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THE FENICS PROJECT

T. DUPONT, J. HOFFMAN, C. JOHNSON, R. KIRBY, M. LARSON, A. LOGG, AND R. SCOTT

Abstract. The goal of the FEniCS project is to develop open-source software for the
automation of Computational Mathematical Modeling (CMM). FEniCS is a joint project
between the Toyota Technological Institute at Chicago, the University of Chicago, and
Chalmers University of Technology.

The vision of FEniCS is to set a new standard in CMM, which can be described as the
Automation of CMM, towards the goals of generality, efficiency, and simplicity, concerning
mathematical methodology, implementation, and application.

1. Modern Society and CMM

The Industrial Society is characterized by automated production of material goods and
the Information Society is characterized by automated production of virtual goods. Au-
tomation has opened for mass production of both material goods and information, and
may thus be viewed as the basis of our Modern Society, with mass consumption of both
material and virtual goods.

The Industrial Society developed along with the development of Calculus of differen-
tial/integral equations and Science, starting in the 18th century, and the Information
Society based on the computer has developed along with mathematical logic, discrete and
numerical mathematics.

Mathematics thus plays an increasingly important role in the development of Modern
Society, as a language for Science and a theoretical and practical tool for Computation.
Computational Mathematical Modeling (CMM) may be viewed as the modern expression
of the Basic Principle of Science: formulating equations (modeling) and solving equations
(computation).

Automation plays a key role in modern society, e.g., to improve quality of life and to
reduce environmental impact. This includes mass production of both material goods, such
as food, clothes and cars, and virtual goods in the form of digitized word, image and
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sound. Computational simulation is often a key step in the further refinement of designs
of new products or manufacturing processes. It plays an important role in producing both
physical and informational goods.

The term CMM is used to describe precisely the field of simulation based on mathemat-
ical models using rigorous computational mathematics. Thus, the word ‘mathematical’
modifies both ‘computational’ as well as ‘modeling’. Standard models involve combina-
tions of an already broad range of forms, including algebraic, differential and integral
equations. However, increasingly more complex models are also appearing. This makes
it imperative that general computational modeling be implemented in flexible, extensible
(FE) systems.

1.1. CMM and Mathematics. CMM may be viewed as Constructive Mathematics and
is thus a fundamental part of Mathematics. With the development of the computer, the
world of Constructive Mathematics is now quickly expanding because more mathematical
objects may be constructed and processed.

It is obvious that also other parts of mathematics play a key role in CMM. One example
of this is the remarkable development of the field of nonlinear partial differential equations
over the last half century. We are now much better able to understand whether a novel
model of natural phenomena is sensible or not. This is a key step in the process of evaluating
a novel mathematical model being proposed for new phenomena. It should therefore be
possible to write novel equations in a simple language and perform numerical simulations
reliably and automatically.

The increased use of CMM in the field of partial differential equations is now contributing
to the further development of the field. For example, the Clay Prize problem on existence
of smooth solutions of the Navier–Stokes equations, still unsolved 70 years after Leray’s
first attempt, is now being attacked in part by computational methods.

Another significant development in mathematics is the theory of finite elements (another
FE) in the mathematical community over the last three decades. However, these devel-
opments have not been fully reflected in general software. Thus, an initial step will be to
automate the implementation of the mathematical theory of the finite element method.
This will provide a basis for development of other technologies in our general system.

The finite element method is the Galerkin method with a particular class of approximat-
ing spaces. The Galerkin method with general approximation spaces would be a logical
next step, including spectral methods, wavelets, variational difference methods, and meth-
ods for Fourier integral operators.

1.2. CMM in Science and Engineering. CMM plays an increasingly important role in
Science and Engineering as the capability of computational solution of (differential/integral)
equations is quickly expanding. Computational simulation of real world phenomena from
quantum physics and chemistry through molecular biology to geophysics and astronomy, is
becoming possible for the first time, and entirely new perspectives and means for progress
are opening.

