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ADAPTIVE COMPUTATIONAL METHODS FOR
PARABOLIC PROBLEMS

K. ERIKSSON, C. JOHNSON, AND A. LOGG

Abstract. We present a unified methodology for the computational solution of parabolic
systems of differential equations with adaptive selection of discretization in space and
time, based on a posteriori error estimates involving residuals of computed solutions and
stability factors/weights, obtained by solving an associated linearized dual problem. We
define parabolicity as boundedness in time (up to logarithmic factors) of a certain strong
stability factor measuring the L1(L2)-norm in time–space of the time derivative of the
dual solution with L2-normalized initial data.

The simpler a hypothesis is, the better it is. (Leibniz)

1. What is a parabolic problem?

A common classification of partial differential equations uses the terms elliptic, parabolic
and hyperbolic, with the stationary Poisson equation being a prototype example of an elliptic
problem, the time-dependent heat equation that of a parabolic problem, and the time-dependent
wave equation being a hyperbolic problem. More generally, parabolic problems are often de-
scribed vaguely speaking as “diffusion-dominated”, while hyperbolic problems are “convection-
dominated” in a setting of systems of convection-diffusion equations. Alternatively, the term
“stiff problems” is used to describe parabolic problems, with the term stiff referring to the char-
acteristic presence of a range of time scales, varying from slow to fast with increasing damping.

In the context of computational methods for a general class of systems of time-dependent
convection-diffusion-reaction equations, the notion of “parabolicity” or “stiffness” may be given
a precise quantitative definition, which will be at the focal point of this presentation. We will
define a system of convection-diffusion-reaction equations to be parabolic if computational so-
lution is possible over long time without error accumulation, or alternatively, if a certain strong
stability factor Sc(T ), measuring error accumulation, is of unit size independent of the length
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T in time of the simulation. More precisely, the error accumulation concerns the Galerkin dis-
cretization error in a discontinuous Galerkin method dG(q) with piecewise polynomials of degree
q of order 2q+ 1. (The total discretization error may also contain a quadrature error, which typ-
ically accumulates at a linear rate in time for a parabolic problem.) This gives parabolicity a
precise quantitative meaning with a direct connection to computational methods. A parabolic
problem thus exhibits a feature of “loss of memory” for Galerkin errors satisfying an orthogonal-
ity condition, which allows long-time integration without error accumulation. As shall be made
explicit below, our definition of parabolicity through a certain stability factor is closely related to
the definition of an analytic semigroup.

For a typical hyperbolic problem the corresponding strong stability factor will grow linearly
in time, while for more general initial value problems the growth may be polynomial or even
exponential in time.

The solutions of parabolic systems in general vary considerably in space-time and from one
component to the other with occasional transients where derivatives are large. Efficient compu-
tational methods for parabolic problems thus require adaptive control of the mesh size in both
space and time, or more general multi-adaptive control with possibly different resolution in time
for different components.

2. Outline

We first consider in Section 3 time-stepping methods for Initial Value Problems (IVPs) for
systems of ordinary differential equations. We present an a posteriori error analysis exhibiting
the characteristic feature of a parabolic problem of non-accumulation of Galerkin errors in the
setting of the backward Euler method (the discontinuous Galerkin method dG(0)), with piece-
wise constant (polynomial of order 0) approximation in time. The a posteriori error estimate
involves the residual of the computed solution and stability factors/weights obtained by solving
an associated dual linearized problem expressing in quantitative form the stability features of
the IVP being solved. The a posteriori error estimate forms the basis of an adaptive method for
time step control with the objective of controlling the Euclidean norm of the error uniformly in
time or at selected time levels, or some other output quantity. The form of the a posteriori error
estimate expresses the characteristic feature of a parabolic problem that the time step control is
independent of the length in time of the simulation.

In Section 4 we compute stability factors for a couple of IVPs modeling chemical reactions
and find that the strong stability factor Sc(T ) remains of unit size over long time.

In Section 5 we contrast with an IVP with exponentially growing stability factors: the Lorenz
system.

The backward Euler method, or more generally the dG(q) method, is implicit and requires the
solution of a nonlinear system of equations at each time step. In Section 6 we study iterative fixed
point-type solution strategies resembling explicit time-stepping methods. However, since explicit
time-stepping for stiff problems is unstable unless the time step is smaller than the fastest time
scale, which may be unnecessarily restrictive outside fast transients, we include a stabilization
technique based on adaptively stabilizing the stiff system by taking a couple of small time steps
when needed. We show efficiency gain factors compared to traditional explicit methods with
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the time step restriction indicated, of the order 10-100 or more depending on the problem. The
need for explicit-type methods for parabolic problems avoiding forming Jacobians and solving
associated linear systems of equations, is very apparent for the large systems of convection-
diffusion-reaction equations arising in the modeling of chemical reactors with many reactants
and reactions involved. The need for explicit time-stepping also arises in the setting of multi-
adaptive time-stepping with the time step varying in both space and for different reactants, since
here the discrete equations may be coupled over several time steps for some of the subdomains
(or reactants), leading to very large systems of algebraic equations.

In Section 7 we prove the basic strong stability estimates for an abstract parabolic model
problem, and connect to the definition of an analytic semigroup.

In Sections 8–15 we present adaptive space-time Galerkin finite element methods for a model
parabolic IVP, the heat equation, including a priori and a posteriori error estimates. The space-
time Galerkin discretization method cG(p)dG(q) is based on the continuous Galerkin method
cG(p) with piecewise polynomials of degree p in space, and the discontinuous Galerkin method
dG(q) with piecewise polynomials of degree q in time (for q = 0, 1). In Section 16 we discuss
briefly the extension to convection-diffusion-reaction systems, and present computational results
in Section 17.

3. Introduction to adaptive methods for IVPs

We now give a brief introduction to the general topic of adaptive error control for numerical
time-stepping methods for initial value problems, with special reference to parabolic or stiff
problems. In an adaptive method, the time steps are chosen automatically with the purpose
of controlling the numerical error to stay within a given tolerance level. The adaptive method
is based on an a posteriori error estimate involving the residual of the computed solution and
results of auxiliary computations of stability factors, or more generally stability weights.

We consider an IVP of the form

(3.1) u̇(t) = f(u(t)) for 0 < t ≤ T, u(0) = u0,

where f : R
d → R

d is a given differentiable function, u0 ∈ R
d a given initial value, and T > 0

a given final time. For the computational solution of (3.1), we let 0 = t0 < t1 < . . . < tn−1 <
tn < . . . < tN = T be an increasing sequence of discrete time steps with corresponding time
intervals In = (tn−1, tn] and time steps kn = tn−tn−1, and consider the backward Euler method:
Find U(tn) successively for n = 0, 1, . . . , N, according to the formula

(3.2) U(tn) = U(tn−1) + knf(U(tn)),

with U(0) = u0. The backward Euler method is implicit in the sense that to compute the value
U(tn) with U(tn−1) already computed, we need to solve a system of of equations. We will return
to this aspect below.

We associate a function U(t) defined on [0, T ] to the nodal values U(tn), n = 0, 1, . . . , N, as
follows:

U(t) = U(tn) for t ∈ (tn−1, tn].

In other words, U(t) is left-continuous piecewise constant on [0, T ] and takes the value U(tn) on
In, and thus takes a jump from the limit from the left U(t−n−1) = U(tn−1) to the limit from the
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right U(t+n−1) = U(tn) at the time level t = tn−1. We can now write the backward Euler method
in the form

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t)) dt,

or equivalently

(3.3) U(tn) · v = U(tn−1) · v +

∫ tn

tn−1

f(U(t)) · v dt,

for all v ∈ R
d with the dot signifying the scalar product in R

d. This method is also referred to
as dG(0), the discontinuous Galerkin method of order zero, corresponding to approximating the
exact solution u(t) by a piecewise constant function U(t) satisfying the orthogonality condition
(3.3).

The general dG(q) method takes the form (3.3), with the restriction to each time interval In of
the solution U(t) and the test function v on each time interval In being polynomial of degree q.
The dG(q) method comes also in multi-adaptive form with each component and corresponding
test function being piecewise polynomial with possibly different sequences of time steps for
different components.

We shall now derive an a posteriori error estimate, aiming at control of the scalar product of
the error e(T ) = (u − U)(T ) at final time T with a given vector ψ, where we assume that ψ is
normalized so that ‖ψ‖ = 1. Here, ‖ · ‖ denotes the Euclidean norm on R

d. We introduce the
following linearized dual problem running backward in time:

(3.4) −φ̇(t) = A>(t)φ(t) for 0 ≤ t < T, φ(T ) = ψ,

with

A(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds,

where u(t) is the exact solution and U(t) the approximate solution, f ′ is the Jacobian of f , and
> denotes transpose. We note that f(u(t)) − f(U(t)) = A(t)(u(t) − U(t)). We now start from
the identity

e(T ) · ψ = e(T ) · ψ +

N
∑

n=1

∫ tn

tn−1

e · (−φ̇− A>φ) dt,

and integrate by parts on each subinterval (tn−1, tn) to get the error representation:

e(T ) · ψ =

N
∑

n=1

∫ tn

tn−1

(ė− Ae) · φ dt−
N
∑

n=1

(U(tn) − U(tn−1)) · φ(tn−1),

where the last term results from the jumps of U(t) at the nodes t = tn−1. Since now u solves the
differential equation u̇− f(u) = 0, and U̇ = 0 on each time interval (tn−1, tn), we have

ė− Ae = u̇− f(u) − U̇ + f(U) = −U̇ + f(U) = f(U) on (tn−1, tn).
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It follows that

e(T ) · ψ = −
N
∑

n=1

(U(tn) − U(tn−1)) · φ(tn−1) +

∫ T

0

f(U) · φ dt.

