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MULTI-ADAPTIVE TIME INTEGRATION

ANDERS LOGG

Abstract. Time integration of ODEs or time-dependent PDEs with required resolution
of the fastest time scales of the system, can be very costly if the system exhibits multiple
time scales of different magnitudes. If the different time scales are localised to different
components, corresponding to localisation in space for a PDE, efficient time integration
thus requires that we use different time steps for different components.

We present an overview of the multi-adaptive Galerkin methods mcG(q) and mdG(q)
recently introduced in a series of papers by the author. In these methods, the time
step sequence is selected individually and adaptively for each component, based on an a
posteriori error estimate of the global error.

The multi-adaptive methods require the solution of large systems of nonlinear algebraic
equations which are solved using explicit-type iterative solvers (fixed point iteration). If
the system is stiff, these iterations may fail to converge, corresponding to the well-known
fact that standard explicit methods are inefficient for stiff systems. To resolve this problem,
we present an adaptive strategy for explicit time integration of stiff ODEs, in which the
explicit method is adaptively stabilised by a small number of small, stabilising time steps.

1. Introduction

In earlier work [29, 30], we have introduced the multi-adaptive Galerkin methods mcG(q)
and mdG(q) for ODEs of the type

(1.1)

{

u̇(t) = f(u(t), t), t ∈ (0, T ],
u(0) = u0,

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial condition,
T > 0 a given final time, and f : R

N × (0, T ] → R
N a given function that is Lipschitz-

continuous in u and bounded. We use the term multi-adaptivity to describe methods
with individual time-stepping for the different components ui(t) of the solution vector
u(t) = (ui(t)), including (i) time step length, (ii) order, and (iii) quadrature, all chosen
adaptively in a computational feed-back process.

Surprisingly, individual time-stepping for ODEs has received little attention in the large
literature on numerical methods for ODEs, see e.g. [4, 24, 25, 2, 34]. For specific applica-
tions, such as the n-body problem, methods with individual time-stepping have been used,
see e.g. [31, 1, 5], but a general methodology has been lacking. For time-dependent PDEs,
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2 ANDERS LOGG

in particular for conservation laws of the type u̇ + f(u)x = 0, attempts have been made
to construct methods with individual (locally varying in space) time steps. Flaherty et
al. [22] have constructed a method based on the discontinuous Galerkin method combined
with local explicit Euler time-stepping. A similar approach is taken in [6] where a method
based on the original work by Osher and Sanders [32] is presented for conservation laws
in one and two space dimensions. Typically the time steps used are based on local CFL
conditions rather than error estimates for the global error and the methods are low order
in time (meaning ≤ 2). We believe that our work on multi-adaptive Galerkin methods
(including error estimation and arbitrary order methods) presents a general methodology
to individual time-stepping, which will result in efficient integrators both for ODEs and
time-dependent PDEs.

The multi-adaptive methods are developed within the general framework of adaptive
Galerkin methods based on piecewise polynomial approximation (finite element methods)
for differential equations, including the continuous and discontinuous Galerkin methods
cG(q) and dG(q) which we extend to their multi-adaptive analogues mcG(q) and mdG(q).
Earlier work on adaptive error control for the cG(q) and dG(q) methods include [7, 17, 27,
19, 18, 21]. See also [10, 11, 9, 12, 13, 14], and [8] or [20] in particular for an overview
of adaptive error control based on duality techniques. The approach to error analysis
and adaptivity presented in these references naturally carries over to the multi-adaptive
methods.

1.1. The stiffness problem. The classical wisdom developed in the 1950s regarding stiff
ODEs is that efficient integration requires implicit (A-stable) methods, at least outside
transients where the time steps may be chosen large from accuracy point of view. Using
an explicit method (with a bounded stability region) the time steps have to be small at
all times for stability reasons, in particular outside transients, and the advantage of a low
cost per time step for the explicit method is counter-balanced by the necessity of taking a
large number of small time steps. As a result, the overall efficiency of an explicit method
for a stiff ODE is small.

