosity case is very similar to the corresponding
convection–diffusion result.

2. Generalized Stokes’ problem

We propose to study a generalized Stokes problem, with two parameters σ and ν includ-
ing the Darcy’s equation as a special case. We consider the problem of solving the partial
differential equation

(2.1)

σu − ν∆u + ∇p = f in Ω,

∇ · u = g in Ω,

u · n = 0 on ∂Ω
νu · t = 0 on ∂Ω.

where Ω is bounded polygonal domain in R
d with boundary ∂Ω, d = 2, 3 and σ and ν

are two positive parameters, that may not vanish simultaneously. This problem can be
written in weak form as follows: Find u ∈ V = {v ∈ [H1(Ω)]d : v|∂Ω = 0} when ν > 0
(u ∈ V = {v ∈ [L2(Ω)]d,∇ · v ∈ L2(Ω) : v · n|∂Ω = 0} for ν = 0) and p ∈ Q = L2(Ω)/R

when ν > 0 (p ∈ H1(Ω) for ν = 0) such that

(2.2) a(u, v) + b(p, v) − b(q, u) = L(v, q), ∀(v, q) ∈ V × Q,

where

a(u, v) =

∫

Ω

d∑

i=1

σuivi + ν∇ui · ∇vi dx, b(p, v) = −

∫

Ω

p ∇ · v dx,

and

L(v, q) =

∫

Ω

f · v dx −

∫

Ω

gq dx.

The finite element method consists of seeking piece wise polynomial approximations uh

of u and ph of p, where uh ∈ V h ⊂ V and ph ∈ Qh ⊂ Q, with V h and Qh built from
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continuous functions. Consider a partitioning of Ω into a conforming triangulation Th of
affine simplicies K. We shall be concerned with the approximation

V h = {v ∈ [V ∩ C0(Ω)]d : v|K ∈ [P 1(K)]d ∀K ∈ Th},

and a continuous pressure space,

Qh = {q ∈ Q ∩ C0(Ω) : q|K ∈ P 1(K) ∀K ∈ Th}.

It is well known that the combination V h × Qh is unstable (see, e.g., [4]).
The edge stabilization method can be formulated as follows: Find (uh, ph) ∈ V h × Qh

such that

(2.3)

a(uh, v) + b(ph, v) + j̃(uh, v) = L(v, 0) in Ω,

b(q, uh) − j(ph, q) = L(0, q) in Ω,

for all (v, q) ∈ V h × Qh, where

(2.4) j(p, q) :=
∑

K

1

2

∫

∂K

γhs+1
K [n · ∇ph] [n · ∇q] ds

and

(2.5) j̃(u, v) :=
∑

K

1

2

∫

∂K

γhs+1
K [∇ · uh] [∇ · v] ds,

where [x] denotes the jump of quantity x over edge ∂K when ∂K ∩ ∂Ω = ∅ else [x] = 0.
The coefficient s takes the values s = 2 in the case ν ≥ h and s = 1 in the case ν < h.

Remark 2.1. The change of the order of the parameter when passing from the viscous
case to the non-viscous case ressembles the behavior of the SUPG method for convection–
diffusion problems. A standard way of handling this for problems where the viscosity is
non-uniform in the domain is to use the ν–weighted parameter γh2

K(1 + ν
hK

)−1.

Remark 2.2. On a uniform mesh, the jump term j(p, q) (with s = 2) can be seen as the
only remaining contribution from a discretization of h4∆2p when applying the discontinuous
method proposed by Baker [1] to piece wise linear approximations ph of p. In this sense
the method is related to that of Brezzi-Pitkäranta [6], where the corresponding stabilization
term can be seen as an approximation of h2∆p.

Remark 2.3. A stabilization method for Stokes like the one proposed here has been inde-
pendently proposed by Becker & Braack [3] as an example of a possible stabilization fitting
a theoretical framework quite different from ours. In [3] the main focus is on a conceptually
different stabilization method (local projections), however, and no numerical results with
the jump approach were presented.