Using (3.3) with v = φ̄n, the mean value of φ over In, we get

e(T ) · ψ = −
N
∑

n=1

(U(tn) − U(tn−1)) · (φ(tn−1) − φ̄n) +
N
∑

n=1

∫ tn

tn−1

f(U) · (φ− φ̄n) dt.

Since now
∫ tn

tn−1

f(U) · (φ− φ̄n) dt = 0,

because f(U(t)) is constant on (tn−1, tn], the error representation takes the form

e(T ) · ψ = −
N
∑

n=1

(U(tn) − U(tn−1)) · (φ(tn−1) − φ̄n).

Finally, from the estimate

‖φ(tn−1) − φ̄n)‖ ≤
∫ tn

tn−1

‖φ̇(t)‖ dt,

we obtain the following a posteriori error estimate for the backward Euler or dG(0) method:

(3.5) |e(T ) · ψ| ≤ Sc(T, ψ) max
1≤n≤N

‖U(tn) − U(tn−1)‖,

where the stability factor Sc(T, ψ), recalling (3.4), is defined by

(3.6) Sc(T, ψ) =

∫ T

0

‖φ̇(t)‖ dt.

Maximizing over ψ with ‖ψ‖ = 1, we obtain a posteriori control of the Euclidean norm of e(T ):

(3.7) ‖e(T )‖ ≤ Sc(T ) max
1≤n≤N

‖U(tn) − U(tn−1)‖,

with corresponding stability factor

(3.8) Sc(T ) = max
‖ψ‖=1

Sc(T, ψ).

Equivalently, we can write this estimate as

(3.9) ‖e(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t))‖,

where k(t) = kn = tn − tn−1 for t ∈ (tn−1, tn], and R(U(t)) = (U(tn) − U(tn−1))/kn =
f(U(tn)) corresponds to the residual obtained by inserting the discrete solution into the differ-
ential equation (noting that U̇(t) = 0 on each time interval).

We can thus also express the a posteriori error estimate (3.5) in the form

(3.10) |e(T ) · ψ| ≤
∫ T

0

k(t)R(U(t))‖φ̇(t)‖ dt,
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where now the dual solution enters as a weight in a time integral involving the residual R(U(t)).
Maximizing over k(t)R(U(t)) and integrating ‖φ̇(t)‖ we obtain the original estimate (3.9).

We now define the IVP (3.1) to be parabolic if (up to possibly logarithmic factors) the stability
factor Sc(T ) is of unit size for all T . We shall see that another typical feature of a parabolic
problem is that the stability factor Sc(T, ψ) varies little with the specific choice of normalized
initial data ψ, which means that to compute Sc(T ) = max‖ψ‖=1 Sc(T, ψ), we may drastically
restrict the variation of ψ and solve the dual problem with only a few different initial data.

If we perturb f to f̂ in the discretization with dG(q), for instance by approximating f(U(t))
by a polynomial connecting to quadrature in computing

∫

In
f(U(t)) dt, we obtain an additional

contribution to the a posteriori error estimates of the form

Sq(T, ψ) max
[0,T ]

‖f(U(t)) − f̂(U(t))‖,

or Sq(T ) max[0,T ] ‖f(U(t)) − f̂(U(t))‖, with corresponding stability factors defined by

Sq(T, ψ) =

∫ T

0

‖φ(t)‖ dt,

where φ solves the backward dual problem with φ(T ) = ψ, and Sq(T ) = max‖ψ‖=1 Sq(T, ψ). In
a parabolic problem we may have Sq(T ) ∼ T , although Sc(T ) ∼ 1 for all T > 0. We note that
Sc(T ) involves the time derivative φ̇, while Sq(T ) involves the dual φ itself.

Note that in dG(0) there is no need for quadrature in the present case of an autonomous IVP,
since then f(U(t)) is piecewise constant. However, in a corresponding non-autonomous problem
of the form u̇ = f(u(t), t) with f depending explicitly on t, quadrature may be needed also for
dG(0).

The basic parabolic or stiff problem is a linear constant coefficient IVP of the form u̇(t) =
f(u(t), t) ≡ −Au(t) + f(t) for 0 < t ≤ T , u(0) = u0, with A a constant positive semidefinite
symmetric matrix with eigenvalues ranging from small to large positive. In this case, f ′(u) = −A
with eigenvalues λ ≥ 0 and corresponding solution components varying on time scales 1/λ rang-
ing from very long (slow variation/decay if λ is small positive) to very short (fast variation/decay
if λ is large positive). A solution to a typical stiff problem thus has a range of time-scales varying
from slow to fast. In this case the dual problem takes the form −φ̇(t) = −Aφ(t) for 0 ≤ t < T ,
and the strong stability estimate states that, independent of the distribution of the eigenvalues
λ ≥ 0 of A, we have

∫ T

0

(T − t)‖φ̇(t)‖2 dt ≤ 1

4
,

where we assume that ‖φ(T )‖ = 1. From this we may derive that for 0 < ε < T ,
∫ T−ε

0

‖φ̇(t)‖ dt ≤ 1

2
(log(T/ε))1/2,

which up to a logarithmic factor states that Sc(T ) ∼ 1 for all T > 0. Further, the corresponding
(weak) stability estimate states that ‖φ(t)‖ ≤ ‖ψ‖, from which directly follows that that Sq(T ) ≤
T as indicated. The (simple) proofs of the stability estimates are given below.
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The stability factors Sc(T, ψ) and Sq(T, ψ) may be approximately computed a posteriori by
replacing A(t) in (3.4) with f ′(U(t)), assuming U(t) is sufficiently close to u(t) for all t, and
solving the corresponding backward dual problem numerically (e.g. using the dG(0) method).
We may similarly compute approximations of Sc(T ) and Sq(T ) by varying ψ. By computing the
stability factors we get concrete evidence of the parabolicity of the underlying problem, which
may be difficult (or impossible) to assess analytically a priori. Of course, there is also a gradual
degeneracy of the parabolicity as the stability factor Sc(T ) increases.

The a posteriori error estimate (3.7) can be used as the basis for an adaptive time-stepping algo-
rithm, controlling the size of the Galerkin discretization error, of the form: For n = 1, 2, . . . , N ,
choose kn so that

‖U(tn)) − U(tn−1))‖ ≈ TOL

Sc(T )
,

for some tolerance TOL > 0. Recalling that the characteristic feature of a parabolic problem
is that Sc(T ) ∼ 1 for all T > 0, this means that the time step control related to the Galerkin
discretization error will be independent of the length of the time interval of the simulation. This
means that long-time integration without error accumulation is possible, which may be inter-
preted as some kind of ”parabolic loss of memory”. We note again that this concerns the Galerkin
error only, which has this special feature as a consequence of the Galerkin orthogonality. How-
ever, the quadrature error may accumulate in time typically at a linear rate, and so a long-time
simulation may require more accurate quadrature than a simulation over a shorter interval.

4. Examples of stiff IVPs

We have stated above that a parabolic or stiff initial value problem u̇(t) = f(u(t)) for 0 <
t ≤ T , u(0) = u0, may be characterized by the fact that the stability factor Sc(T ) is of moderate
(unit) size independent of T > 0, while the norm of the linearized operator f ′(u(t)) may be
large, corresponding to the presence of large negative eigenvalues. Such initial value problems
are common in models of chemical reactions, with reactions on a range of time scales varying
from slow to fast. Typical solutions include so-called transients where the fast reactions make
the solution change quickly over a short (initial) time interval, after which the fast reactions
are ”burned out” and the slow reactions make the solution change on a longer time scale. We
now consider a set of test problems which we solve by the adaptive dG(0) method, including
computation of the strong stability factor Sc(T ).

4.1. Model problem: u̇+Au(t) = f(t) with A positive symmetric semidefinite. As
indicated, the basic example of a parabolic IVP takes the form u̇+Au(t) = f(t) for 0 < t ≤ T ,
u(0) = u0, where A is a positive semidefinite square matrix. We consider here the case

A =













−4.94 2.60 0.11 0.10 0.06
2.60 −4.83 2.69 0.17 0.10
0.11 2.69 −4.78 2.69 0.11
0.10 0.17 2.69 −4.83 2.60
0.06 0.10 0.11 2.60 −4.94
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with eigenvalues (0,−2.5,−5,−7.5,−9.33). In Figure 1, we plot the solution, a dual solution
and the stability factor Sc(T, ψ) as a function of T for a collection of different initial values
φ(T ) = ψ. We note that the variation with ψ is rather small: about a factor 4. We also note the
initial transient, both for the solution itself and for the dual problem running backwards in time.
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Figure 1. Symmetric IVP: solution, dual solution and stability factors Sc(T, ψ).
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4.2. The Akzo-Nobel system of chemical reactions. We next consider the so-called
Akzo-Nobel problem, which is a test problem for solvers of stiff ODEs modeling chemical reac-
tions: Find the concentrations u(t) = (u1(t), . . . , u6(t)) such that for 0 < t ≤ T ,

(4.1)



























u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = −r5,

where F = 3.3 · (0.9/737 − u2) and the reaction rates are given by r1 = 18.7 · u4
1

√
u2, r2 =

0.58·u3u4, r3 = 0.58/34.4·u1u5, r4 = 0.09·u1u
2
4 and r5 = 0.42·u2

6

√
u2, with the initial condition

u0 = (0.437, 0.00123, 0, 0, 0, 0.367). In Figure 2 we plot the solution, a dual solution and the
stability factor Sc(T ) as a function of T . We note the initial transients in the concentrations and
their long-time very slow variation after the active phase of reaction. We also note that Sc(T )
initially grows to about 3.5 and then falls back to a value around 2. This is a typical behavior for
reactive systems, where momentarily during the active phase of reaction the perturbation growth
may be considerable, while over long-time the memory of that phase fades. On the other hand
Sq(T ) grows consistently, which shows that fading memory requires some mean-value to be zero
(Galerkin orthogonality). We present below more examples of this nature exhibiting features of
parabolicity.