One description of the scientific method would be the discovery and exploitation of
mathematical equations to describe natural phenomena, or shortly: formulating equations
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(modeling) and solving equations (computation). A key aspect of modern computational
explorations of science and engineering questions is the need for varying the physical mod-
els. This is sometimes referred to as multi-physics simulation. But we emphasize that
modern computational science (also known as CS) often is exploring the space of new
models, not just working with a combination of fixed models.

The use of computational modeling is constantly growing as new fields start to use
CMM, and fields which have long used CMM explore new types of phenomena. This clearly
requires a new level of automation in CMM. We will argue that it is even possible to apply
ideas from learning theory to the adaptive discovery of models, using CMM recursively.

1.3. CMM and Computer Science. Computer Science (CS) has been described as a
study of automation. Alternatively, CS may be viewed as a development of Constructive
Mathematics. The original motivation to develop computers was to replace the drudgery
and errors of human groups using desk calculators in basics tasks of CMM, such as solv-
ing differential equations. In the early development of CS as a discipline, computational
mathematics thus played an important role, but gradually the focus in CS shifted to other
issues such as AI, programming languages, data bases, compilers, etc.

Today, there are many aspects of CMM that can benefit from recent developments in
CS. Conversely, aspects of CMM related to adaptivity pose challenges to CS connecting to
modern programming tools and machine learning. Given the role of CMM in the automa-
tion process, it is clearly a substantial part of CS. Moreover, there is a two-way relationship
in that automation itself also plays a role in the process of computational modeling. Thus,
there is a natural recursive relationship between CMM, automation and thus CS.

Specific aspects of CMM that can benefit from recent developments in CS include the
following. Algorithms in computational geometry play an obvious role, but also extensible
systems can benefit from developments in languages and compilers. There are many aspects
of CMM that can be viewed from the perspective of machine learning. Data mining and
data base issues are also increasingly relevant to CMM. Correspondingly, CMM places
novel emphasis on certain issues in CS. Performance (of floating-point computation) is
critical in CMM, since it is characterized as numerically intensive (NI).

2. The vision of FEniCS

The vision of FEniCS is to set a new standard in CMM, which can be described as the
Automation of CMM, towards the goals of generality, efficiency, and simplicity, concerning
mathematical methodology, implementation, and application.

The goals of generality and simplicity reflect Leibniz’ principle of the “Best Possible of
Worlds” being characterized by maximal variation under a minimal set of basic principles.
The goal of efficiency reflects the Darwin-Wallace principle of survival of the fittest.

The basic ingredients for the automation of CMM are

• automation of discretization of differential/integral equations,
• automation of optimization,
• automation of modeling.
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Automation of the discretization of differential/integral equations is realized through
adaptive finite element methods, with feed-back from computed solutions to meshing and
(iterative) solution of discretized equations.

Automation of optimization, aiming at minimizing cost-functionals, is realized through
feed-back from computed solutions to control variables.

Automation of modeling is realized through feed-back from computed solutions to model
variables.

In all cases, adaptive computational feed-back plays a key role and thus closely couples
to processes of learning, concerning mesh, control, and model. Furthermore, error-control,
based on evaluation of residuals coupled with sensitivity information obtained by solving
dual linearized equations, plays a key role.

The realization of FEniCS builds on cooperation between Johnson and Scott, who met
as Dickson Instructors at the University of Chicago 1974–75, during the period when the
revolutionary development in computational mathematics based on finite elements was
initiated with the group around J. Douglas and T. Dupont at the University of Chicago
playing a key role. Through the years, Johnson and Scott have independently and in
cooperation developed ambitious programs in CMM now ready for fusion.

The necessary prerequisites for this venture are now available: (i) mathematical method-
ology, (ii) modern tools of computer science, (iii) modern computers, and (iv) crucial man-
power and commitment.