Remark 2.4. The term penalizing the incompressibility condition is necessary only in the
case where ν < h. This term is needed to give a ‖h1/2∇·u‖ contribution to the triple norm
necessary to obtain optimal order estimates in the case of Darcy flow. However it should
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be noted that for u ∈ H2(Ω) we may use the same jump operator for the pressure and the
velocity, hence stabilizing the jumps of the gradient (component wise for the velocities).
This will not affect the order of the a priori estimates but gives increased control of the
gradients at the cost of larger constants in the estimate.

Remark 2.5. The stabilizing Galerkin/Least-Squares (GLS) method in different guises has
been used extensively; for pioneering work in this direction, see, e.g., [6, 10, 13]. However,
there is in GLS a decrease of accuracy close to the boundaries due to artificial pressure
boundary conditions, for which a number of remedies have been proposed, cf. [2, 9, 11].
Following the edge stabilization method, there is less degradation of accuracy close to the
boundary. See figure 1 and 2.

Figure 1. Mesh and computed velocity for Poiseuille flow

Figure 2. Brezzi-Pitkäranta (top) and edge stabilization (bottom) pressure isolines.
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3. The inf-sup condition

For Stokes equation the essential feature of a stabilized method is the satisfaction of the
inf–sup condition. We introduce the triple norm

|‖(uh, ph)‖|2s = σ‖uh‖2 + ν‖∇uh‖2 + cd‖hs/2∇ · uh‖2 + cg‖hs/2∇ph‖2 + cp‖ph‖2,

where cd, cg, and cp are constants, depending on the material data, which will be defined
in the stability analysis below (cf. Remark 3.6). We also define the bilinear form

A[(u, p), (v, q)] := a(u, v) + b(p, v) − b(q, u) + j̃(u, v) + j(p, q).

The stability of the method is obtained by the fact that the edge operator controls the
projection error of hs∇ph. This allows us to control ‖hs/2∇ph‖, which in its turn leads to
satisfaction of the inf-sup condition. We will for simplicity assume that hK is uniform so
that πhh

s∇ph = hsπh∇ph, where πh is an interpolation operator to be defined later, and
that hK < 1 for all K. By {ϕi} we denote the set of finite element basis functions spanning
the space Vh. Let Ni be the set of all triangles K i containing node i and assume that the
cardinality of Ni is bounded uniformly in i. Let FK be the set of all test functions ϕi such
that K ∈ supp ϕi and Ωi =

⋃
Ni

Ki. We will consider a function y ∈ [P0(K)]d, and its
element wise representation in the finite element basis ỹ defined by

(3.1) ỹ|K = y|K
∑

i∈FK

ϕi.

It follows that p̃ = p everywhere except on elements adjacent to Dirichlet boundaries
where the boundary nodes are not included in the finite element space. We note that, with
y := ∇ph, we wish to choose as our testfunction v = hsπhy to obtain after an integration
by parts

(3.2) b(ph, v) = ‖hs/2y‖2 + (y, hs(πhy − y)),

and we wish to bound the projection error using the jump term. This cannot be done
exactly since πhy must obey the boundary conditions, unlike y. However, (3.2) can equally
well be written (hsy, ỹ) + (hsy, πhy − ỹ), and if we can show that cb‖y‖2 ≤ (y, ỹ) we have

cb‖h
s/2y‖2 + (y, hs(πhy − ỹ)) ≤ (y, hsỹ) + (y, hs(πhy − ỹ)),

and we can proceed to bound the second term on the left hand side in terms of the first
together with the jumps. Thus, we need:

Lemma 3.1. Suppose that K is an element with at least one node on a Dirichlet boundary
then

(3.3) ‖y‖2
K =

d + 1

ni
(y, ỹ),

where ni denotes the number of interior nodes of the element.

Proof. The proof is immediate noting that

(y, ỹ) = |yK|2
∫

K

∑

i∈FK

ϕidx =
ni

d + 1
|yK|

2m(K).
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�

We will now recall some results from [7] essential for the analysis. The stability argument
is based on the fact that the projection error of the gradient is controlled by the edge
stabilization term.

‖hs/2(ỹ − πhy)‖2 ≤ J̃s(y, y)

with

J̃s(y, y) =
∑

K

∫

∂K

γhs+1[y]2ds.