5. A non-stiff IVP: the Lorenz system

The Lorenz system presented 1972 by the meteorologist Edward Lorenz:

(5.1)



















u̇1 = −10u1 + 10u2,

u̇2 = 28u1 − u2 − u1u3,

u̇3 = −8
3
u3 + u1u2,

u(0) = u0,

is an example of an IVP with exponentially growing stability factors reflecting a strong sensitivity
to perturbations. Lorenz chose the model to illustrate perturbation sensitivity in meteorological
models, making forecasts of daily weather virtually impossible over a period of more than a
week. For the Lorenz system accurate numerical solution using double precision beyond 50
units of time seems impossible. Evidently, the Lorenz system is not parabolic.

The system (lorenz) has three equilibrium points ū with f(ū) = 0: ū = (0, 0, 0) and ū =
(±6

√
2,±6

√
2, 27). The equilibrium point ū = (0, 0, 0) is unstable with the corresponding Ja-

cobian f ′(ū) having one positive (unstable) eigenvalue and two negative (stable) eigenvalues.
The equilibrium points (±6

√
2,±6

√
2, 27) are slightly unstable with the corresponding Jaco-

bians having one negative (stable) eigenvalue and two eigenvalues with very small positive real
part (slightly unstable) and also an imaginary part. More precisely, the eigenvalues at the two
non-zero equilibrium points are λ1 ≈ −13.9 and λ2,3 ≈ .0939 ± 10.1i.



10 K. ERIKSSON, C. JOHNSON, AND A. LOGG

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PSfrag replacements

t

U(t) U
(t

)

φ(t)

T
Sc(T )
Sq(T ) 0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

t

U(t)
U(t)

φ
(t

)

T
Sc(T )
Sq(T )

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4

PSfrag replacements

t
U(t)
U(t)
φ(t)

T

S
c
(T

)

Sq(T )

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

PSfrag replacements

t
U(t)
U(t)
φ(t)

T

Sc(T )

S
q
(T

)

Figure 2. The Akzo-Nobel problem: solution, dual solution, stability factor
Sc(T, ψ), and stability factor Sq(T, ψ).

In Figure 3, we present two views of a solution u(t) that starts at u(0) = (1, 0, 0) computed to
time 30 with an error tolerance of TOL = 0.5 using an adaptive IVP-solver of the form presented
above. The plotted trajectory is typical: it is kicked away from the unstable point (0, 0, 0) and
moves towards one of the non-zero equilibrium points. It then slowly orbits away from that
point and at some time decides to cross over towards the other non-zero equilibrium point, again
slowly orbiting away from that point and coming back again, orbiting out, crossing over, and so
on. This pattern of some orbits around one non-zero equilibrium point followed by a transition to
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the other non-zero equilibrium point is repeated with a seemingly random number of revolutions
around each non-zero equilibrium point.
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Figure 3. Two views of a numerical trajectory of the Lorenz system over
the time interval [0, 30].

In Figure 4, we plot the size of the stability factor Sq(T ) connected to quadrature errors as
function of final time T . We notice that the stability factor takes an exponential leap every time
the trajectory flips, while the growth is slower when the trajectory orbits one of the non-zero
equilibrium points. The stability factor grows on the average as 10T/3 which sets the effective
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Figure 4. The growth of the stability factor Sq(T ) for the Lorenz problem.

time limit of accurate computation to T ≈ 50 computing in double precision with say 15 accurate
digits.



12 K. ERIKSSON, C. JOHNSON, AND A. LOGG

6. Explicit time-stepping for stiff IVPs

The dG(0) method for the IVP u̇ = f(u) takes the form

U(tn) − knf(U(tn)) = U(tn−1).

At each time step we have to solve an equation of the form v − knf(v) = U(tn−1) with U(tn−1)
given. To this end we may try a damped fixed point iteration in the form

v(m) = (I − α)v(m−1) + α(U(tn−1) + knf(v(m−1))),

with α some suitable matrix (or constant in the simplest case). Choosing α = I with only
one iteration corresponds to the explicit Euler method. Convergence of the fixed point iteration
requires that

‖I − α + knαf
′(v)‖ < 1,

for relevant values of v, which could force α to be small (e.g. in the stiff case with f ′(v) having
large negative eigenvalues) and result in slow convergence. A simple choice is to take α to be a
diagonal matrix with αii = 1/(1− knf

′
ii(v

(m−1))), corresponding to a diagonal approximation of
Newton’s method, with hope that the number of iterations will be small.

We just learned that explicit time-stepping for stiff problems requires small time steps outside
transients and thus may be inefficient. We shall now indicate a way to get around this limitation
through a process of stabilization, where a large time step is accompanied by a couple of small
time steps. The resulting method has similarities with the control system of a modern (unstable)
jet fighter like the Swedish JAS Gripen, the flight of which is controlled by quick small flaps of
a pair of small extra wings ahead of the main wings, or balancing a stick vertically on the finger
tips if we want a more domestic application.

We shall now explain the basic (simple) idea of the stabilization and present some examples,
as illustrations of fundamental aspects of adaptive IVP-solvers and stiff problems. Thus to start
with, suppose we apply the explicit Euler method to the scalar problem

u̇(t) + λu(t) = 0 for 0 < t ≤ T,

u(0) = u0,
(6.1)

with λ > 0 taking first a large time step K satisfying Kλ > 2 and then m small time steps k
satisfying kλ < 2, to get the method

(6.2) U(tn) = (1 − kλ)m(1 −Kλ)U(tn−1),

altogether corresponding to a time step of size kn = K+mk. Here K gives a large unstable time
step with |1 −Kλ| > 1 and k is a small time step with |1 − kλ| < 1. Defining the polynomial
function p(x) = (1 − θx)m(1 − x), where θ = k

K
, we can write the method (6.2) in the form

U(tn) = p(Kλ)U(tn−1).

For stability, we need

|p(Kλ)| ≤ 1, that is |1 − kλ|m(Kλ− 1) ≤ 1,
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or

(6.3) m ≥ log(Kλ− 1)

− log |1 − kλ| ≈ 2 log(Kλ),

with c = kλ ≈ 1/2 for definiteness.
We conclude that m may be quite small even if Kλ is large, since the logarithm grows so

slowly, and then only a small fraction of the total time (a small fraction of the time interval
[0, T ]) will be spent on stabilizing time-stepping with the small time steps k.

To measure the efficiency gain we introduce

α =
1 +m

K + km
∈ (1/K, 1/k),

which is the number of time steps per unit time interval with the stabilized explicit Euler method.
By (6.3) we have

(6.4) α ≈ 1 + 2 log(Kλ)

K + log(Kλ)/λ
≈ 2λ

log(Kλ)

Kλ
� 2λ,

for Kλ � 1. On the other hand, the number of time steps per unit time interval for the standard
explicit Euler method is

(6.5) α0 = λ/2,

with the maximum stable time step kn = 2/λ.
The cost reduction factor using the stabilized explicit Euler method would thus be

α

α0

≈ 4 log(Kλ)

Kλ
,

which can be quite significant for large values of Kλ. For typical parabolic problems, u̇ +
Au(t) = 0, the eigenvalues of A are distributed on the interval [0, λmax], and for the damping to
be efficient we need a slightly modified time step sequence. This is deescribed in more detail in
([12]).

We now present some examples using an adaptive cG(1) IVP-solver, where explicit fixed point
iteration (using only a couple of iterations) on each time interval is combined with stabilizing
small time steps, as described for the explicit Euler method. In all problems we note the initial
transient, where the solution components change quickly, and the oscillating nature of the time
step sequence outside the transient, with large time steps followed by some small stabilizing time
steps.

Example 6.1. We apply the indicated method to the scalar problem (6.1) with u0 = 1 and
λ = 1000, and display the result in Figure 5. The cost reduction factor in comparison to a
standard explicit method is large: α/α0 ≈ 1/310.

Example 6.2. We now consider the 2 × 2 diagonal system

u̇(t) +

(

100 0
0 1000

)

u(t) = 0 for 0 < t ≤ T,

u(0) = u0,

(6.6)
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Figure 5. Solution and time step sequence for eq. (6.1), α/α0 ≈ 1/310.

with u0 = (1, 1). There are now two eigenmodes with large eigenvalues that need to be
stabilized. The cost reduction factor is α/α0 ≈ 1/104.
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Figure 6. Solution and time step sequence for eq. (6.6), α/α0 ≈ 1/104.
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Example 6.3. We next consider the so-called HIRES problem (“High Irradiance RE-
Sponse”) from plant physiology which consists of the following eight equations:

(6.7)











































u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

together with the initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). We present the solution
and the time step sequence in Figure 7. The cost is now α ≈ 8 and the cost reduction
factor is α/α0 ≈ 1/33.
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Figure 7. Solution and time step sequence for eq. (6.7), α/α0 ≈ 1/33.