We encounter the same problem when we try to use explicit fixed point iteration to solve
the discrete equations given by the multi-adaptive Galerkin methods mcG(q) and mdG(q).
However, it turns out that if a sequence of large (unstable) time steps are accompanied
by a suitable (small) number of small time steps, a stiff system can be stabilised to allow
integration with an effective time step much larger than the largest stable time step given by
classical stability analysis. This idea of stabilising a stiff system using the inherent damping
property of the stiff system itself was first developed in an automatic and adaptive setting
in [16], and will be further explored in the full multi-adaptive setting. A similar approach
is taken in recent independent work by Gear and Kevrekidis [3]. The relation to Runge-
Kutta methods based on Chebyshev polynomials discussed by Verwer in [26] should also
be noted.

1.2. Notation. The following notation is used in the discussion of the multi-adaptive
Galerkin methods below: Each component Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q)
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solution U(t) of (1.1) is a piecewise polynomial on a partition of (0, T ] into Mi subinter-
vals. Subinterval j for component i is denoted by Iij = (ti,j−1, tij], and the length of the
subinterval is given by the local time step kij = tij − ti,j−1. This is illustrated in Figure 1.
On each subinterval Iij, Ui|Iij

is a polynomial of degree qij and we refer to (Iij, Ui|Iij
) as

an element.
Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks between

certain synchronised time levels 0 = T0 < T1 < . . . < TM = T . We refer to the set of
intervals Tn between two synchronised time levels Tn−1 and Tn as a time slab: Tn = {Iij :
Tn−1 ≤ ti,j−1 < tij ≤ Tn}, and we denote the length of a time slab by Kn = Tn − Tn−1.
The partition consisting of the entire collection of intervals is denoted by T = ∪Tn.

PSfrag replacements
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Figure 1. Individual partitions of the interval (0, T ] for different compo-
nents. Elements between common synchronised time levels are organised in
time slabs. In this example, we have N = 6 and M = 4.

1.3. Outline. The outline of the paper is as follows: In Section 2, we formulate the multi-
adaptive Galerkin methods mcG(q) and mdG(q). In Section 3, we discuss error control
and adaptivity. In particular, we show how to choose the individual time steps based on
an a posteriori error estimate for the global error. In Section 4, we give a quick overview
of an iterative method (based on fixed point iteration) for the system of nonlinear discrete
equations that needs to be solved on each time slab, and in Section 5 we describe a technique
that can be used to stabilise the explicit fixed point iterations for stiff problems. Finally,
in Section 6, we present a number of numerical examples chosen to illustrate both the
potential of multi-adaptivity and the use of explicit fixed point iteration (or explicit time-
stepping) for stiff problems.
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2. Multi-Adaptive Galerkin

2.1. Multi-adaptive continuous Galerkin, mcG(q). To give the definition of the mcG(q)
method, we define the trial space V and the test space W as

(2.1)
V = {v ∈ [C([0, T ])]N : vi|Iij

∈ Pqij(Iij), j = 1, . . . , Mi, i = 1, . . . , N},
W = {v : vi|Iij

∈ Pqij−1(Iij), j = 1, . . . , Mi, i = 1, . . . , N},

where Pq(I) denotes the linear space of polynomials of degree q ≥ 0 on the interval I.
In other words, V is the space of continuous piecewise polynomials of degree q = qi(t) =
qij, t ∈ Iij on the partition T , and W is the space of (in general discontinuous) piecewise
polynomials of degree q − 1 on the same partition.