The operator πh : ∇Qh → Vh, which denotes the lowest order Clément operator is con-
structed as follows.

(3.4) πhy =
∑

i

yiϕi

with

(3.5) yi =
1

m(Ωi)

∑

Ni

y|Kim(Ki).

We shall frequently use the following inequalities, which we collect in a Lemma.

Lemma 3.2. For the Clément operator there holds

(3.6) ‖πhu‖s,Ω ≤ Cc‖u‖s,Ω, ∀u ∈ Hs(Ω),

for s = 0, 1. Further,

(3.7) ‖hK∇πhph‖ ≤ Ci‖ph‖, ∀ph ∈ Qh.

Finally, we have the trace inequality

(3.8) ‖v‖2
0,∂K ≤ Ct

(
h−1

K ‖v‖2
0,K + hK‖v‖2

1,K

)
, ∀v ∈ H1(K),

Proof. Inequality (3.6) follows from the interpolation estimate

‖u − πhu‖s,Ω ≤ ci‖u‖s,Ω, s = 0, 1,

cf. [8], and (3.7) follows from (3.6) and the well known inverse inequality

(3.9) ‖v‖1,K ≤ Ch−1
K ‖v‖0,K, ∀v ∈ Vh.

Finally, a proof of (3.8) is given in [16]. �

In [7] we proved the following lemma.

Lemma 3.3. If y is some piecewise constant function, ỹ is defined by (3.1) and πh is the
Clément interpolant on Vh, then the edge stabilization term satisfies

(3.10) ‖hs/2(πhy − ỹ)‖2 ≤ γJ̃s(y, y)

for some γ ≥ γ0 > 0 independent of h but not of the mesh regularity.

Finally, we shall also need the following Lemma.
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Lemma 3.4. For v ∈ Vh, the jump operator fulfills

(3.11) j̃(v, v)1/2 ≤ Csγ
1/2‖hs∇ · v‖.

Proof. For each edge E shared by two elements K1 and K2, we have

∫

E

γhs+1[∇ · v]2ds ≤
2∑

i=1

∫

E

γhs+1(∇ · v|Ki
)2ds ≤ Cγ

2∑

i=1

‖hs∇ · v‖2
Ki

by scaling. Summing over all edges gives the result. �

Theorem 3.5. Suppose that either σ ≥ 1 or ν ≥ 1 and that s = 1 when ν < h and s = 2
when ν > h then the formulation (2.3) satisfies the inf–sup condition

|‖(uh, ph)‖| ≤ c0 sup
(v,q)∈Vh×Qh

A[(uh, ph), (v, q)]

|‖(v, q)‖|

Proof. First we take (v, q) = (uh, ph) to obtain

(3.12) A[(uh, ph), (uh, ph)] = σ‖uh‖
2 + ν‖∇uh‖

2 + j̃(uh, uh) + j(ph, ph).

By taking (v, q) = (πh(h
s∇ph), 0) we obtain the desired control of ‖hs/2∇ph‖ in the follow-

ing fashion. We have

A[(uh, ph), (πh(h
s
K∇ph), 0)] = σ(uh, πh(h

s∇ph)) + ν(∇uh,∇πh(h
s∇ph))

−(ph,∇ · πh(h
s∇ph)) + j̃(uh, πh(h

s∇ph).

Estimating termwise, we have

(3.13) (σuh, πhh
s∇ph) ≥ −Ccσ

1/2hs/2‖σ1/2uh‖ ‖h
s/2∇ph‖,

and
(ν∇uh,∇πhh

s∇ph) ≥ −‖ν1/2∇uh‖ ‖ν
1/2∇(πhh

s∇ph)‖
≥ −‖ν1/2∇uh‖CiCcν

1/2‖hs−1∇ph‖.

Thus, for s = 2 we find

(3.14) (ν∇uh,∇πhh
s∇ph) ≥ −‖ν1/2∇uh‖CiCcν

1/2‖hs/2∇ph‖,

and for s = 1, i.e., the case ν ≤ h,

(3.15) (ν∇uh,∇πhh
s∇ph) ≥ −‖ν1/2∇uh‖CiCc‖ν

1/2∇ph)| ≥ −‖ν1/2∇uh‖CiCc‖h
s/2∇ph‖.