Example 6.4. We consider again the Akzo-Nobel problem from above, integrating over
the interval [0, 180].We plot the solution and the time step sequence in Figure 8. Allowing
a maximum time step of kmax = 1 (chosen arbitrarily), the cost is α ≈ 2 and the cost
reduction factor is α/α0 ≈ 1/9. The actual gain in a specific situation is determined by
the quotient between the large time steps and the small damping time steps, as well as the
number of small damping steps that are needed. In this case the number of small damping
steps is small, but the large time steps are not very large compared to the small damping
steps. The gain is thus determined both by the stiff nature of the problem and the tolerance
(or the size of the maximum allowed time step).
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Figure 8. Solution and time step sequence for the Akzo-Nobel problem,
α/α0 ≈ 1/9.

Example 6.5. We consider now Van der Pol’s equation:

ü+ µ(u2 − 1)u̇+ u = 0,

which we write as

(6.8)

{

u̇1 = u2,
u̇2 = −µ(u2

1 − 1)u2 − u1.

We take µ = 1000 and solve on the interval [0, 10] with initial condition u0 = (2, 0). The
cost is now α ≈ 140 and the cost reduction factor is α/α0 ≈ 1/75.

7. Strong stability estimates for an abstract parabolic model problem

We consider an abstract parabolic model problem of the form: Find w(t) ∈ H such that

(7.1)

{

ẇ(t) + Aw(t) = 0 for 0 < t ≤ T,

w(0) = w0,

where H is a vector space with inner product (·, ·) and norm ‖ · ‖, A is a positive semi-definite
symmetric linear operator defined on a subspace of H , i.e. A is a linear transformation satisfying
(Aw, v) = (w,Av) and (Av, v) ≥ 0 for all v and w in the domain of definition of A, and
w0 is the initial data. In the model problem of Section 3, H = R

d and A is a positive semi-
definite symmetric d× d matrix. In the case of the heat equation, considered in the next section,
H = L2(Ω) and −A = ∆ (the Laplacian) with homogeneous Dirichlet boundary conditions.
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Figure 9. Solution and time step sequence for eq. (6.8), α/α0 ≈ 1/75.

We now state and prove the basic strong stability estimates for the parabolic model problem
(7.1), noting that the constants on the right-hand sides of the estimates are independent of the
positive semi-definite symmetric operator A. It should be noted that the dual backward problem
of (7.1), −φ̇+ Aφ = 0, takes the form (7.1) with w(t) = φ(T − t).

Lemma 7.1. The solution w of (7.1) satisfies for T > 0,

‖w(T )‖2 + 2

∫ T

0

(Aw(t), w(t)) dt = ‖w0‖2,(7.2)

∫ T

0

t‖Aw(t)‖2 dt ≤ 1

4
‖w0‖2,(7.3)

‖Aw(T )‖ ≤ 1√
2T

‖w0‖.(7.4)

Proof. Taking the inner product of ẇ(t) + Aw(t) = 0 with w(t), we obtain

1

2

d

dt
‖w(t)‖2 + (Aw(t), w(t)) = 0,

from which (7.2) follows.
Next, taking the inner product of ẇ(t) +Aw(t) = 0 with tAw(t) and using the fact that

(ẇ(t), tAw(t)) =
1

2

d

dt
(t(Aw(t), w(t))) − 1

2
(Aw(t), w(t)),
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since A is symmetric, we find after integration that

1

2
T (Aw(T ), w(T )) +

∫ T

0

t‖Aw(t)‖2 dt =
1

2

∫ T

0

(Aw(t), w(t)) dt,

from which (7.3) follows using (7.2) and the fact that (Aw,w) ≥ 0.
Finally, taking the inner product in with t2A2w(t), we obtain

1

2

d

dt

(

t2‖Aw(t)‖2
)

+ t2(A2w(t), Aw(t)) = t‖Aw(t)‖2,

from which (7.4) follows after integration and using (7.3). �

The estimates (7.2)-(7.4) express in somewhat different ways “parabolic smoothing”; in par-
ticular (7.4) expresses that that the norm of the time derivative ẇ(t), or equivalently Aw(t),
decreases (increases) like 1/t as t increases (decreases), which means that the solution becomes
smoother with increasing time. We note a close relation between the two integrals

I1 =

∫ T

0

‖ẇ(t)‖ dt =

∫ T

0

‖Aw(t)‖ dt,

and

I2 =

(
∫ T

0

t‖ẇ(t)‖2 dt

)1/2

=

(
∫ T

0

t‖Aw(t)‖2 dt

)1/2

,

both measuring strong stability of (7.1), with I1 through Cauchy’s inequality being bounded by
I2 up to a logarithm:

∫ T

ε

‖Aw(t)‖ dt ≤
(
∫ T

ε

1

t
dt

)1/2(∫ T

ε

t‖Aw(t)‖2 dt

)1/2

= (log(T/ε))1/2 I2.

Remark 7.1. We now give an argument indicating that for the parabolic model problem
(7.1), the stability factor Sc(T, ψ) varies little with the specific choice of data ψ. We do
this by noting that the quantity S(w0) defined by

S(w0) =

(
∫ T

0

t‖Aw(t)‖2 dt

)1/2

,

where w(t) solves (7.1), varies little with the choice of initial data w0. To see this,
we let {χi} be an orthonormal basis for H consisting of eigenfunctions of A with cor-
responding eigenvalues {λj}, which allows us to express the solution w(t) in the form
∑

j exp(−λjt)w0
jχj with w0

j = (w0, χj). We may then write

(S(w0))2 =

∫ T

0

t
∑

j

λ2
j(w

0
j )

2 exp(−2λjt) dt =
∑

j

(w0
j )

2

∫ T

0

tλ2
j exp(−2λjt) dt.

Now, the factor
∫ T

0

tλ2
j exp(−2λjt) dt =

∫ Tλj

0

s exp(−2s) ds
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takes on almost the same value
∫∞

0
s exp(−2s) ds ≈ 1/4 for all j as soon as Tλj ≥ 1, that

is when λj is not very small (since T is typically large). If we randomly choose the initial
data w0, the chance of hitting an eigenfunction corresponding to a very small eigenvalue,
must be very small. We conclude that S(w0) varies little with w0. As just indicated, S(w0)

is related to the integral
∫ T

0
‖ẇ(t)‖ dt, which is the analog of the stability factor Sc(T, ψ)

for the dual problem. The bottom line is that Sc(T, ψ) varies little with the choice of ψ.

Remark 7.2. The solution operator {E(t)}t≥0 of (7.1), given by E(t)w0 = w(t), is said
to define a uniformly bounded and analytic semigroup if there is a constant S such that the
following estimates hold:

(7.5)
‖w(t)‖ ≤ S‖w0‖,

‖Aw(t)‖ ≤ S
t
‖w0‖,

for t > 0. We see that this definition directly couples to the stability estimates of Lemma
(7.1), in which case the constant S is of unit size.

8. Adaptive space-time Galerkin methods for the heat equation

We now move on to space-time Galerkin finite element methods for the model parabolic partial
differential equation in the form of the heat equation: Find u : Ω × I → R such that

(8.1)











u̇− ∆u = f in Ω × I

u = 0 on Γ × I,

u(·, 0) = u0 in Ω,

where Ω is a bounded domain in R
d with boundary Γ, on which we have posed homogeneous

Dirichlet boundary conditions, u0 is a given initial temperature, f a heat source and I = (0, T ] a
given time interval.

For the discretization of the heat equation in space and time, we use the cG(p)dG(q) method
based on a tensor product space-time discretization with continuous piecewise polynomial ap-
proximation of degree p ≥ 1 in space and discontinuous piecewise polynomial approximation
of degree q ≥ 0 in time, giving a method which is accurate of order p + 1 in space and of or-
der 2q + 1 in time. The discontinuous Galerkin dG(q) method used for the time discretization
reduces to the subdiagonal Padé method for homogeneous constant coefficient problems and in
general, together with quadrature for the evaluation of the integral in time, corresponds to an
implicit Runge-Kutta method. For the discretization in space we use the standard conforming
continuous Galerkin cG(p) method. The cG(p)dG(q) method has maximal flexibility and allows
the space and time steps to vary in both space and time. We design and analyze reliable and
efficient adaptive algorithms for global error control in L∞(L2(Ω)) (maximum in time and L2 in
space), with possible extensions to Lr(Ls(Ω)) with 1 ≤ r, s ≤ ∞.

The cG(p)dG(q) method is based on a partition in time 0 = t0 < t1 < · · · < tN = T of the
interval (0, T ] into time intervals In = (tn−1, tn] of length kn = tn − tn−1 with associated finite
element spaces Sn ⊂ H1

0 (Ω) consisting of piecewise polynomials of degree p on a triangulation
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Tn = {K} of Ω into elements K with local mesh size given by a function hn(x). We define

Vn = {v : v =

q
∑

j=0

tjvj, vj ∈ Sn},

and
V = {v : v|In ∈ Vn, n = 1, .., N}.