We define the mcG(q) method for (1.1) as follows: Find U ∈ V with U(0) = u0, such
that

(2.2)

∫ T

0

(U̇ , v) dt =

∫ T

0

(f(U, ·), v) dt ∀v ∈ W,

where (·, ·) denotes the standard inner product in R
N . If now for each local interval Iij

we take vn = 0 when n 6= i and vi(t) = 0 when t 6∈ Iij, we can rewrite the global problem
(2.2) as a number of successive local problems for each component: For i = 1, . . . , N ,
j = 1, . . . , Mi, find Ui|Iij

∈ Pqij (Iij) with Ui(ti,j−1) given from the previous time interval,
such that

(2.3)

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij).

We define the residual R of the approximate solution U to be R(U, t) = U̇(t) − f(U(t), t).
In terms of the residual, we can rewrite (2.3) as

∫

Iij
Ri(U, ·)v dt = 0 for all v ∈ Pqij−1(Iij),

i.e., the residual is orthogonal to the test space on every local interval. We refer to this as
the Galerkin orthogonality of the mcG(q) method.

2.2. Multi-adaptive discontinuous Galerkin, mdG(q). For the mdG(q) method, we
define the trial and test spaces by

(2.4) V = W = {v : vi|Iij
∈ Pqij (Iij), j = 1, . . . , Mi, i = 1, . . . , N},

i.e., both trial and test functions are (in general discontinuous) piecewise polynomials of
degree q = qi(t) = qij, t ∈ Iij on the partition T .

We define the mdG(q) method for (1.1) as follows, similar to the definition of the con-
tinuous method: Find U ∈ V with U(0−) = u0, such that

(2.5)
N

∑

i=1

Mi
∑

j=1

[

[Ui]i,j−1v(t+i,j−1) +

∫

Iij

U̇ivi dt

]

=

∫ T

0

(f(U, ·), v) dt ∀v ∈ W.

where [·] denotes the jump, i.e., [v]ij = v(t+ij) − v(t−ij).
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The mdG(q) method in local form, corresponding to (2.3), reads: For i = 1, . . . , N ,
j = 1, . . . , Mi, find Ui|Iij

∈ Pqij (Iij), such that

(2.6) [Ui]i,j−1v(ti,j−1) +

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),

where the initial condition is specified for i = 1, . . . , N , by Ui(0
−) = ui(0). In the same

way as for the continuous method, we define the residual R of the approximate solution
U to be R(U, t) = U̇(t) − f(U(t), t), defined on the inner of every local interval Iij, and
rewrite (2.6) in the form [Ui]i,j−1v(ti,j−1) +

∫

Iij
Ri(U, ·)v dt = 0 for all v ∈ Pqij (Iij). We

refer to this as the Galerkin orthogonality of the mdG(q) method.

3. Error Control and Adaptivity

Our goal is to compute an approximation U(T ) of the exact solution u(T ) of (1.1) at final
time T within a given tolerance TOL > 0, using a minimal amount of computational work.
This goal includes an aspect of reliability (the error should be less than the tolerance) and
an aspect of efficiency (minimal computational work). To measure the error we choose a
norm, such as the Euclidean norm ‖ · ‖ on R

N , or more generally some other quantity of
interest.

We discuss below both a priori and a posteriori error estimates for the multi-adaptive
Galerkin methods, and the application of the a posteriori error estimates in multi-adaptive
time-stepping.

3.1. A priori error estimates. Standard (duality-based) a priori error estimates show
that the order for the ordinary Galerkin methods cG(q) and dG(q) is 2q and 2q + 1,
respectively. A generalisation of these estimates to the multi-adaptive methods gives the
same result. The multi-adaptive continuous Galerkin method mcG(q) is thus of order 2q,
and the multi-adaptive discontinuous Galerkin method mdG(q) is of order 2q + 1.