Further,

(3.16)

(ph,∇ · πhh
s∇ph) = (hs∇ph, πh∇ph − ∇̃ph) + (hs∇ph, ∇̃ph)

≥ −‖hs/2∇ph‖ ‖h
s/2πh∇ph − ∇̃ph‖ +

1

d + 1
‖hs/2∇ph‖

2

≥
3

4(d + 1)
‖hs/2∇ph‖

2 + (d + 1)‖hs/2(∇p − ∇̃ph)‖
2
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where we used that ab ≤ a2/4 + b2 for real numbers a, b. Finally, using Lemmas 3.2 and
3.4,

(3.17)

j̃(uh, πhh
s∇ph) =

∑

K

1

2

∫

∂K

γhs+1[∇ · uh] · [∇ · (πhh
s∇ph)] ds

≤ j̃(uh, uh)
1/2

(∑

K

1

2

∫

∂K

γhs+1[∇ · (πhh
s∇ph)]

2ds
)1/2

≤ j̃(uh, uh)
1/2Cs‖γ

1/2hs∇ · (πhh
s∇ph)‖

≤ j̃(uh, uh)
1/2CsCi‖γ

1/2hs−1πhh
s∇ph‖

≤ j̃(uh, uh)
1/2CsCiCcγ

1/2h(3s−2)/2‖hs/2∇ph‖.

Using (3.13) to (3.17), we deduce

(3.18)
A[(uh, ph), (πh(h

s
K∇ph), 0)] ≥ cb‖h

s/2∇ph‖
2 + (hs/2∇ph, h

s/2(πh∇ph − ∇̃ph))

−A[(uh, 0), (uh, 0)]1/2α1‖h
s/2∇ph‖,

where α1 = max(Csσ
1/2hs/2, CiCcν

1/2, CiCc, CiCsCiCcγ
1/2h(3s−2)/2). We conclude that by

lemma 3.3 we have
(3.19)

A[(uh, ph), (πh(h
s∇ph), 0)] ≥ cb

(
1 − ε1 − α2

1ε1

)
‖hs/2∇ph‖

2 −
1

4cbε1
A[(uh, ph), (uh, ph)].

We now choose ε1 = 1
2(1+α2

1
)

and multiply by cbε1 to obtain

(3.20)
c2
bε1

2
‖hs/2∇ph‖

2 −
1

4
A[(uh, ph), (uh, ph)] ≤ A[(uh, ph), (cbε1πh(h

s∇ph), 0)].

By the surjectivity of the divergence operator (see [12]) there exists vp ∈ [H1
0 (Ω)]d such

that ∇ · vp = ph and ‖vp‖1,Ω ≤ C‖ph‖. We now choose (v, q) = (πhvp, 0) and use that
‖ph‖2 − (ph,∇ · vp) = 0 by the properties of vp. This gives

(3.21) ‖ph‖
2 − (ph,∇ · vp) + A[(uh, ph), (πhvp, 0)] = ‖ph‖

2 + (ph,∇ · (πhvp − vp))

+ σ(uh, πhvp) + ν(∇uh,∇πhvp) + j̃(uh, πhvp)

≥ (1 − α2
2ε2)‖ph‖

2 + (ph,∇ · (πhvp − vp)) −
1

4ε2
A[(uh, 0), (uh, 0)],

with α2 = max(σ1/2CcCf , ν
1/2CcCf , CsCcCfh

s/2γ1/2), where we used the stability of the
Clément interpolation operator: ‖∇ · πhvp‖ ≤ C‖vp‖1,Ω ≤ Cf‖ph‖. We have also used the
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following lower bound on the stabilizing term

j̃(uh, πhvp) ≥ −
1

ε2
j̃(uh, uh) − ε2j̃(πhvp, πhvp)

≥ −
1

ε2
j̃(uh, uh) − ε2C

2
sγ‖h

s/2∇ · πhvp‖
2

≥ −
1

ε2

j̃(uh, uh) − ε2C
2
sC

2
c C

2
fhsγ‖ph‖

2

obtained by a scaling argument and the stability of the Clément operator. Focusing now on
the second term on the right hand side we obtain by partial integration and the properties
of vp.