We thus define V to be the set of functions v : Ω × I → R such that the restriction of v(x, t)
to each time interval In is polynomial in t with coefficients in Sn. The cG(p)dG(q) method for
(8.1) now reads: Find U ∈ V such that for n = 1, 2, . . . , N ,

(8.2)

∫

In

{(U̇ , v) + (∇U,∇v)} dt+ ([U ]n−1, v
+
n−1) =

∫

In

(f, v) dt ∀v ∈ Vn,

where [w]n = w(t+n ) − w(t−n ), w+(−)
n = lims→0+(−) w(tn + s), U−

0 = u0, and (·, ·) denotes the
L2(Ω) or [L2(Ω)]d inner product. Note that we allow the space discretizations to change with
time from one space-time slab Ω × In to the next.

For q = 0 the scheme (8.2) reduces to the following variant of the backward Euler scheme:

(8.3) Un − kn∆nUn = PnUn−1 +

∫

In

Pnf dt,

where Un ≡ U |In , ∆n : Sn → Sn is the discrete Laplacian on Sn defined by (−∆nv, w) =
(∇v,∇w) for all w ∈ Sn, and Pn is the L2-projection onto Sn defined by (Pnv, w) = (v, w) for
all w ∈ Sn.

Alternatively, (8.3) may be written (with f ≡ 0) in matrix form as

Mnξn + knAnξn = Mnξ̂n−1,

where Mn and An are mass and stiffness matrices related to a nodal basis for Sn, ξn is the
corresponding vector of nodal values for Un, and ξ̂n−1 is the vector of nodal values for PnUn−1.
Evidently, we have to solve a system of equations with system matrixMn+knAn to compute ξn.

Remark 8.1. Note that in the discretization (8.2), the space and time steps may vary in
time and that the space discretization may be variable also in space, whereas the time steps
kn are kept constant in space. Clearly, optimal mesh design requires the time steps to be
variable also in space. Now, it is easy to extend the method (8.2) to admit time steps which
are variable in space simply by defining

Vn = {v : v|In =
∑

j

cj(t)vj, vj ∈ Sn},

where now the coefficients cj(t) are piecewise polynomial of degree q in t without continuity
requirements, on partitions of In which may vary with j. The discrete functions may now be
discontinuous in time also inside the space-time slab Ω×In, and the degree q may vary over
components and subintervals. The cG(p)dG(q) method again takes the form (8.2), with the
term ([U ]n−1, v

+
n−1) replaced by a sum over all jumps in time of U in Ω×[tn−1, tn). Adaptive

methods in this generality, so-called multi-adaptive methods, are proposed and analyzed in
detail for systems of ordinary differential equations in ([10], [11]).
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9. A priori and a posteriori error estimates for the heat equation

In this section we state a priori and a posteriori error estimates for the cG(p)dG(q) method
(8.2) in the case p = 1 and q = 0, 1, and give the proofs below. A couple of technical as-
sumptions on the space-mesh function hn(x) and time steps kn are needed: We assume that each
triangulation Tn with associated mesh size hn satisfies, with hn,K equal to the diameter and mn,K

the volume of K ∈ Tn,

(9.1) c1h
d
n,K ≤ mn,K ∀K ∈ Tn,

(9.2) c2hn,K ≤ hn(x) ≤ hn,K ∀x ∈ K ∀K ∈ Th,

(9.3) |∇hn(x)| ≤ µ ∀x ∈ Ω,

for some positive constants c1, c2 and µ. The constant µ will be assumed to be small enough in
the a priori error estimates (but not in the a posteriori error estimates). We further assume that
there are positive constants c3, c4 and γ such that for all n we have

(9.4) kn ≤ c3kn+1,

(9.5) c4hn(x) ≤ hn+1(x) ≤
1

c4
hn(x) ∀x ∈ Ω,

(9.6) h̄2
n ≤ γkn or Sn ⊂ Sn−1,

where h̄n = maxx∈Ω̄ hn(x). Furthermore, we assume for simplicity that Ω is convex, so that the
following elliptic regularity estimate holds: ‖D2v‖ ≤ ‖∆v‖ for all functions v vanishing on Γ.
Here (D2v)2 =

∑

ij v
2
,ij, where v,ij is the second partial derivative of v with respect to xi and xj ,

and ‖ · ‖ denotes the L2(Ω)-norm. With these assumptions, we have the following a priori error
estimates:

Theorem 9.1. If µ and γ are sufficiently small, then there is a constant C only depending
on the constants ci, i = 1, 2, 3, 4, such that for u the solution of (8.1) and U that of (8.2),
we have for p = 1 and q = 0, 1,

(9.7) ‖u− U‖In ≤ CLn max
1≤m≤n

Eqm(u), n = 1, . . . , N,

and for q = 1,

(9.8) ‖u(tn) − U(tn)‖ ≤ CLn max
1≤m≤n

E2m(u), n = 1, . . . , N,

where Ln = (log(tn/kn) + 1)1/2, Eqm(u) = minj≤q+1 k
j
m‖u

(j)
t ‖Im + ‖h2

mD
2u‖Im, q = 0, 1, 2

with u
(1)
t = u̇, u

(2)
t = ü, u

(3)
t = ∆ü and ‖w‖Im = maxt∈Im ‖w(t)‖.

These estimates state that the discontinuous Galerkin method (8.2) is of order q+1 globally in
time and of order 2q+1 at the discrete time levels tn for q = 0, 1, and is second order in space. In
particular, the estimate (9.7) is optimal compared to interpolation with piecewise polynomials of
order q = 0, 1 in time and piecewise linears in space, up to the logarithmic factor Ln. The third
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order accuracy in time at the discrete time levels for q = 1 reflects a superconvergence feature of
the dG(q) method.

The a posteriori error estimates for (8.2) take the form:

Theorem 9.2. If u is the solution of (8.1) and U that of (8.2) with p = 1, then we have
for q = 0,

(9.9) ‖u(tn) − U(tn)‖ ≤ max
1≤m≤n

E0m(U), n = 1, . . . , N,

and for q = 1,

(9.10) ‖u(tn) − U(tn)‖ ≤ max
1≤m≤n

E2m(U), n = 1, . . . , N,

where
E0m(U) = γ1‖h2

mR(U)‖Im + γ2‖h2
m[U ]m−1/km‖∗ + γ3‖kmR0k(U)‖Im ,

E2m(U) = γ1‖h2
mR(U)‖Im + γ2‖h2

m[U ]m−1/km‖∗ + γ4‖k3
mR1k(U)‖Im ,

and
R(U) = |f | +D2

mU,
R0k(U) = |f | + |[U ]m−1|/km,
R1k(U) = |ftt| + |∆mPm[U ]m−1|/k2

m,

on Ω × Im. A star indicates that the corresponding term is present only if Sm−1 is not a
subset of Sm. Further, γi = LNCi where the Ci are constants related to approximation by
piecewise constant or linear functions. Finally, D2

mU on a space element K ∈ Tm is the
modulus of the maximal jump in normal derivative of U across an edge of K divided by
the diameter of K.

Remark 9.1. The term |f | in R(U) may a be replaced by |h2
mD

2f |. Similarly, the term

|f | in R0k may be replaced with k|ḟ | and |f̈ | in R1k(U) by k|∆f̈ |.
The a posteriori error estimates are sharp in the sense that the quantities on the right-hand sides

can be bounded by the corresponding right-hand sides in the (optimal) a priori error estimates.
Therefore, the a posteriori error estimates may be used as a basis for efficient adaptive algorithms,
as we indicate below.

10. Adaptive methods/algorithms

An adaptive method for the heat equation addresses the following problem: For a given toler-
ance TOL > 0 find a discretization in space and time Shk = {(Tn, kn)}n≥1, such that

(1) ‖u(tn) − U(tn)‖ ≤ TOL for n = 1, 2, . . . ,

(2) Shk is optimal, in the sense that the number of degrees of freedom is minimal.
(10.1)

We approach this problem using the a posteriori estimates (9.9) and (9.10) in an adaptive method
of the form: Find Shk such that for n = 1, 2, . . . ,

Eon(U) ≤ TOL, if q = 0,

E2n(U) ≤ TOL, if q = 1,

the number of degrees of freedom of Shk is minimal.

(10.2)
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To solve this problem, we use an adaptive algorithm for choosing Shk based on equidistribution
of the form: For each n = 1, 2, . . ., with Tn0 a given initial space mesh and kn0 an initial time step,
determine triangulations Tnj with Nj elements of size hnj(x), time steps knj, and corresponding
approximate solutions Unj defined on Inj = (tn−1, tn−1 + knj), such that for j = 0, 1, . . . , n̂− 1,

γ1 max
t∈Inj

‖h2
n,j+1R(Unj)‖L2(K)

+ γ2‖h2
n,j+1[U ]n−1,j/knj‖∗L2(K) =

θTOL

2
√

Nj

∀K ∈ Tnj,

kn,j+1γ3‖R0k(Unj)‖Inj
=

TOL

2
, if q = 0,

k3
n,j+1γ4‖R1k(Unj)‖Inj

=
TOL

2
, if q = 1,

(10.3)

that is we determine iteratively each new time step kn = knn̂ and triangulation Tn = Tnn̂. The
number of trials n̂ is the smallest integer j such that (10.2) holds with U replaced by Unj, and
the parameter θ ∼ 1 is chosen so that n̂ is small.

11. Reliability and efficiency.

By the a posteriori estimates (9.9) and (9.10) it follows that the adaptive method (10.2) is
reliable in the sense that if (10.2) holds, then the error control (10.1) is guaranteed. The efficiency
of (10.2) follows from the fact that the right-hand sides of the a posteriori error estimates may be
bounded by the corresponding right-hand sides in the (optimal) a priori error estimates.