More specifically, the research groups of Johnson and Scott have developed the following
important elements of CMM: adaptive finite element methods connecting to (i), software
such as DOLFIN, Analysa and FIAT connecting to (ii), and the Body & Soul Reform

Project on CMM in applied mathematics education connecting to dissemination of results.
In particular, Johnson has together with co-workers since the mid 80’s developed a general
methodology for adaptive error control in finite element methods, based on duality. This
methodology is now becoming a standard in several areas of applications, but its full
potential still remains to be realized. Most importantly, these research groups are now

ready to join forces in a coordinated effort to reach a new standard in CMM: FEniCS.

3. Automation of CMM

Automation of CMM includes the automation of discretization, optimization, and mod-
eling. Although many of the tools necessary for this automation are today available, within

the prototype implementations of FEniCS described below, the full automation of CMM
has yet to be realized in practice.

3.1. Automation of discretization. Automation of discretization includes the automa-
tion of evaluation of variational forms, specifying differential/integral equations, with the
variational form given in standard mathematical notation. It includes also the automation
of meshing, automated solution of the discretized equations, and automated generation of
arbitrary finite elements.
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3.1.1. Automated evaluation of variational forms. With automated evaluation of varia-
tional forms, a differential/integral equation can be given directly in mathematical nota-
tion, which opens new possibilities for mathematical modeling; the model can be easily
changed (by just specifying the new model) without the need for a new implementation.
This is also a key ingredient for automation of modeling.

3.1.2. Automated meshing. Using adaptive finite element methods, space-time meshes can
be automatically generated and adapted, to produce solutions of prescribed quality. Au-
tomated meshing enables efficiency of computation (minimal work for desired accuracy)
and reliability of computed solutions (the error is less than a given tolerance).

In its most general form, automated meshing is multi-adaptive, meaning that the mesh
is adapted without any constraints in both space and time. This means in particular that
different time steps are used in different regions of space.

Figure 1. Time step size as function of space in a solution of the time-
dependent heat equation with a variable heat source localized to the center
of the domain. The multi-adaptive algorithm automatically uses small time
steps in the active region.

3.1.3. Automated solution of discretized equations. Traditional methods for solving non-
linear discretized equations are based on Newton methods, with the linearized equations
being solved using direct methods based on Gaussian elimination, or iterative methods
such as the conjugate gradient method (CG) or GMRES. These methods are static with
limited feed-back and are thus, from a computer science point of view, of limited interest.

Modern adaptive methods with more feed-back represent dynamical computational pro-
cesses and pose real challenges to computer science. An example is the adaptive multigrid
method, where the number of iterations on each level are adaptively determined during
the iteration process. Another example is the explicit solver for stiff systems of differ-
ential equations in DOLFIN, where the iteration process is adaptively stabilized using a
combination of large and small time steps.

3.1.4. Automated generation of arbitrary elements. By automating the generation of finite
elements, arbitrary elements can be specified in mathematical notation. In this way, an
implementation does not have to be designed for a specific element or a specific collection
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of elements. New elements can thus be added to the system by just giving their definition.
Another advantage is that by automating the generation of elements, it becomes easier to
guarantee the correctness of the implementation, since the implementation is common for
all elements. In addition, the finite elements may be chosen adaptively by feed-back from
computation.

3.2. Automation of optimization. With automated discretization realized in the form
of computational solution of forward problems, a large variety of optimization problems or
inverse problems may be attacked. In optimization one seeks to minimize a cost functional
depending on the solution of a forward problem by varying a control variable. Typically,
the minimization is achieved using a gradient method involving the solution of the forward
problem and evaluation of the gradient by solving an associated dual problem. In automa-
tion of optimization, we thus rely on automation of discretization of both the forward and
dual problems. We further couple optimization and discretization to achieve quantitative
error control of specified output at minimal computational cost.

In many cases we formulate the optimization problem as a problem of finding a stationary
point of an associated Lagrangian which takes the form of a system of differential equations,
involving the forward and the dual problem, as well as an equation expressing stationarity
with respect to variation of control variables. The optimization problem is thus solved by
computational solution of a system of differential equations.