(ph,∇ · (πhvp − vp)) ≤
cbε1

4ε2

‖hs/2∇ph‖
2 +

ε2ci

cbε1

‖h(2−s)/2ph‖
2.

This leads to the following inequality for ph

(3.22)
(1 − α2

2ε2 −
ε2cih

(2−s)

cbε1
)‖ph‖

2 −
cbε1

4ε2
‖hs/2∇ph‖

2 −
1

4ε2
A[(uh, 0), (uh, 0)]

≤ A[(uh, ph), (πhvp, 0)].

Choosing now ε2 = 1
2
cbε1/(cbε1α

2
2 + cih

2−s) and multiplying through by ε2 we have

(3.23)
ε2

2
‖ph‖

2 −
cbε1

4
‖hs/2∇ph‖

2 −
1

4
A[(uh, 0), (uh, 0)] ≤ A[(uh, ph), (ε2πhvp, 0)].

It remains to control ‖hs/2∇ · uh‖. We choose v = 0, q = πhh
s∇ · uh to obtain

‖hs/2∇ · uh‖2 + (hs/2∇ · uh, h
s/2(πh∇ · uh −∇ · uh)) + j(ph, πhh

s∇ · uh)

= A[(uh, ph), (0, πhh
s∇ · uh)].

Arguing as before we find that

3

4
‖hs/2∇ · uh‖

2 − ‖hs/2(πh∇ · uh −∇ · uh)‖
2 −

1

ε3

j(ph, ph) − ε3j(πhh
s∇ · uh, πhh

s∇ · uh)

≤ A[(uh, ph), (0, πh∇ · uh)]

Using now Lemma 3.4 followed by (3.7) we find

j(πhh
s∇ · uh, πhh

s∇ · uh) ≤ C2
sC

2
i γ‖h

3s−2

2 ∇ · uh‖
2,

and we have (since h < 1)
(

3

4
− ε3C

2
sC

2
i γ

)
‖hs/2∇ · uh‖

2 − j̃(uh, uh) −
1

ε3

j(ph, ph) ≤ A[(uh, ph), (0, πhh
s∇ · uh)].

We fix ε3 = 1
4C2

s C2

i
γ

and then multiply both sides with ε4 = (4 max(1, 1
ε3

))−1 resulting in

(3.24)
ε4

2
‖hs/2∇ · uh‖

2 −
1

4
A[(uh, ph), (uh, ph)] ≤ A[(uh, ph), (0, ε4πhh

s∇ · uh)].
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Summing equations (3.12), (3.20), (3.23) and (3.24) yields

1

4
A[(uh, ph), (uh, ph)] +

ε4

2
‖hs/2∇ · uh‖

2 +
cbε1

2
‖hs/2∇ph‖

2 +
ε2

2
‖ph‖

2

≤ A[(uh, ph), (uh + cbε1πh(h
s∇ph) + ε2πhvp, ph + ε4πhh

s∇ · uh)].

Setting now, cd = 2ε4, cg = 2cbε1 and cp = 2ε2 we may write

1

4
|‖(uh, ph)‖|

2 ≤ A[(uh, ph), (uh + cbε1πh(h
s∇ph) + ε2πhvp, ph + ε4πhh

s∇ · uh)].

The thesis follows by noting that there exists some constant c such that |‖(v, q)‖| ≤
c|‖(uh, ph)‖|. By similar arguments as above there follows

|‖(cbε1πh(h
s∇ph), 0)‖|2 ≤ C‖hs/2∇ph‖

2

|‖(ε2πhvp, 0)‖|2 ≤ C‖ph‖
2

and

|‖(0, ε4πhh
s∇ · uh)‖|

2 ≤ C‖hs/2∇ · uh‖
2

where the constants C depend on material data but not on h. The constant c is in fact of
order unity under the condition σ ≥ 1 or ν ≥ 1. �

Remark 3.6. The essential dependencies of the constants cg, cd and cp are

cg, cp ≈ O

(
1

max(σ, ν)

)

cd ≈ O(1)

4. A priori error estimates

A priori estimates are obtained in the standard fashion using

• stability
• consistency
• approximation.