3.2. A posteriori error estimates. A posteriori error analysis in the general framework
of [8] relies on the concept of the dual problem. The dual problem of the initial value
problem (1.1) is the linearised backward problem given by

(3.1)

{

−φ̇ = J∗(u, U, ·)φ on [0, T ),
φ(T ) = e(T )/‖e(T )‖,

where the Jacobian J is given by J(u, U, ·) =
∫ 1

0
∂f

∂u
(su + (1 − s)U, ·) ds and ∗ denotes the

transpose. We use the dual problem to represent the error in terms of the dual solution φ
and the residual R. For the mcG(q) method the representation formula is given by

(3.2) ‖e(T )‖ =

∫ T

0

(R, φ) dt,
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and for the mdG(q) method, we obtain

(3.3) ‖e(T )‖ =
N

∑

i=1

Mi
∑

j=1

[Ui]i,j−1φi(ti,j−1) +

∫

Iij

Ri(U, ·)φi dt.

Using the Galerkin orthogonalities together with special interpolation estimates (see
[29]), we obtain a posteriori error estimates of the form

(3.4) ‖e(T )‖ ≤

N
∑

i=1

S
[qi]
i max

[0,T ]
{Ckqi

i ri} ,

for the mcG(q) method, and

(3.5) ‖e(T )‖ ≤

N
∑

i=1

S
[qi+1]
i max

[0,T ]

{

Ckqi+1
i ri

}

,

for the mdG(q) method, where C is an interpolation constant, ri is a local measure of the

residual, and the individual stability factors Si are given by S
[qi]
i =

∫ T

0
|φ

(qi)
i | dt. Typically,

the stability factors are of moderate size for a stiff problem (and of unit size for a parabolic
problem), which means that accurate computation is possible over long time intervals.
Note that the Lipschitz constant, which is large for a stiff problem, is not present in these
estimates.

The analysis can be extended to include also computational errors, arising from solv-
ing the discrete equations using an iterative method, and quadrature errors, arising from
evaluating the integrals in (2.3) and (2.6) using quadrature.

3.3. Adaptivity. To achieve the goals stated at the beginning of this section, the adaptive
algorithm chooses individual time steps for the different components based on the a pos-
teriori error estimates. Using for example a standard PID regulator from control theory,
we choose the individual time steps for each component to satisfy

(3.6) SiCk
pij

ij rij = TOL/N,

or, taking the logarithm with Ci = log(TOL/(NSiC)),

(3.7) pij log kij + log rij = Ci,

with maximal time steps {kij}, following work by Söderlind and coworkers [23, 35]. Here,
pij = qij for the mcG(q) method and pij = qij + 1 for the mdG(q) method.

To solve the dual problem (3.1), which is needed to compute the stability factors, it
would seem that we need to know the error e(T ), since this is used as an initial value for
the dual problem. However, we know from experience that the stability factors are quite
insensitive to the choice of initial data for the dual problem. (A motivation of this for
parabolic problems is given in [15].) Thus in practice, a random (and normalised) value is
chosen as initial data for the dual problem. Another approach is to take the initial value
for the dual problem to be φ(T ) = (0, . . . , 0, 1, 0, . . . , 0), i.e., a vector of zeros except for a
single component which is of size one. This gives an estimate for a chosen component of
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the error. By other choices of data for the dual problem, other functionals of the error can
be controlled. In either case, the stability factors are computed using quadrature from the
computed dual solution.

The adaptive algorithm can be expressed as follows: Given a tolerance TOL > 0, make
a preliminary estimate for the stability factors and then

(i) Solve the primal problem with time steps based on (3.6);
(ii) Solve the dual problem and compute the stability factors;
(iii) Compute an error bound E based on (3.2) or (3.3);
(iv) If E ≤ TOL then stop; if not go back to (i).

Note that we use the error representations (3.2) and (3.3) to obtain sharp error estimates.
On the other hand, the error estimates (3.4) and (3.5) are used to determine the adaptive
time step sequences.