12. Strong stability estimates for the heat equation

We now state the fundamental strong stability results for the continuous and discrete problems
to be used in the proofs of the a priori and a posteriori error estimates. Analogous to in Section
7, we consider the problem ẇ − ∆w = 0, where w(t) = φ(T − t) is the backward dual solution
with time reversed.

The proof of Lemma 12.1 is similar to that of Lemma 7.1, multiplying by w(t), −t∆w(t) and
t2∆2w(t). The proof of Lemma 12.2 is also analogous: For q = 0, we multiply (8.3) by Wn

and tnAnWn, noting that if Sn−1 ⊂ Sn (corresponding to coarsening in the time direction of the
primal problem u̇ − ∆u = f ), then PnWn−1 = Wn−1, (AnWn,Wn−1) = (Wn, AnWn−1) and
(AnWn−1,Wn−1) = (An−1Wn−1,Wn−1). The proof for q = 1 i similar.

Lemma 12.1. Let w be the solution of (8.1) with f ≡ 0. Then for T > 0,

(12.1) ‖w(T )‖2 + 2

∫ T

0

‖∇w(t)‖2 dt = ‖w0‖2,

(12.2)

∫ T

0

t{‖ẇ(t)‖2 + ‖∆w(t)‖2} dt ≤ 1

2
‖w0‖2,

(12.3) ‖∆w(T )‖ ≤ 1√
2T

‖w0‖.
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Lemma 12.2. There is a constant C such that if Sn−1 ⊂ Sn for n = 1, 2, . . . , N , and W
is the solution of (8.2) with f ≡ 0, then for T = tN > 0,

(12.4) ‖W−
N ‖2 + 2

∫ T

0

‖∇W‖2 dt+

N
∑

n=1

‖[W ]n−1‖2 = ‖w0‖2,

(12.5)
N
∑

n=1

tn

∫

In

{‖Ẇ‖2 + ‖∆nW‖2} dt+
N
∑

n=1

tn‖[W ]n−1‖2/kn ≤ C‖w0‖2,

and

(12.6)

N
∑

n=1

∫

In

{‖Ẇ‖ + ‖∆nW‖} dt+
N
∑

n=1

‖[W ]n−1‖ ≤ C

(

log
tn
k1

+ 1

)1/2

‖w0‖.

13. A priori error estimates for the L2- and elliptic projections

We shall use the following a priori error estimate for the L2-projection Pn : L2(Ω) → Sn
defined by (w − Pnw, v) = 0 for all v ∈ Sn. This estimate follows from the fact that Pn is very
close to the nodal interpolation operator Jn into Sn, defined by Jnw = w at the nodes of Tn if w
is smooth (and Jnw = Jnw̃ if w ∈ H1(Ω), where w̃ is a locally regularized approximation of w).

Lemma 13.1. If µ in (9.3) is sufficiently small, then there is a positive constant C such
that for all w ∈ H1

0 (Ω) ∩H2(Ω),

(13.1) |(f, w − Pnw) − (∇U,∇(w − Pnw))| ≤ C‖h2
nRn(U)‖ ‖D2w‖,

where Rn(U) = |f | +D2
nU .

We shall also need the following a priori error estimate for the elliptic projection πn : H1
0 (Ω) →

Sn defined by

(13.2) (∇(w − πnw),∇v) = 0 ∀v ∈ Sn.

Lemma 13.2. If µ in (9.3) is sufficiently small, then there is a positive constant C such
that for all w ∈ H2(Ω) ∩H1

0 (Ω),

(13.3) ‖w − πnw‖ ≤ C‖h2
nD

2w‖.

Proof. We shall first prove that with e = w − πnw, we have ‖e‖ ≤ C‖hn∇e‖. For this
purpose, we let φ be the solution of the continuous dual problem −∆φ = e in Ω with
φ = 0 on Γ, and note that by integration by parts, the Galerkin orthogonality (13.2), a
standard estimate for the interpolation error u− Jnu, together with elliptic regularity, we
have

‖e‖2 = (e,−∆φ) = (∇e,∇φ) = (∇e,∇(φ− Jnφ))
≤ ‖hn∇e‖ ‖h−1

n ∇(φ− Jnφ)‖ ≤ C‖hn∇e‖‖D2φ‖ ≤ C‖hn∇e‖‖e‖,
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which proves the desired estimate. Next to prove that ‖hn∇e‖ ≤ C‖h2
nD

2w‖, we note that
since πnJnu = Jnu, we have

‖hn∇e‖ ≤ ‖hn∇(w − Jnw)‖ + ‖hn∇πn(w − Jnw)‖
≤ C‖hn∇(w − Jnw)‖ ≤ C‖h2

nD
2w‖2,

where we used stability of the elliptic projection πn in the form

‖hn∇πnv‖ ≤ C‖hn∇v‖ ∀v ∈ H1
0 (Ω),

which is a weighted analog of the basic property of the elliptic projection ‖∇πnv‖ ≤ ‖∇v‖
for all v ∈ H1

0 (Ω). For the proof of the weighted analog we need the mesh size not to vary
too quickly, expressed in the assumption that µ is small. �

14. Proof of the a priori error estimates

In this section we give the proof of the a priori estimates, including (9.7) and (9.8). For
simplicity, we shall assume that Sn ⊂ Sn−1, corresponding to a situation where the solution gets
smoother with increasing time. The proof is naturally divided into the following steps, indicating
the overall structure of the argument:

(a) An error representation formula using duality;
(b) Strong stability of the discrete dual problem;
(c) Choice of interpolant and proof of (9.7);
(d) Choice of interpolant and proof of (9.8).

14.1. An error representation formula using duality. Given a discrete time level tN >
0, we write the discrete set of equations (8.2) determining the discrete solution U ∈ V up to time
tN in compact form as

(14.1) A(U, v) = (u0, v+
0 ) + (f, v)I ∀v ∈ V,

where

A(w, v) ≡
N
∑

n=1

{(ẇ, v)n + (∇w,∇v)n} + (w+
0 , v

+
0 ) +

N
∑

n=2

([w]n−1, v
+
n−1),

(v, w)n =
∫

In
(v, w) dt and I = (0, T ]. The error e ≡ u− U satisfies the Galerkin orthogonality

(14.2) A(e, v) = 0 ∀v ∈ V,

which follows from the fact that (14.1) is satisfied also by the exact solution u of (8.1). Let now
the discrete dual solution Φ ∈ V be defined by

(14.3) A(v,Φ) = (v−N , eN) ∀v ∈ V,

where eN = u(tN) − U(tN ) is the error at final time tN , corresponding to control of the L2(Ω)-
norm of eN . We note that Φ is a discrete cG(p)dG(q)-solution of the continuous dual problem

−φ̇− ∆φ = 0 in Ω × [0, T ),

φ = 0 on Γ × [0, T ),
(14.4)
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with initial data φ(T ) = eN . This follows from the fact that the bilinear form A(·, ·), after time
integration by parts, can also be written as

(14.5) A(w, v) =
N
∑

n=1

{(w,−v̇)n + (∇w,∇v)n} +
N−1
∑

n=1

(w−
n ,−[v]n) + (w−

N , v
−
N).

In view of (14.3) and (14.2) we have for any v ∈ V ,

(14.6)
‖eN‖2 = (uN − v−N , eN) + (v−N − U−

N , eN)
= (uN − v−N , eN) + A(v − U,Φ) = (uN − v−N , eN) + A(v − u,Φ).

Taking here v ∈ V to be a suitable interpolant of u, we thus obtain a representation of the error
eN in terms of an interpolation error u − v and the discrete solution Φ of the associated dual
problem, combined through the bilinear form A(·, ·). To obtain the a priori error estimates, we
estimate below the interpolation error u−v in L∞(L2(Ω)) and the time derivative Φ̇ inL1(L2(Ω))
using discrete strong stability.

14.2. Strong stability of the discrete dual problem. We apply Lemma 12.2 to the
function w(t) = Φ(T − t), to obtain the strong stability estimate

(14.7) ‖Φ(t)‖I +
N
∑

n=1

∫

In

{‖Φ̇‖ + ‖∆nΦ‖} dt+
N
∑

n=1

‖[Φ]n‖ ≤ CLN‖eN‖,

with LN = (log(TN/kn) + 1)1/2.

14.3. Proof of the a priori error estimate (9.7). In the error representation we take the
interpolant to be v = ũ ≡ Qnπnu on In, where Qn is the L2(In)-projection onto polynomials of
degree q on In, and πn is the elliptic projection defined in Section 13. For q = 0, we thus take

(14.8) ũ|In = k−1
n

∫

In

πnu ds,

and for q = 1, we take

(14.9) ũ|In = k−1
n

∫

In

πnu ds+
12(t− tn−1 − kn/2)

k3
n

∫

In

(s− tn−1 − kn/2)πnu ds.

With this choice of interpolant, (14.6) reduces to

(14.10)

‖eN‖2 = (uN − ũ−N , eN) +
∑N

n=1(u− πnu, Φ̇)n

+
N−1
∑

n=1

(un − ũ−n , [Φ]n) − (uN − ũ−N ,Φ
−
N ),

where we have used (13.2), (14.5) and the fact that (πnu− ũ, v)n = 0 for all v ∈ Vn, and thus in
particular for v = Φ̇ and v = ∆nΦ.