3.3. Automation of modeling. Further, with tools of automated discretization, a new
world of automation of modeling opens, which may be viewed as the overall goal of CMM.
In automated modeling, subgrid models are constructed through computation on resolvable
scales typically through various forms of extrapolation. In LES of turbulence, the subgrid
model may take the form of a turbulent viscosity which is determined locally in space and
time by scale-extrapolation from computations on resolvable scales using principles of scale

similarity, or by local in space-time resolution of all scales and extrapolation in space-time.

4. Master plan

The goal of FEniCS is to develop a tool of CMM with strong impact in both academics

and industry. In the narrow sense, FEniCS may be viewed as a project for developing open-
source software for automation of CMM, including a general implementation of adaptive

finite element methods, but FEniCS has a wider potential connecting to educational
reform in science and engineering.

4.1. Software requirements. According to the vision of FEniCS, the overall software
requirements are generality, efficiency, and simplicity. These goals are generally thought
of as being in contrast to one another; general codes are often inefficient and complex, and
efficient codes are rarely general. However, this does not have to be the case. Simplicity can
be achieved through generality, and, by using modern software techniques, the generality
does not have to lead to decreased performance.

We also pose specific requirements concerning correctness and open-source licensing.



THE FENICS PROJECT 7

4.1.1. Generality. Generality includes the ability to handle

• general differential/integral equations,
• general meshes,
• general finite elements,
• general input and output formats following open standards.

4.1.2. Efficiency. Overall efficiency is obtained by

• efficiency of discretization, optimization, and modeling through adaptivity,
• efficiency of implementation, including parallelization.

4.1.3. Simplicity. Simplicity is obtained through a clear and modular conceptual structure,
which should be reflected at all levels in the implementation of the software. This simplifies
development and allows more people to be involved and contribute.

Similarly, the API to FEniCS shall be simple and intuitive. Specifically, a simple and
flexible scripting language shall provide a Problem Solving Environment (PSE). Possibly,
a Graphical User Interface (GUI) may also be provided.

4.1.4. Correctness. Overall correctness is obtained by

• correctness of discretization, optimization and modeling through adaptive error
control,

• correctness of implementation through automatic generation of code.

4.1.5. Open-source development. FEniCS is an open-source project. Specifically, this

means that FEniCS will be licensed under the GNU General Public License (GPL). The
benefits of this are, among others,

• stability in code development,
• improvements in generality, efficiency, simplicity, and correctness,
• increased dissemination.

For further discussion, see [5].

4.2. Reform of education. CMM is offering new tools in science and engineering, requir-
ing reformation of the education from basic to graduate level. The Body and Soul-project
[6], involving books [7] and software, represents the first coordinated effort to meet these
demands. The goal is again to set a new standard in science/engineering education and

FEniCS has an important role to play to meet this goal. The potential impact of FEniCS

as the computational tool in a reformed education is very strong.

5. Initial values

In this section, we specify the initial values of FEniCS, the current status which is the

starting point for the FEniCS project. In particular, we give an overview of what has
already been implemented in our software projects DOLFIN, Analysa, and FIAT, which
are existing prototype implementations of the full program, and briefly discuss how these

sub projects can be integrated within FEniCS.
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5.1. Software.

5.1.1. DOLFIN. DOLFIN (Dynamic Object-oriented Library for FINite element computa-
tion) is a platform for adaptive finite element computation developed by Hoffman and Logg
at the Department of Computational Mathematics at Chalmers. The goal of DOLFIN is

much the same as that of FEniCS and it currently implements a subset of the features

envisioned for FEniCS.
Features of DOLFIN include automatic evaluation of variational forms, automatic as-

sembly from a given variational formulation, adaptive mesh refinement in two and three
space dimensions, algebraic solvers such as GMRES, CG and LU, visualization using
OpenDX, a system for integration of new modules/solvers for specific problems, and a
multi-adaptive ODE-solver with automatic validation of solutions using solutions of au-
tomatically generated dual problems. Thus, DOLFIN can be thought of as a working

prototype implementation of FEniCS.

5.1.2. Analysa. Analysa is a problem-solving environment (PSE) for partial differential
equations (PDE) in two or three dimensions using the language of variational formulations.
It uses Scheme as a scripting language, with numerous libraries incorporated automatically.