To limit the computational work, it is desirable that only a few iterations in the adaptive
algorithm are needed. In the simplest case, the error estimate will stay below the given
tolerance on the first attempt. Otherwise, the algorithm will try to get below the tolerance
the second time. It is also possible to limit the number of times the dual problem is solved.
It should also be noted that to obtain an error estimate at a time t = t̄, different from
the final time T , the dual problem has to be solved backwards also from time t̄. This may
be necessary in some cases if the stability factors do not grow monotonically as functions
of the final time T , but for many problems the stability factors grow with T , indicating
accumulation of errors.

Our experience is that automatic computation based on this adaptive strategy is both
reliable (the error estimates are quite close to the actual error) and efficient (the additional
cost for solving the dual problem is quite small). See [28] for a discussion on this topic.

4. Iterative Methods for the Nonlinear System

The nonlinear discrete algebraic equations given by the mcG(q) and mdG(q) methods
presented in Section 2 (including numerical quadrature) to be solved on every local interval
Iij take the form

(4.1) ξijm = ξij0 + kij

qij
∑

n=0

w[qij ]
mn fi(U(τ−1

ij (s[qij ]
n )), τ−1

ij (s[qij ]
n )),

for m = 0, . . . , qij, where {ξijm}
qij

m=0 are the degrees of freedom to be determined for

component Ui(t) on the interval Iij, {w
[qij ]
mn }

qij

m=0,n=0 are weights, τij maps Iij to (0, 1]:

τij(t) = (t − ti,j−1)/(tij − ti,j−1), and {s
[qij ]
n }

qij

n=0 are quadrature points defined on [0, 1].
The strategy we use to solve the discrete equations (4.1) is by direct fixed point iteration,

possibly in combination with a simplified Newton’s method. To evolve the system, we need
to collect the degrees of freedom for different components between two time levels and solve
the discrete equations for these degrees of freedom. We refer to such a collection of elements
between two time levels as a time slab (see Figure 1). New time slabs are formed as we
evolve the system starting at time t = 0, in the same way as new time intervals are formed
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in a standard solver which uses the same time steps for all components. On each time
slab, we thus compute the degrees of freedom {ξijm}

qij

m=0 for each element within the time
slab using (4.1), and repeat the iterations until the computational error is below a given
tolerance for the computational error. The iterations are carried out in order, starting at
the element closest to time t = 0 and continuing until we reach the last element within the
time slab. This is illustrated in Figure 2.

PSfrag replacements

Tn−1 Tn

Figure 2. Multi-adaptive time-stepping within a time slab for a system
with two components.

The motivation for using direct fixed point iteration, rather than using a full Newton’s
method, is that we want to avoid forming the Jacobian (which may be very large, since
the nonlinear system to be solved is for the entire time slab) and also avoid solving the
linearised system. Instead, using the strategy for adaptive damping of the fixed point
iterations as described in the next section, the linear algebra is built into the adaptive
solver. Since often only a small number of fixed point iterations are needed, typically only
two or three iterations, we believe this to be an efficient approach.

5. Stiff Problems

As discussed in the previous section, the nonlinear discrete equations given by the (im-
plicit) multi-adaptive Galerkin methods are solved using fixed point iteration on each time
slab. For stiff problems these iterations may fail to converge. We now discuss a simple way
to stabilise a stiff system, in order to make the explicit fixed point iterations convergent.

For simplicity, we assume that the time step sequence, k1, k2, . . . , kM , is the same for all
components.

5.1. The test equation. To demonstrate the main idea, we consider the stabilisation of
the explicit Euler method applied to the simple test equation:

(5.1)

{

u̇(t) + λu(t) = 0 for t > 0,
u(0) = u0,
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where λ > 0 and u0 is a given initial condition. The solution is given by u(t) = exp(−λt)u0.
The explicit Euler method for the test equation reads

Un = Un−1 − knλUn−1 = (1 − knλ)Un−1.

This method is conditionally stable, with stability guaranteed if knλ ≤ 2. If λ is large, this
is too restrictive outside transients.