The first point was handled in the previous section and we will now take care of the other
two, before proving our error estimates.

By definition of our method, we have the consistency condition.

Lemma 4.1. For (u, p) ∈ [H2(Ω)]d+1 there holds

A[(u − uh, p − ph), (v, q)] = 0,

for all (v, q) ∈ V h × Qh.

In addition we have the following approximation property.

Lemma 4.2. Let (u, p) ∈ [H2(Ω)]3 × H2(Ω). Then we have

|‖(u−πhu, p−πhp)‖| ≤ Ch
(
(hs/2(cd+γ1/2)+σ1/2h+ν1/2)‖u‖2,Ω+hs/2 max (c1/2

g , c1/2
p , γ1/2)‖p‖2,Ω

)
.
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Proof. Using standard interpolation we obtain for the velocities

‖u − πhu‖0,Ω ≤ Ch2‖u‖2,Ω

‖∇(u − πhu)‖0,Ω ≤ Ch‖u‖2,Ω,

‖hs/2∇ · (u − πhu)‖0,Ω) ≤ Ch1+ s

2 ‖u‖2,Ω,

and equivalently for the pressure

‖p − πhp‖0,Ω ≤ Ch2‖p‖2,Ω,

‖hs/2∇(p − πhp)‖0,Ω ≤ Ch1+ s

2 ‖p‖2,Ω.

Further, we have, using (3.8),

‖n · ∇(p − πhp)‖2
0,∂K ≤ C

(
h−1

K ‖∇(p − πhp)‖2
0,K

+‖∇(p − πhp)‖0,K‖∇(p − πhp)‖1,K

)

≤ ChK‖p‖2
2,K,

and it follows by summation that j(p−πhp, p−πhp)1/2 ≤ Ch1+ s

2 ‖p‖2,Ω. In the same fashion

clearly j̃(u − πhu, u − πhu)1/2 ≤ Ch1+ s

2 ‖u‖2,Ω.
�

Theorem 4.3. If u ∈ [H2(Ω)]d and p ∈ H2(Ω) then the solution (uh, ph) to (2.3) satisfies
(4.1)

|‖(u−uh, p−ph)‖| ≤ Ch
(
max (cd + γ1/2, c−1/2

g )Hs+σ1/2h+ν1/2)‖u‖2,Ω+max (c
−1/2
d , c1/2

g , c1/2
p , γ1/2)Hs‖p‖2,Ω

)
.

with Hs = max(h
s

2 , h
2−s

2 )

Proof. First of all we note that |‖(u − uh, p − ph)‖| ≤ |‖(u − πhu, p − πhp)‖| + |‖(πhu −
uh, πhp − ph)‖|. By Theorem 3.5 we have

|‖(πhu − uh, πhp − ph)‖| ≤ c0 sup
(v,q)∈Vh×Qh

A[(πhu − uh, πhp − ph), (v, q)]

|‖(v, q)‖|

and, by Lemma 4.1,

(4.2) |‖(πhu − uh, πhp − ph)‖| ≤ sup
(v,q)∈Vh×Qh

A[(πhu − u, πhp − p), (v, q)]

|‖(v, q)‖|

Writing out the terms in A[(πhu − u, πhp − p), (v, q)] we obtain

A[(πhu − u, πhp − p), (v, q)] = a(πhu − u, v) + b(πhp − p, v)
−b(q, πhu − u) + j(πhp − p, q) + j̃(πhu − u, v)

= i + ii + iii + iv + v.

We bound the five terms as follows

i ≤ |‖(u − πhu, 0)‖| · |‖(v, 0)‖|

ii ≤ ‖h−s/2(πhp − p)‖‖hs/2∇ · v‖ ≤ Ch
4−s

2 c
−1/2
d ‖p‖2,Ω|‖(v, 0)‖|
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and using integration by parts

iii = (hs/2∇q, h−s/2(u − πhu)) ≤ Ch
4−s

2 c−1/2
g ‖u‖2,Ω|‖(0, q)‖|

iv ≤ |‖(0, p − πhp)‖| · |‖(0, q)‖|,

and
v ≤ |‖(u − πhu, 0)‖| · |‖(v, 0)‖|.