Analysa allows arbitrary variational forms to be defined, and it provides a notation
for the action of these forms. The forms can have an arbitrary number of variables, and
the resulting forms are evaluated efficiently both in terms of computation and storage.
Arbitrary order piecewise polynomial spaces can be specified. Analysa uses an embedded

language written in the functional language Scheme together with compiler technology
to combine the expressiveness of functional languages with the efficiency of hand-coded
Fortran or C. Scheme is simply used as a scripting language in this context. Analysa snarfs
many libraries for various purposes, including but not limited to graphics, windowing, linear
algebra, domain geometry, numerical quadrature, and finite elements.

5.1.3. FIAT. FIAT (FInite element Automatic Tabulator) is a recently-developed Python
package that tackles the question of computing arbitrary finite elements. Mathematically,
a finite element can be defined as a domain plus a finite-dimensional function space and
an associated set of linear functionals (nodes). Many finite element implementations are
constrained by our ability to obtain explicit formulae for the basis functions. FIAT re-
moves this constraint by using linear algebra and higher order programming techniques
to construct the nodal bases for arbitrary elements, as linear combinations of orthogonal
polynomials. FIAT may not currently be efficient enough to be used in a run-time system,
but is effective at pre-computing basis function values to be fed into a solver.

5.1.4. FEniCS. Although DOLFIN, Analysa, and FIAT are three separate implementa-

tions approximating the functionality of FEniCS, they are in a sense orthogonal, which

means that they combine easily to a new and better approximation of FEniCS. The first

approximation of FEniCS will be to use DOLFIN as the computational kernel, and write
an interface between DOLFIN and FIAT so that the elements generated by FIAT are used
within DOLFIN. On top of this a simple scripting language in the style of Analysa is
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Figure 2. A fifth order Raviart–Thomas basis function generated by FIAT.

placed, thus obtaining the first version of FEniCS. From there on the development can

continue with better approximations converging to FEniCS.

5.2. Man-power. The FEniCS core team consists of the following people, committed to
implementing a new standard in CMM software:

• Prof. Todd Dupont
Dept. of Computer Science
University of Chicago, USA

• Dr. Johan Hoffman
Courant Institute of Mathematical Sciences, New York, USA

• Prof. Claes Johnson
Dept. of Computational Mathematics
Chalmers University of Technology, Göteborg, Sweden

• Ass. Prof. Robert C. Kirby
Dept. of Computer Science
University of Chicago, Ill USA

• Ass. Prof. Mats Larson
Dept. of Computational Mathematics
Chalmers University of Technology, Göteborg, Sweden

• Mr. Anders Logg
Dept. of Computational Mathematics
Chalmers University of Technology, Göteborg, Sweden
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• Prof. Ridgway Scott
Dept. of Computer Science
University of Chicago, USA

The project will be based at the Toyota Technological Institute (TTI) at Chicago and
the Department of Computer Science at the University of Chicago, and will be run in
cooperation with Chalmers University of Technology in Göteborg.

Further, the project may be expected to couple to activities within Computer Science
at TTI/University of Chicago, such as learning and compilers.

6. Challenges

CMM has brought revolutionary new tools to science and industry, but there are many
challenges requiring further development, of which we list a few below. Basic open problems
concern multi-scale problems with computationally unresolvable scales in space and time.

A specific goal of FEniCS is to open new possibilities for attacking such problems, all

requiring automation of CMM. We believe that FEniCS will enable substantial progress
to be made for a large variety of problems in science and industry in general, and for the
problems below in particular.

6.1. Turbulence modeling. Turbulent flow at high Reynold’s numbers such as 106 typ-
ically requires on the order of 1018 arithmetic operations in Direct Numerical Simulation

(DNS), using standard computational strategies, which is way beyond foreseeable compu-
tational power.