Using Lemma 13.2 and the fact that Qn is bounded in ‖ · ‖In , we have

(14.11)
‖u− ũ‖In ≤ ‖u−Qnu‖In + ‖Qn(u− πnu)‖In

≤ C
(

minj≤q+1 k
j
n‖u

(j)
t ‖In + ‖h2

nD
2u‖In

)

,



ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 27

where the bound for u−Qnu follows from the Taylor expansion

u(t) = u(tn) +

∫ t

tn

u̇(s) ds

= u(tn) + (t− tn)u̇(tn) +

∫ t

tn

(t− s)ü(s) ds,

noting that Qn is the identity on the polynomial part of u(t).
From (14.10) we thus obtain,

‖eN‖2 ≤ C max
1≤n≤N

(

min
j≤q+1

kjn‖u
(j)
t ‖In + ‖h2

nD
2u‖In

)

×
(

‖eN‖ +
N
∑

n=1

∫

In

‖Φ̇‖ dt+
N−1
∑

n=1

‖[Φ]n‖ + ‖Φ−
N‖
)

,

and conclude in view of (14.7) that

(14.12) ‖eN‖ ≤ CLN max
1≤n≤N

(

min
j≤r+1

kjn‖u
(j)
t ‖In + ‖h2

nD
2u‖In

)

.

By a local analysis this estimate extends to ‖e‖IN , completing the proof of (9.7).

14.4. Proof of the a priori error estimate (9.8). In the error representation formula
(14.6) we now choose v = Rnπnu, where Rn is the (Radau) projection onto linear functions on
In, defined by (Rnπnu)

−
n = πnun and the condition that Rnπnu− πnu has mean value zero over

In, that is we take

(14.13) Rnπnu|In = πnun + (t− tn)
2

k2
n

∫

In

πn(un − u) ds.

With this choice of interpolant, (14.6) reduces to

(14.14)

‖eN‖2 = (uN − πNuN , eN)

+
∑N

n=1(u− πnu, Φ̇)n −
∑N

n=1(∇(πnu−Rnπnu),∇Φ)n
+

∑N−1
n=1 (un − πnun, [Φ]n) − (uN − πNuN ,Φ

−
N),

where in the first sum we have used the fact that πnu − Rnπnu is orthogonal to Φ̇ (which is
constant in t on In), and in the second sum we have used (13.2). For the latter term, we have

(∇(πnu− Rnπnu),∇Φ)n = (∇(πnu− Rnπnu),∇Φ−
n )n

+ (∇(πnu− Rnπnu), (t− tn)∇Φ̇)n,

so that by our choice of Rnπnu,

(14.15)
|(∇(πnu−Rnπnu),∇Φ)n| =

∣

∣

∣
(∇(πnu−Rnπnu), (t− tn)∇Φ̇)n

∣

∣

∣

≤ kn‖∆n(πnu− Rnπnu)‖In
∫

In
‖Φ̇‖ dt.

Using Taylor expansions we easily find that

(14.16) ‖∆n(πnu−Rnπnu)‖In ≤ Ck2
n‖∆nπnu

(2)
t ‖In.
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Finally, we note that for any w ∈ H2(Ω) ∩H1
0 (Ω) we have

(−∆nπnw, v) = (∇πnw,∇v) = (∇w,∇v) = (−∆w, v) ∀v ∈ Sn,

from which we deduce by taking v = −∆nπnw that

(14.17) ‖∆nπnw‖ ≤ ‖∆w‖ ∀w ∈ H2(Ω) ∩H1
0 (Ω).

It now follows from (14.14) through (14.17), together with Lemma 13.2 and strong stability
for Φ, that

‖eN‖2 ≤ C max1≤n≤N(minj≤q+2 k
j
n‖u

(j)
t ‖In + ‖h2

nD
2u‖In)

× (‖eN‖ +

N
∑

n=1

∫

In

‖Φ̇‖ dt+

N−1
∑

n=1

‖[Φ]n‖ + ‖Φ−
N‖)

≤ ‖eN‖CLN max1≤n≤N(minj≤q+2 k
j
n‖u

(j)
t ‖In + ‖h2

nD
2u‖In),

where we have used the notation u(3)
t = ∆ü. This completes the proof of (9.8) and Theorem 9.1.

15. Proof of the a posteriori error estimates

The proof of the a posteriori error estimates is similar to that of the a priori error estimates
just presented. The difference is that now the error representation involves the exact solution φ
of the continuous dual problem (14.4), together with the residual of the discrete solution U . By
the definition of the dual problem and the bilinear form A, we have

‖eN‖2 = A(e, φ) = A(u, φ) − A(U, φ).

Using now that

A(u, φ) = (u0, φ+
0 ) + (f, φ)I ,

together with the Galerkin orthogonality, we obtain the following error representation in terms
of the discrete solution U , the dual solution φ and data u0 and f :

‖eN‖2 = A(U, v − φ) + (u0, φ+
0 − v+

0 ) + (f, φ− v)I

=

N
∑

n=1

{(U̇ , v − φ)n + (∇U,∇(v − φ))n} +

N
∑

n=1

([U ]n−1, v
+
n−1 − φ+

n−1)

+ (f, φ− v)I

= I + II + III,

(15.1)

with obvious notation. This holds for all v ∈ V .
To prove (9.9), we now choose v|In = φ̃ ≡ QnPnφ in (15.1), and note that

(U̇ , φ̃− φ)n = 0.

Since also

(∇U,∇(φ̃− Pnφ))n = (−∆nU, φ̃− Pnφ)n = (−∆nU, (Qn − I)Pnφ) = 0,
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it follows that

I =
N
∑

n=1

(∇U,∇(Pn − I)φ)n =
N
∑

n=1

(∇Un,∇(Pn − I)

∫

In

φ dt).

Using that

∆

∫

In

φ dt =

∫

In

∆φ dt =

∫

In

φ̇ dt = φ(tn) − φ(tn−1),

together with Lemma 13.1 and elliptic regularity, we get

(15.2)
|I| ≤ C

N
∑

n=1

‖h2
nD

2
nU‖In‖∆

∫

In

φ dt‖

≤ C max
1≤n≤N

‖h2
nD

2
n(U)‖In

(
∫ tN−1

0

‖φ̇‖ dt+ 2‖φ‖IN
)

.

To estimate II , we note that by Lemma 13.1 we have

(15.3)
∣

∣([U ]n−1, (Pn − I)φ+
n−1)

∣

∣ ≤ C‖h2
n[U ]n−1‖∗‖∆φ+

n−1‖,

noting that the left-hand side is zero if Sn−1 ⊂ Sn. By obvious stability and approximation
properties of the L2(In)-projections onto the set of constant functions on In, we also have

(15.4) ‖φ̃− Pnφ‖In ≤ ‖Pnφ‖In ≤ ‖φ‖In,

and

(15.5) ‖φ̃− Pnφ‖In ≤
∫

In

‖Pnφ̇‖ dt ≤
∫

In

‖φ̇‖ dt.

We thus conclude that

(15.6)
|II| ≤ Cmax1≤n≤N ‖h2

n[U ]n−1/kn‖∗
∑N

n=1 kn‖∆φ+
n−1‖

+ max
1≤n≤N

‖[U ]n−1‖(
∫ tN−1

o

‖φ̇‖ dt+ ‖φ‖IN ).

The data term III is estimated similarly. We finally use strong stability of φ in the form

(15.7)

∑N−1
n=1 kn‖w+

n−1‖ ≤
∫ tN−1

0
‖w‖ dt

≤
(

∫ tN−1

0
(tN − t)−1 dt

)1/2 (
∫ tN
0

(tN − t)‖w‖2 dt
)1/2

≤ 1
2

(

log tN
kN

)1/2

‖eN‖,

for w = φ̇ and w = ∆φ, together with the estimate kN‖∆φ+
N−1‖ ≤ exp(−1)‖eN‖.

Combining the estimates completes the proof of the posteriori error estimate (9.9). The proof
of the a posteriori error estimate (9.10) is similar.
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16. Extension to systems of convection-diffusion-reaction problems

We may in a natural way directly extend the scope of methods and analysis to systems of
convection-diffusion-reaction equations of the form

(16.1)











u̇−∇ · (a∇u) + (b · ∇)u− f(u) = 0 in Ω × (0, T ],

∂nu = 0 on Γ × (0, T ],

u(·, ) = u0 in Ω,

where u = (u1, . . . , ud) is a vector of concentrations, a = a(x, t) is a diagonal matrix of diffusion
coefficients, b = b(x, t) is a given convection velocity, f(u) models reactions, and ∂n = n · ∇
with n the exterior normal of Γ. Depending on the size of the coefficients a and b and the
reaction term, this problem may exhibit more or less parabolic behavior, determined by the size
of the strong stability factor coupled to the associated linearized dual problem (here linearized at
the exact solution u):

(16.2)











−φ̇−∇ · (a∇φ) −∇ · (φb) − (f ′(u))>φ = 0 in Ω × [0, T ),

∂nφ = 0 on Γ × [0, T ),

φ(·, T ) = ψ in Ω,

where (∇ · (φb))i ≡ ∇ · (φbi) for i = 1, . . . , d.

17. Examples of reaction-diffusion problems

We now present solutions to a selection of reaction-diffusion problems, including solutions of
the dual backward problem and computation of stability factors.