Now, let K be a large time step satisfying Kλ > 2 and let k a small time step chosen so
that kλ < 2. Consider the method

(5.2) Un = (1 − kλ)m(1 − Kλ)Un−1,

corresponding to one explicit Euler step with large time step K and m explicit Euler steps
with small time steps k, where m is a positive integer to be determined. Altogether this
corresponds to a time step of size kn = K + mk. For the overall method to be stable, we
require that |1 − kλ|m(Kλ − 1) ≤ 1, that is

(5.3) m ≥
log(Kλ − 1)

− log |1 − kλ|
≈

log(Kλ)

c
,

if Kλ � 1 and c = kλ is of moderate size, say c = 1/2.
We conclude that m will be quite small and hence the small time steps will be used only

in a small fraction of the total time interval, giving a large effective time step. To see this,
define the cost as α = 1+m

K+km
∈ (1/K, 1/k), i.e., the number of time steps per unit interval.

Classical stability analysis gives α = 1/k = λ/2 with a maximum time step k = 2/λ. Using
(5.3) we instead find

(5.4) α ≈
1 + log(Kλ)/c

K + log(Kλ)/λ
≈

λ

c
log(Kλ)/(Kλ) � λ/c,

for Kλ � 1. The cost is thus decreased by the cost reduction factor

2 log(Kλ)

cKλ
∼

log(Kλ)

Kλ
,

which can be quite significant for large values of Kλ.

5.2. The general non-linear problem. For the general nonlinear problem (1.1), the
gain is determined by the distribution of the eigenvalues of the Jacobian, see [16]. The
method of stabilising the system using a couple of small stabilising time steps is best suited
for systems with a clear separation of the eigenvalues into small and large eigenvalues, but
even for the semi-discretised heat equation (for which we have a whole range of eigenvalues)
the gain can be substantial, as we shall see below.

5.3. An adaptive algorithm. In [16] we present an adaptive algorithm in which both
the size of the small stabilising time steps and the number of such small time steps are
automatically determined. Using adaptive stabilisation, the damping is targeted precisely
at the current unstable eigenmode, which as a consequence allows efficient integration also
of problems with no clear separation of its eigenvalues.
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6. Numerical Examples

The numerical examples presented in this section are divided into two categories: ex-
amples illustrating the concept of multi-adaptivity and examples illustrating explicit time-
stepping (or explicit fixed point iteration) for stiff problems.

6.1. Multi-adaptivity. The two examples presented below are taken from [30], in which
further examples are presented and discussed in more detail.

6.1.1. A mechanical multi-scale system. To demonstrate the potential of the multi-adaptive
methods, we consider a dynamical system in which a small part of the system oscillates
rapidly. The problem is to compute accurately the positions (and velocities) of the N
point-masses attached together with springs of equal stiffness as in Figure 3.

Figure 3. A mechanical system consisting of N = 5 masses attached to-
gether with springs.

We choose a small time step for the smallest mass and large time steps for the larger
masses, and measure the work for the mcG(1) method as we increase the number of larger
masses. The work is then compared to the work required for the standard cG(1) method
using the same (small) time step for all masses. As is evident in Figure 4, the work (in
terms of function evaluations) increases linearly for the standard method, whereas for the
multi-adaptive method it remains practically constant.

6.1.2. Reaction–diffusion. Next consider the following system of PDEs:

(6.1)

{

u̇1 − εu′′

1 = −u1u
2
2,

u̇2 − εu′′

2 = u1u
2
2,

on (0, 1)× (0, T ] with ε = 0.001, T = 100 and homogeneous Neumann boundary conditions
at x = 0 and x = 1, which models isothermal auto-catalytic reactions (see [33]): A1+2A2 →
A2 + 2A2. As initial conditions, we take u1(x, 0) = 0 for 0 < x < x0 , u1(x, 0) = 1 for
x0 ≤ x < 1, and u2(x, 0) = 1− u1(x, 0) with x0 = 0.2. An initial reaction where substance
A1 is consumed and substance A2 is formed will then take place at x = x0, resulting in
a decrease in the concentration u1 and an increase in the concentration u2. The reaction
then propagates to the right until all of substance A1 is consumed and we have u1 = 0 and
u2 = 1 in the entire domain.