In Large Eddy Simulation (LES), the larger eddies are resolved in computations with say
106 mesh points and the effect of unresolved smaller eddies is modeled in subgrid models

in terms of the larger eddies. The challenge is to design such subgrid models allowing
accurate computation of mean values on resolvable scales.

Today, new possibilities to meet this challenge are opened through computational mod-
eling, where subgrid models are constructed adaptively from computations on resolvable
scales. One may view computational turbulence modeling as a learning process, where the
subgrid model learns how to model turbulence.

Figure 3. Cross-section of 3D turbulent flow around a surface mounted
cube. (LES using DOLFIN.)
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6.2. Protein folding. Another basic problem requiring subgrid modeling is that of molec-

ular dynamics, where the shortest time scale of 10−15 seconds is unresolvable in simulations
of e.g. protein folding which require simulation time intervals up to seconds. Successful
such simulations may give important insight into the function of proteins in life processes.

6.3. Quantum mechanics. Another challenge concerns computational solution of Schrödingers

equations in quantum mechanics, involving high-dimensional differential equations, again
requiring computational modeling for solvability. Computational quantum mechanics is
the basis for computational chemistry and biology.

6.4. Design. CMM opens entirely new possibilities in production design by replacing ex-
perimental testing by computational simulation. For example, crash simulation for car
design is today a standard tool, but many expensive crash tests are still performed. An-
other example is the design of antennas for tele-communication.

6.5. Inverse problems. There is a variety of inverse problems in e.g. geophysics and
medical imaging, where the objective is to determine properties inside a body from mea-
surements on parts of the surface of the body, which in mathematical terms corresponds
to determining coefficients in differential equations from boundary data.
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Appendix A. DOLFIN

A.1. Background. The DOLFIN project [1] was initiated in 2002 with the intention to
provide a common platform for development and research at the Department of Computa-
tional Mathematics at Chalmers and the interdisciplinary Chalmers Finite Element Center
Φ, building on earlier experience. DOLFIN is the primary development platform for all
graduate students at the department and is used in various courses at Chalmers, ranging
from first-year undergraduate to graduate level.

Figure 4. Convection–diffusion around a hot dolphin.

DOLFIN is implemented as a C++ library and can be used either as a stand-alone solver,
or as a tool for development and implementation of new methods. The GNU autotools
(automake and autoconf) are used to automate building on different systems.

To simplify usage and emphasize structure, DOLFIN is organized into three levels of
abstraction, which we denote by kernel level, module level, and user level. Core features,
such as automatic evaluation of forms and adaptive mesh refinement, are implemented as
basic tools at kernel level. At module level, new solvers/modules that use the basic tools
as building blocks can be easily integrated into the system. At user level, a problem can
be solved, either using one of the built-in solvers/modules or by using the basic tools. To
make sure that each part of the system can be replaced, the code is completely modularized
(see Figure 5).

We summarize the key features of DOLFIN as follows:

• automatic evaluation of variational forms,
• automatic assembly from variational formulation,
• adaptive mesh refinement for triangular or tetrahedral meshes,
• linear algebra including algebraic solvers,
• graphical visualization using OpenDX,
• a system for integration of new modules/solvers for specific PDEs,
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Tools

fem
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quadratureform element map

ode math commonio

main.cpp

SettingsLog system
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Poisson

Conv−diff

Navier−Stokes

User level

Kernel level

Module level

Figure 5. A diagram showing the three levels of abstraction and the mod-
ularization within DOLFIN.

• a fully automated multi-adaptive ODE-solver.

A.2. Automatic evaluation of variational forms. Automatic evaluation of variational
forms is implemented by operator overloading in C++, allowing simple specification of vari-
ational forms in a language that is close to the mathematical notation. Good performance
is obtained by automatic precomputation and tabulation of integrals, in combination with
special techniques to avoid object construction.

As an example, consider Poisson’s equation,

−∆u(x) = f(x), x ∈ Ω,

the variational formulation (ignoring boundary conditions) of which is

∑
K

∫
K

(∇u,∇v) dK =
∑
K

∫
K

fv dK.