17.1. Moving heat source. In Figures 10 and 11 we display mesh and solution at two differ-
ent times for the adaptive cG(1)dG(0) method applied to the heat equation with a moving heat
source producing a moving hot spot. We notice that the space mesh adapts to the solution.

Figure 10. Meshes for moving source problem.
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Figure 11. Solution for moving source problem.

17.2. Adaptive time steps for the heat equation. We consider again the heat equation,
u̇− ∆u = f with homogeneous Dirichlet boundary conditions on the unit square (0, 1) × (0, 1)
over the time interval [0, 100]. The source f(x, t) = 2π2 sin(πx1) sin(πx2) [sin(2π2t) + cos(2π2t)]
is periodic in time, with corresponding exact solution

u(x, t) = sin(πx1) sin(πx2) sin(2π2t).

In Figure 12 we show a computed solution using the cG(1)dG(0) method, and we also plot the
time evolution of the L2-error in space together with the sequence of adaptive time steps. We
notice that the error does not grow with time, reflecting the parabolic nature of the problem. We
also note the periodic time variation of the time steps, reflecting the periodicity of the solution,
with larger time steps when the solution amplitude is small.

17.3. Logistics reaction-diffusion. We now consider the heat equation with a non-linear
reaction-term, referred to as the logistics problem:

(17.1)











u̇− ε∆u = u(1 − u) in Ω × (0, T ],

∂nu = 0 on Γ × (0, T ],

u(·, 0) = u0 in Ω,

with Ω = (0, 1) × (0, 1), T = 10, ε = 0.01, and

(17.2) u0(x) =

{

0, 0 < x1 < 0.5,

1, 0.5 ≤ x1 < 1.

Through the combined action of the diffusion and reaction the solution u(x, t) tends to 1 for all x
with increasing time, see Figure 13.We focus interest at final time T to a circle of radius r = 0.25
centered at x = (0.5, 0.5). The corresponding dual problem linearized at the exact solution u is
given by

(17.3)











−φ̇− ε∆φ = (1 − 2u)φ in Ω × [0, T ),

∂nφ = 0 on Γ × [0, T ),

φ(·, T ) = ψ in Ω,
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Figure 12. Heat equation: solution, error and adaptive time steps.

where we choose ψ = 1/πr2 within the circle and zero outside. In Figure 14 we plot the dual
solution φ(·, t) and also the stability factor Sc(T, ψ) as function of T . As in the Akzo-Nobel
problem discussed above, we note that Sc(T, ψ) reaches a maximum for T ∼ 1, and then decays
somewhat for larger T . The decay with larger T can be understood from the sign (1 − 2u) of
the coefficient of the φ-term in the dual problem, which is positive when u(x, t) < 0.5 and thus
is positive for t small and x1 < 0.5 and negative for larger t. The growth phase in ψ(·, t) thus
occurs after a longer phase of decay if T is large, and thus Sc(T, ψ) may effectively be smaller
for larger T , although the interval of integration is longer for large T .
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17.4. Moving reaction front. Next, we consider a system of reaction-diffusion equations,
modeling an auto-catalytic reaction where A reacts to form B with B as a catalyst:

(17.4) A + 2B → B + 2B.

With u1 the concentration of A and u2 that of B, the system takes the form

(17.5)

{

u̇1 − ε∆u1 = −u1u
2
2,

u̇2 − ε∆u2 = u1u
2
2,

on Ω × (0, 100] with Ω = (0, 1) × (0, 0.25), ε = 0.0001 and homogeneous Neumann boundary
conditions. As initial conditions, we take

(17.6) u1(x, 0) =

{

0, 0 < x1 < 0.25,

1, 0.25 ≤ x1 < 1,

and u2(·, 0) = 1 − u1(·, 0). The solution u(x, t) corresponds to a reaction front, starting at x1 =
0.25 and propagating to the right in the domain until all of A is consumed and the concentration
of B is u2 = 1 in all of Ω, see Figure 15.

The dual problem, linearized at u = (u1, u2), is given by

(17.7)

{

−φ̇1 − ε∆φ1 = −u2
2φ1 + u2

2φ2,

−φ̇2 − ε∆φ2 = −2u1u2φ1 + 2u1u2φ2.

As in the previous example, we take the final time data ψ1 for the first component of the dual to
be an approximation of a Dirac delta function centered in the middle of the domain, and ψ2 ≡ 0.
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Figure 14. The logistics problem: dual solution and stability factor Sc(T, ψ).

We note that the stability factor peaks at the time of active reaction, and that before and after
the reaction front has swept the region of observation the stability factor Sc(T, ψ) is significantly
smaller.



ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 35

0

0.5

1

0
0.2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0
0.2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0
0.2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0
0.2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0
0.2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0
0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

U
1
(x
,t

)
U

2
(x
,t

)

t = 0

t = 0

t = 50

t = 50

t = 100

t = 100

x1

x2

Figure 15. Reaction front problem: solution for the two components at
three different times.

References

[1] Eriksson K. and Johnson C. Adaptive Finite Element Methods for Parabolic Problems I: A Linear
Model Problem. SIAM J. Numer. Anal. 1991; 28: 43–77.

[2] Eriksson K. and Johnson C. Adaptive Finite Element Methods for Parabolic Problems II: Optimal
Error Estimates in L∞L2 and L∞L∞. SIAM J. Numer. Anal. 1995; 32: 706–740.

[3] Eriksson K. and Johnson C. Adaptive Finite Element Methods for Parabolic Problems III: Time Steps
Variable in Space. in preparation

[4] Eriksson K. and Johnson C. Adaptive Finite Element Methods for Parabolic Problems IV: Nonlinear
Problems. SIAM J. Numer. Anal. 1995; 32: 1729–1749.

[5] Eriksson K. and Johnson C. Adaptive Finite Element Methods for Parabolic Problems V: Long-time
integration. SIAM J. Numer. Anal. 1995; 32: 1750–1763.

[6] Eriksson K., Johnson C. and Larsson S. Adaptive Finite Element Methods for Parabolic Problems
VI: Analytic Semigroups. SIAM J. Numer. Anal. 1998; 35: 1315–1325.

[7] Eriksson K., Estep D., Hansbo P. and Johnson C. Introduction to Adaptive Methods for Differential
Equations. Acta Numerica, Cambridge University Press 1995; 105–158.

[8] Eriksson K., Johnson C. and Thome V. Time Discretization of Parabolic Problems by the Discontin-
uous Galerkin Method. RAIRO MAN 1985; 19: 611–643.

[9] Johnson C. Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for
Stiff Ordinary Differential Equations. SIAM J. Numer. Anal. 1988; 25: 908–926.

[10] Logg A. Multi-Adaptive Galerkin Methods for ODEs I. SIAM J. Sci. Comput. 24 (2003), pp. 1879–
1902.

[11] Logg A. Multi-Adaptive Galerkin Methods for ODEs II: Implementation & Applications. To appear
in SIAM J. Sci. Comput.

[12] Eriksson K, Johnson C. and Logg A. Explicit Time-Stepping for Stiff ODEs. To appear in SIAM J.

Sci. Comput.



36 K. ERIKSSON, C. JOHNSON, AND A. LOGG

0

0.5

1

0

0.1

0.2

0

10

20

30

40

60

70

0

0.5

1

0

0.1

0.2

0

10

20

30

40

60

70

0

0.5

1

0

0.1

0.2

0

10

20

30

40

60

70

PSfrag replacements

φ
1
(·,
t)

t = 100 t = 99 t = 0

T
Sc(T, ψ)

0 10 20 30 40 60 70 80 90 100
0

10

20

30

40

60

70

80PSfrag replacements

φ1(·, t)
t = 100
t = 99
t = 0

T

S
c
(T
,ψ

)

Figure 16. Reaction front problem: dual solution and stability factor Sc(T )
as function of T .



ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 37

CHALMERS FINITE ELEMENT CENTER PREPRINTS

2001–01 A simple nonconforming bilinear element for the elasticity problem
Peter Hansbo and Mats G. Larson

2001–02 The LL∗ finite element method and multigrid for the magnetostatic problem
Rickard Bergström, Mats G. Larson, and Klas Samuelsson

2001–03 The Fokker-Planck operator as an asymptotic limit in anisotropic media
Mohammad Asadzadeh

2001–04 A posteriori error estimation of functionals in elliptic problems: experiments
Mats G. Larson and A. Jonas Niklasson

2001–05 A note on energy conservation for Hamiltonian systems using continuous time finite
elements
Peter Hansbo

2001–06 Stationary level set method for modelling sharp interfaces in groundwater flow
Nahidh Sharif and Nils-Erik Wiberg

2001–07 Integration methods for the calculation of the magnetostatic field due to coils
Marzia Fontana

2001–08 Adaptive finite element computation of 3D magnetostatic problems in potential formu-
lation
Marzia Fontana

2001–09 Multi-adaptive galerkin methods for ODEs I: theory & algorithms
Anders Logg

2001–10 Multi-adaptive galerkin methods for ODEs II: applications
Anders Logg

2001–11 Energy norm a posteriori error estimation for discontinuous Galerkin methods
Roland Becker, Peter Hansbo, and Mats G. Larson

2001–12 Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one
dimensional case
Mats G. Larson and A. Jonas Niklasson

2001–13 Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: sta-
bility and energy error estimates
Mats G. Larson and A. Jonas Niklasson

2001–14 A hybrid method for the wave equation
Larisa Beilina, Klas Samuelsson and Krister Åhlander
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