Computing the solution using the mcG(2) method, we find that the time steps are
automatically chosen to be small only in the vicinity of the reaction front, see Figure 5,
and during the computation the region of small time steps will propagate to the right at
the same speed as the reaction front.
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Figure 4. Error, cpu time, total number of steps, and number of function
evaluations as function of the number of masses, for the multi-adaptive cG(1)
method (dashed) and the standard cG(1) method (solid).
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Figure 5. The concentrations of the two species, U1 and U2, at time t = 50
as function of space (above), and the corresponding time steps (below).

6.2. Explicit time-stepping for stiff problems. To illustrate the technique of stabilisa-
tion for stiff problems, we present below some examples taken from [16]. In these examples,
the cost α is compared to the cost α0 of a standard implementation of the cG(1) method
in which we are forced to take a small time step all the time. (These small time steps are
marked by dashed lines in the figures.) Comparison has not been made with an implicit
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method, since it would be difficult to make such a comparison fair; one could always argue
about the choice of linear solver and preconditioner. However, judging by the modest re-
striction of the average time step size and the low cost of the explicit method, we believe
our approach to be competitive also with implicit methods, although this remains to be
seen.

6.2.1. The test equation. The first problem we try is the test equation:

(6.2)

{

u̇(t) + λu(t) = 0 for t > 0,
u(0) = u0,

on [0, 10], where we choose u0 = 1 and λ = 1000. As is shown in Figure 6, the time step
is repeatedly decreased to stabilise the stiff system, but overall the effective time step is
large and the cost reduction factor is α/α0 ≈ 1/310.
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Figure 6. Solution and time step sequence for eq. (6.2), α/α0 ≈ 1/310.

6.2.2. The test system. For the test system,

(6.3)

{

u̇(t) + Au(t) = 0 for t > 0,
u(0) = u0,

on [0, 10], we take A = diag(100, 1000) and u0 = (1, 1). As seen in Figure 7, most of
the stabilising steps are chosen to damp out the eigenmode corresponding to the largest
eigenvalue, λ2 = 1000, but some of the damping steps are targeted at the second eigenvalue,
λ1 = 100. The selective damping is handled automatically by the adaptive algorithm and
the cost reduction factor is again significant: α/α0 ≈ 1/104.
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Figure 7. Solution and time step sequence for eq. (6.3), α/α0 ≈ 1/104.

6.2.3. The HIRES problem. The so-called HIRES problem (“High Irradiance RESponse”)
originates from plant physiology and is taken from the test set of ODE problems compiled
by Lioen and de Swart [36]. The problem consists of the following eight equations:

(6.4)











































u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

on [0, 321.8122] (as specified in [36]). The initial condition is given by u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057).
The cost reduction factor is now α/α0 ≈ 1/33, see Figure 8.

6.3. The heat equation. Finally, we consider the heat equation in one dimension:

(6.5)







u̇(x, t) − u′′(x, t) = f(x, t), x ∈ (0, 1), t > 0,
u(0) = u(1) = 0,

u(·, t) = 0,

where we choose f(x, t) = f(x) as an approximation of the Dirac delta function at x = 0.5.
Discretising in space, we obtain the ODE

(6.6)

{

u̇(t) + Au(t) = f, t > 0,
u(0) = 0,
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Figure 8. Solution and time step sequence for eq. (6.4), α/α0 ≈ 1/33.

where A is the stiffness matrix. With a spatial resolution of h = 0.01, the eigenvalues of A
are distributed in the interval [0, 4 · 104] (see Figure 9). The selective damping produced
by the adaptive algorithm performs well and the cost reduction factor is α/α0 ≈ 1/17.
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