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Abstract

In this paper we develop techniques for computing elementwise conservative ap-

proximations of the flux on element boundaries for the continuous Galerkin method.

The technique is based on computing a correction of the average normal flux on an

edge or face. The correction is a jump in a piecewise constant or linear function. We

derive a basic algorithm which is based on solving a global system of equations and

a parallel algorithm based on solving local problems on stars. The methods work on

meshes with different element types and hanging nodes. We prove existence, unique-

ness, and optimal order error estimates. Finally, we illustrate our results by a few

numerical examples.

1 Introduction

In this paper we develop a technique for computing an elementwise conservative approx-
imation of the normal flux on edges or faces for the continuous Galerkin method. The
technique is based on computing a certain correction to the average of the normal fluxes.
In the basic case the correction takes the form of a jump in a piecewise constant function
and is computed by solving a global linear system of equations with as many degrees of
freedom as elements in the mesh. Furthermore, we derive a parallel algorithm where the
global system of equations is replaced by localized problems on stars, the set of elements
sharing a node. Both methods allow meshes with mixed element type as well as hang-
ing nodes. We prove that both conservative flux approximations are well defined and of
optimal order.
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†Supported by the Swedish Foundation for Strategic Research and the Swedish Research Council
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jnik@mec.chalmers.se

1



The computed conservative flux is of the same form as in the discontinuous Galerkin
(dG) method, see Arnold et al [3], for elliptic problems. We note that the conservation
property emanates from the presence of piecewise constant functions in the testspace and
thus enriching the continuous test and trial spaces with piecewise constants produces a
minimal conservative dG method with optimal order. Our method may be viewed as a
postprocessing technique motivated by the minimal conservative dG method.

Techniques for computing discrete conservative fluxes and applications in a posteriori
error estimation to manufacture boundary conditions for local elementwise Neumann prob-
lems are presented in Kelly [5], Ladeveze [6], Ainsworth and Oden [1], [2], and Verfürth
[7]. Conservative fluxes may also be of interest in their own right since we expect them to
more correctly represent the true flux.

This paper is organized as follows. In Section 2 we present a model problem, the cG
method, and discuss the local conservation property; in Section 3 we present the algorithms
for computation of conservative fluxes and prove error estimates; and in Section 4 the
analytical results are illustrated by numerical examples.

2 The model problem and finite element method

2.1 The model problem

We consider the following boundary value problem: find u : Ω → R such that

−∇ · σ(u) = f in Ω, (2.1)

u = gD on ΓD, (2.2)

σn(u) = gN on ΓN , (2.3)

where Ω denotes a bounded domain in Rd, d = 1, 2, or 3, with boundary Γ = ΓD ∪ ΓN ,
and the normal flux is defined by σn(u) = n · σ(u), where n is the unit outward normal of
Γ and the flux

σ(u) = A∇u, (2.4)

with A a uniformly positive definite d × d matrix with bounded entries aij ∈ C(Ω). As
is well known (2.1) has a unique solution u ∈ H1 for each f ∈ H−1, gD ∈ H1/2(ΓD), and
gN ∈ H−1/2(ΓN), for ΓD 6= ∅; and if ΓD = ∅, the solution exists and is unique up to a
constant, i.e., u ∈ H1/R for f ∈ H−1, gN ∈ H−1/2(Γ), and the compatibility condition
∫

Ω
f +

∫

Γ
gN = 0 is satisfied. We let ‖v‖s,ω and |v|s,ω denote the standard Sobolev norm

and seminorm of order s on the set ω. For brevity we write ‖v‖0,ω = ‖v‖ω.

2.2 The mesh

To define the numerical methods we introduce a partition K = {K} of Ω called the mesh.
For simplicity only we assume that the mesh is quasiuniform with meshsize h, see [4].
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Note that we allow hanging nodes as well as mixed element types, for instance a mesh can
contain both triangles and quadrilaterals.

The set of edges in the mesh is denoted by E = {E} and we split E into three disjoint
subsets

E = EI ∪ ED ∪ EN , (2.5)

where EI is the set of edges in the interior of Ω, ED is the set of edges on the Dirichlet part
of the boundary ΓD, and EN is the set of edges in the Neumann part of the boundary ΓN .

To each edge we associate a fixed unit normal nE, such that on the boundary Γ, nE

is the outward unit normal. We also use the notation nK for the outward normal of an
element K.