The Theorem follows by Lemma 4.2. �

Remark 4.4. Observe that the stabilizing terms j(ph, ph) and j̃(uh, uh) may be included in
the triple norm. This yields the following convergences of the jump terms

(
j(ph, ph) + j(uh, uh)

)1/2

≤ Ch
(
(Hs + σ1/2h + ν1/2)‖u‖2,Ω + Hs‖p‖2,Ω

)

Let us comment briefly on the dependence on the constants in the above estimate. The
important point to notice is that there is no factor ν−1 or σ−1 in the estimate. This is what
allows us to treat all viscous regimes. The main dependence are on max(σ1/2, ν1/2). It is
worthwhile to notice that when the viscosity becomes small the optimal choice is s = 1
giving O(h3/2) convergence of the error in the L2-norm for both the velocities and the
pressure and O(h) convergence of the pressure in the H1-norm and of the velocities in the
Hdiv norm.

4.1. The Stokes problem. For the Stokes system it is unnatural to assume that p belongs
to H2(Ω). Thus, below we prove that some classical finite element results for the Stokes
problem hold also for our method, namely,

• convergence in the triple norm, assuming only p ∈ H1(Ω)
• optimal convergence in the L2-norm for the velocities.

Below we always take s = 2 and we omit the jump term j̃(uh, v) stabilizing the incom-
pressibility condition.

Corollary 4.5. If the solution to the continuous problem has the regularity u ∈ [H 2(Ω)]d

and p ∈ H1(Ω) then the solution (uh, ph) to (2.3) satisfies

(4.3) |‖(u − uh, p − ph)‖| ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
.

Proof. The proof is very similar to the proof of Theorem 4.3, but has to be modified to
account for the loss of Galerkin orthogonality. Equation (4.2) now becomes

(4.4) |‖(πhu − uh, πhp − ph)‖| ≤ sup
(v,q)∈Vh×Qh

Ac[(πhu − u, πhp − p), (v, q)] + j(πhp, q)

|‖(v, q)‖|

with the consistent part Ac[(πhu − u, πhp − p), (v, q)] = a(πhu − u, v) + b(πhp − p, v) −
b(q, πhu − u). We have that

b(πhp − p, v) ≤ ‖πhp − p‖ ‖v‖1,Ω ≤ ‖πhp − p‖ |‖(v, 0)‖| ≤ h‖p‖1,Ω |‖(v, 0)‖|,

and
b(q, πhu − u) ≤ |‖(0, q)‖| ‖∇ · (πhu − u)‖ ≤ |‖(0, q)‖| h‖u‖2,Ω.
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We end the proof by noting that

j(πhp, q) ≤ C j(πhp, πhp)1/2|‖(0, q)‖| ≤ C
∑

K

∫

∂K

γh3[∇πhp]2ds|‖(0, q)‖|

and that, by a scaling argument and the stability of the Clément interpolant

(4.5)
∑

K

∫

∂K

h3[∇πhp]2ds ≤ C‖h2∇πhp‖
2 ≤ C‖h2∇p‖2.

�

Corollary 4.6. If u ∈ [H2(Ω)]d and p ∈ H1(Ω) then the solution (uh, ph) to (2.3) satisfies

j(ph, ph) ≤ c|‖(πhu − uh, πhp − ph)‖|
2 + Ch2‖p‖2

1,Ω.

Proof. The proof is immediate noting that

j(ph, ph) = j(ph − πhp + πhp, ph − πhp + πhp) ≤ j(ph − πhp, ph − πhp) + j(πhp, πhp)

where we now apply a scaling argument and an inverse inequality in the first term to obtain

j(ph − πhp, ph − πhp) ≤ c|‖(πhu − uh, πhp − ph)‖|
2

and we conclude using equation (4.5). �

We now proceed to prove an L2–error estimates for the velocities in the case of the Stokes
equations. We introduce the following dual problem, find (ϕ, r) ∈ V × Q such that

(4.6) a(v, ϕ) + b(q, ϕ) − b(r, v) = (η, v)Ω, ∀(v, q) ∈ V × Q,

and assume that the solution enjoys the additional regularity

(4.7) ‖ϕ‖2
2,Ω + ‖r‖2

1,Ω ≤ C‖η‖2,

valid if the boundary is sufficiently smooth, cf. [12]. We now prove the L2–error estimate
in the case when ν > h.