2.3 The standard finite element method

Let Vp
c = Vp

c (ψ) denote the space of continuous piecewise polynomials of degree p defined
on K, which are equal to ψ on ΓD,

Vp
c (ψ) = {v ∈ C(Ω) : v|ΓD

= ψ, v|K ∈ Pp(K), K ∈ K}, (2.6)

where Pp(K) is the space of polynomials of degree p defined on K. In this note we will be
concerned with two cases: ψ = 0 for the test space and ψ = gD for the trial space. We
usually write Vp

c for brevity. The cG method reads: find Uc ∈ Vp
c such that

ac(Uc, v) = lc(v) for all v ∈ Vp
c , (2.7)

where

ac(v, w) = (σ(v),∇w)Ω, (2.8)

lc(v) = (f, v)Ω + (gN , v)ΓN
, (2.9)

with (v, w)ω =
∫

ω
vw.

2.4 The conservation property

Let ω ⊂ Ω be a subdomain of Ω, and χω be the indicator function χω, defined by χω = 1 on
ω and 0 on Ω \ω. Multiplying (2.1) by χω and integrating by parts yields the conservation
law

∫

ω

f +

∫

∂ω

σn(u) = 0. (2.10)

Note that σn(u) = gN on ΓN . This is the fundamental conservation property which we
seek to mimic in the discrete case on an element level, i.e., we seek an approximate flux
Σn(Uc) such that Σn(Uc) = gN on ΓN and

∫

K

f +

∫

∂K

ΣnK
(Uc) = 0, (2.11)

for all elements K ∈ K.
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3 Conservative flux approximations

3.1 First derivation

Here we present a derivation of the basic conservative flux. Let V 0
d denote the space of

piecewise constant functions defined on K. We denote the jump at an interior edge E ∈ EI

by [v] = v+ − v−, where v±(x) = limt→0,t>0 v(x ∓ nEt), x ∈ E, and [v] = v+ on edges at
the boundary ED ∪ EN . Then we can state (2.11) in the form

∑

E∈E

(ΣnE
(Uc), [v])E +

∑

K∈K

(f, v)K = 0 for all v ∈ V0
d . (3.1)

On each edge E ∈ EN , i.e., on the Neumann part of the boundary, we should have

ΣnE
(Uc) = gN , (3.2)

since here the normal flux is given. Furthermore, on the remaining edges EI ∪ ED, Σn(Uc)
should of be an approximation of the exact flux σn(u) of optimal order. A natural approx-
imation of σn(u) is the average

〈σn(Uc)〉, (3.3)

where 〈v〉 = (v+ + v−)/2 on interior edges E ∈ EI and 〈v〉 = v+ on E ∈ ED (the Dirichlet
part of the bondary), which is of optimal order but not elementwise conservative. We thus
write

Σn(Uc) = 〈σn(Uc)〉 − ∆n(Uc), (3.4)

where ∆n = ∆n(Uc) is a correction making the approximate flux conservative. Inserting
(3.4) into (3.1) we obtain

∑

E∈EI∪ED

(∆nE
, [v])E =

∑

E∈EI∪ED

(〈σnE
(Uc)〉, [v])E (3.5)

+
∑

E∈EN

(gN , v)E +
∑

K∈K

(f, v)K for all v ∈ V0
d .

This equation suggests that a natural choice of the correction ∆nE
is

∆nE
= h−1[V ], (3.6)

for some V ∈ V0
d , to be determined. The scaling with h is motivated by consistency of

units. With this choice of ∆nE
we obtain the problem: find V ∈ V0

d such that

∑

E∈EI∪ED

(h−1[V ], [v])E =
∑

E∈EI∪ED

(〈σnE
(Uc)〉, [v])E (3.7)

+
∑

E∈EN

(gN , v)E +
∑

K∈K

(f, v)K for all v ∈ V0
d .
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This is a linear symmetric system of equations with the number of unknowns equal to the
number of elements in the mesh. In Theorem 3.1 we show that (3.7) is solvable and that
[V ] is uniquely determined on EI ∪ED. Further, setting v = 1 on K and 0 on Ω \K, in the
righthand side we obtain

∑

E∈EI∪ED

(〈σnE
(Uc)〉, [v])E +

∑

E∈EN

(gN , v)E +
∑

K∈K

(f, v)K

= (〈σnK
(Uc)〉, 1)∂K\ΓN

+ (gN , 1)∂K∩ΓN
+ (f, 1)K , (3.8)

i.e., the residual of the average flux approximation when inserted into the element conser-
vation law. Solving (3.7) a conservative flux may be directly computed using the formula

ΣnE
(Uc) =

{

〈σnE
(Uc)〉 − h−1[V ] E ∈ EI ∪ ED,

gN E ∈ EN .
(3.9)

3.2 The basic algorithm

We summarize our results in the following algorithm:

Algorithm 1. Given Uc ∈ Vp
c defined by (2.7) a conservative flux Σn(Uc) can be computed

as follows:

• Find V ∈ V0
d such that

bd(V,w) = ld(w) − ad(Uc, w) for all w ∈ V0
d , (3.10)

where

bd(V,w) =
∑

E∈EI∪ED

(h−1[V ], [w])E, (3.11)

ad(Uc, w) = −
∑

E∈EI∪ED

(〈σnE
(Uc)〉, [w])E, (3.12)

ld(w) =
∑

E∈EN

(gN , w)E +
∑

K∈K

(f, w)K . (3.13)

• Set

Σn(Uc) =

{

〈σn(Uc)〉 − h−1[V ] E ∈ EI ∪ ED,

gN E ∈ EN .
(3.14)

To formulate an error estimate we define the edge norm

‖v‖2
E =

∑

E∈EI∪ED

h‖v‖2
E. (3.15)
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Theorem 3.1 Problem (3.10) is solvable and [V ] is uniquely determined. The flux Σn(Uc)
defined by Algorithm 1 is elementwise conservative and the error estimate

‖σn(u) − Σn(Uc)‖E ≤ Chp|u|p+1,Ω, (3.16)

holds.

Proof. To show that (3.10) has a unique solution we note that if w ∈ V 0
d and bd(w,w) = 0

then w is a constant function. If ΓD is nonempty w must be zero and the form is coercive
on V0

d . If ΓD is empty w may be a nonzero constant function but then also the right hand
side of (3.10) is zero due to the compatibility condition and thus there is a solution.

Next to prove that Σn(Uc) is elementwise conservative we note that using the fact that
w ∈ V0

d equation (3.10) simplifies to

∑

EI∪ED

(h−1[V ], [w])E = (f, w) +
∑

EI∪ED

(〈σn(Uc)〉, [w])E. (3.17)

Rearranging terms the conservation property follows immediately.
Finally, we note that

‖σn(u) − Σn(Uc)‖E ≤ ‖σn(u) − 〈σn(Uc)〉‖E + ‖h−1[V ]‖E . (3.18)

The second term is estimated as follows

‖h−1[V ]‖2
E = bd(V, V ) (3.19)

= ld(V ) − ad(Uc, V ) (3.20)

= ad(u− Uc, V ) (3.21)

≤ ‖σn(u) − 〈σn(Uc)〉‖E ‖h
−1[V ]‖E , (3.22)

and thus we conclude that

‖h−1[V ]‖E ≤ ‖σn(u) − 〈σn(Uc)〉‖E . (3.23)

To complete the proof we note, using a trace inequality elementwise together with the stan-
dard a priori error estimate for the finite element method (2.7), that ‖σn(u)−〈σn(Uc)〉‖E ≤
Chp|u|p+1,Ω.

3.3 A parallel algorithm

To derive a parallel version of Algorithm 1 we use the lowest order basis functions on the
mesh as a partition of unity to construct local problems. We denote the space of continuous
polynomials of lowest order V1

c and order all active nodes (all nodes except hanging nodes)
from 1 to N and let {ϕi}

N
i=1 be the basis functions in V1

c . Further we let Si = supp(ϕi)
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be the star of elements neighboring node i. For instance, on triangles the piecewise linear
basis functions and on quads the bilinear basis functions.

To construct local problems we wish to replace the test functions in (3.10) by functions
of the form ϕiw with w ∈ V0

d . Note that ϕiw ∈ V1
d , where V1

d is the space of discontinuous
piecewise linear functions. For test functions v ∈ V1

d the conservation law corresponding
to (3.1) takes the form

∑

E∈E

(ΣnE
(Uc), [v])E −

∑

K∈K

(A∇Uc,∇v)K +
∑

K∈K

(f, v)K = 0 for all v ∈ V1
d . (3.24)

Note the additional second term which vanishes for v ∈ V0
d . Motivated by the derivations

in Section 3.1 we formulate the following parallel algorithm.

Algorithm 2: Given Uc ∈ Vp
c defined by (2.7) a conservative flux Σn(Uc) can be computed

as follows:

• For i = 1, . . . , N determine Vi ∈ V0
d (Si) = {v : v = w|Si

, w ∈ V0
d} such that

bd(Vi, ϕiw) = ld(ϕiw) − ad(Uc, ϕiw), (3.25)

for all w ∈ V0
d (Si). Here

bd(V, v) =
∑

E∈EI∪ED

(h−1[V ], [v])E, (3.26)

ad(Uc, v) =
∑

K∈K

(A∇Uc,∇v)K −
∑

E∈EI∪ED

(〈σnE
(Uc)〉, [v])E, (3.27)

ld(v) =
∑

E∈EN

(gN , v)E +
∑

K∈K

(f, v)K . (3.28)

• Set

V =
N

∑

i=1

ϕiVi, (3.29)

and

Σn(Uc) =

{

〈σn(Uc)〉 − h−1[V ] E ∈ EI ∪ ED,

gN E ∈ EN .
(3.30)

Theorem 3.2 Problems (3.25) are solvable and [V ] is uniquely determined. The flux
Σn(Uc) defined by Algorithm 2 is elementwise conservative and the error estimate

‖σn(u) − Σn(Uc)‖E ≤ Chp|u|p+1,Ω, (3.31)

holds.
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Proof. To prove that the localized problems (3.25) are solvable we first note that if node
i resides on ΓD then bd(w,ϕiw) = 0 if and only if w = 0 and thus the problem is solvable
in this case. If node i does not belong to ΓD then bd(w,ϕiw) = 0 if and only if w is a
constant on Si. In this case we note that the right side of (3.25) satisfies

ld(ϕiw) − ad(Uc, ϕiw) = lc(ϕiw) − ac(Uc, ϕiw) = 0, (3.32)

and thus problems (3.25) are solvable for all i = 1, . . . , N .
Next, to prove that Σn(Uc) is conservative we note that

bd(V,w) =
N

∑

i=1

bd(Vi, ϕiw) (3.33)

=
N

∑

i=1

ld(ϕiw) − ad(Uc, ϕiw) (3.34)

= ld(w) − ad(Uc, w), (3.35)

for all w ∈ V0
d . Here we used the fact that

∑N
i=1

ϕi = 1 in the last equality. Now the
conservation property follows in the same way as in the proof of Theorem 3.1.

To prove the error estimate we first show the estimate

bd(ϕiVi, Vi) ≤ C|||u− Uc|||
2
Si
, i = 1, . . . , N, (3.36)

where, for convenience, we introduced the norm

|||v|||2ω =
∑

K∈K,K⊂ω

(σ(v),∇v)K +
∑

E∈EI∪ED,E⊂ω

h
(

‖〈σn(v)〉‖2
E + ‖h−1[v]‖2

E

)

, (3.37)

with ω ⊂ Ω a union of elements in K. Without loss of generality we may assume that Vi

has average zero on Si. Note that

bd(ϕiVi, Vi) = ad(u− Uc, ϕiVi) (3.38)

≤ |||u− Uc|||Si
|||ϕiVi|||Si

. (3.39)

Using finite dimensionality of V0
d (Si) together with scaling we obtain the inequality

|||ϕiVi|||
2
Si

≤ Cbd(ϕiVi, Vi), (3.40)
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and thus (3.36) follows. To estimate the correction we proceed as follows

‖h−1[V ]‖2
E ≤ C

N
∑

i=1

‖h−1ϕi[Vi]‖
2
E (3.41)

≤ C
N

∑

i=1

bd(ϕiVi, Vi) (3.42)

≤ C

N
∑

i=1

|||u− Uc|||
2
Si

(3.43)

≤ C|||u− Uc|||
2
Ω, (3.44)

where in (3.42) we used the fact that ϕ2
i (x) ≤ ϕi(x) for all x ∈ Si and in (3.43) we employed

estimate (3.36). Finally, using a trace inequality elementwise together with the standard a
priori error estimate for the finite element method (2.7), we have |||u−Uc|||Ω ≤ Chp|u|p+1.

4 Numerical examples

We illustrate our estimates on a simple model problem. Consider the Poisson equation
(2.1), with A the two by two identity matrix, on the unit square Ω = [0, 1]2 with ho-
mogeneous Dirichlet conditions gD = 0 on the boundary ΓD = Γ and right hand side f
such that the solution is u = sin(πx1) sin(πx2). We solve this problem on a quasiuniform
triangulation K of Ω using the cG method with polynomials of degree p = 1, . . . , 4, and
calculate the conservative fluxes using Algorithms 1 and 2.

In Figure 1 we plot the error, measured as in Theorems 3.1 and 3.2, in the average
flux (diamond), and the conservative (square – Algorithm 1, star – Algorithm 2) fluxes as
functions of the meshsize h. We observe that the convergence rates are in agreement with
the predictions of Theorems 3.1 and 3.2.

In Figure 2 we plot the exact flux (solid) together with the averaged (solid diamond)
and conservative (solid square – Algorithm 1, solid star – Algorithm 2) fluxes on the side
from (0, 0) to (1, 0). The mesh is quasiuniform with triangles of approximate size 0.2 and
Uc is computed using linears (p = 1). Note, in particular, that Algorithm 2 manufactures
a piecewise linear conservative flux while the conservative flux computed using Algorithm
1 and the average flux are piecewise constant.

In Figure 3 we select one triangle from the mesh (used in Figure 2) and plot the exact
(solid), the averaged (solid diamond), and the conservative (solid star – Algorithm 2) fluxes
along the boundary of the triangle.

Finally, we note that all of our numerical examples indicate that the conservative fluxes
are certainly in better agreement with the exact flux than the averaged flux.
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Figure 3: The exact (solid), average (solid diamond) and conservative (solid star – Algo-
rithm 2) fluxes for p = 1 along the edges of an element.
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