Theorem 4.7. If u ∈ [H2(Ω)]d and p ∈ H1(Ω) is the solution to the Stokes problem and
(uh, ph) the solution to (2.3), then we have

‖u − uh‖ ≤ Ch2(‖u‖2,Ω + ‖p‖1,Ω)

Proof. Choosing η = v = u − uh, q = 0 in (4.6) gives

‖η‖2 = a(η, ϕ) − b(r, η)

and by Galerkin orthongonality, setting ζ = p − ph,

‖η‖2 = a(η, ϕ − πhϕ) + b(r − πhr, η) − b(ζ, ϕ − πhϕ) + j(ph, πhr)

= i + ii + iii + iv.

The terms are bounded in the following fashion.

i ≤ |‖(η, 0)‖||‖(ϕ− πhϕ, 0)‖| ≤ Ch2‖ϕ‖2,Ω,

ii ≤ |‖(η, 0)‖|‖r − πhr‖ ≤ Ch2‖r‖1,Ω,
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iii ≤ |‖(0, ζ)‖|‖∇ · (ϕ − πhϕ)‖ ≤ Ch2‖ϕ‖2,Ω,

and finally we bound the residual part using corollary 4.6 and equation (4.5)

j(ph, πhr) ≤ j(ph, ph)
1/2j(πhr, πhr)

1/2 ≤ Ch2‖r‖1,Ω.

We conclude using the regularity assumption on the dual problem (4.7). �

5. Numerical examples

In this section we will show the performance of our method on two academic examples
with known solution. Since we are dealing with the generalized Stokes’ problem we consider
the classical Stokes’ equations on the one hand with ν = 1 and σ = 0 and, on the other
hand, the Darcy’s equations, with ν = 0 and σ = 1.

5.1. Stokes’ problem. We consider the unit square with exact flow solution (from [15])
given by u = (20 x y3, 5 x4−5 y4) and p = 60 x2y−20 y3 +C. Imposing zero mean pressure
(C = −5), we obtain the convergence shown in Figure 3; second order for the velocity and
the pressure in L2–norm.
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Figure 3. L2-norm convergence of the velocity and of the pressure for
Stokes.

Pressure isolines and velocity vectors on the final mesh in the sequence used to obtain
the convergence plot are shown in Figures 4.

5.2. Darcy’s problem. The second numerical example, taken from [14], is a study of
convergence rates for Darcy flow. The domain under consideration is the unit square with a
given exact pressure solution p = sin 2π x sin 2π y. The exact velocity field is then computed
from Darcy’s law to give boundary conditions and a source term for the divergence. In
order to create a unique pressure field we also impose zero mean pressure.
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Figure 4. Approximate velocity field and pressure on the final mesh in a sequence

In Figure 5, we show the approximate velocities and pressures on the final mesh in a
sequence. In Figure 6, we show the convergence of the method in the L2−norm, which
yields second order accuracy for the velocities and the pressure.

Figure 5. Approximate velocity field and pressure on the final mesh in a sequence.

Numerical experimentation indicates that even on this simple example another choice
than s = 1 will give poorer convergence properties. In particular if the stabilization of the
incompressibility condition is left out the convergence of the error in the velocities is of
order h3/2. If, on the other hand, this term becomes too dominant (s = 0) the convergence
of the error in the pressure is of order h3/2.
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Figure 6. L2-norm convergence of the velocity and of the pressure for Darcy.

6. Concluding remarks

We have suggested the use of derivative jump stabilization for P1P1–approximations of
the generalized Stokes problem. We show optimal convergence for the pure Stokes case and
near optimal (with a loss of one half power of h) in the case of the pure Darcy problem.

Our method has some decisive benefits: mass lumping is possible (unlike in the case of
SUPG–type schemes) which is useful for extensions involving time stepping and stiff source
terms. No additional unknowns are added, no special structure on the mesh is assumed.
Finally, numerical evidence shows that no boundary layers appear in the pressures.
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