The two variational forms of the left- (lhs) and right-hand sides (rhs) are specified in
DOLFIN as shown in Program A.1.

A.3. Automatic assembly from variational formulation. In DOLFIN, automation is
provided also for the assembly of matrices and vectors from a given variational formulation,
using the automatic evaluation of variational forms. This automates a large part of the
implementation of a solver. In the case of Poisson’s equation, the algorithm becomes
particularly simple: assemble a matrix (the stiffness matrix ) and a vector (the load vector),
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class Poisson : public PDE {

...

real lhs(const ShapeFunction& u, const ShapeFunction& v)

{

return (grad(u),grad(v)) * dK;

}

real rhs(const ShapeFunction& v)

{

return f * v * dK;

}

...

};

Program A.1: Specification of the variational formulation of Poisson’s equation in
DOLFIN.

solve the linear system, and save the solution. This is illustrated in Program A.2, which
contains the full implementation of the Poisson solver/module in DOLFIN.

void PoissonSolver::solve()

{

Matrix A;

Vector x, b;

Function u(mesh, x), f(mesh, "source");

Poisson poisson(f);

Galerkin fem;

fem.assemble(poisson, mesh, A, b);

A.solve(x, b);

File file("poisson.m");

file << u;

}

Program A.2: The implementation of the Poisson solver in DOLFIN.

Automation of all parts of DOLFIN makes the implementation simple and clear at all
levels, not only at the top level. In fact, the algorithm for automated assembly is just a
couple of lines. Program A.3 shows the full algorithm of the assembly of a matrix from a
given form.

A.4. Adaptive mesh refinement. The concept of a mesh is central in the implementa-
tion of adaptive finite element methods for partial differential equations. This and other
important concepts are implemented as C++ classes in DOLFIN:
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for (CellIterator cell(mesh); !cell.end(); ++cell) {

mapping->update(cell);

element->update(mapping);

pde.updateLHS(element, cell, mapping, quadrature);

for (FiniteElement::TestFunctionIterator v(element); !v.end(); ++v)

for (FiniteElement::TrialFunctionIterator u(element); !u.end(); ++u)

A(v.dof(cell), u.dof(cell)) += pde.lhs(u,v);

}

Program A.3: Automatic assembly of a matrix A from a given form.

• Mesh

• Node, Cell, Edge, Face
• Boundary

• MeshHierarchy

In addition, iterators such as NodeIterator, CellIterator, EdgeIterator, FaceIterator,
and MeshIterator are implemented to allow easy access to the mesh information that is
needed in the implementation of adaptive finite element methods, such as the node neigh-
bors of a node or the edges within a face. In Program A.4 we give an example of a code
that displays all the node neighbors of the nodes of all the cells within a given mesh.

for (CellIterator c(m); !c.end(); ++c)

for (NodeIterator n1(c); !n1.end(); ++n1)

for (NodeIterator n2(n1); !n2.end(); ++n2)

cout << *n2 << endl;

Program A.4: Iteration over all node neighbors n2 of the nodes n1 within all cells c of the
mesh m.

Adaptive mesh refinement for triangular meshes (in 2D) and tetrahedral meshes (in 3D)
is implemented in DOLFIN, see Figure 6. Refining a mesh is simple, just mark the cells
(according to some criterion for refinement) and tell the mesh to refine itself, see Program
A.5. A hierarchy of meshes, that can be used for multigrid computation, is automatically
created.

A.5. Linear algebra. DOLFIN includes an efficient implementation of the basic concepts
of linear algebra: matrices and vectors. Both sparse and dense matrices are implemented,
as well as generic matrices only defined through their action (multiplication with a given
vector).

Several algebraic solvers are implemented in DOLFIN. These include preconditioned
iterative methods such as GMRES and CG, and direct methods such as LU factorization.
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Figure 6. Adaptive mesh refinement of triangular and tetrahedral meshes
within DOLFIN.

File file(‘‘mesh.xml’’); // Create a file

Mesh mesh; // Create a mesh

// Read mesh from file

file >> mesh;

// Mark cells for refinement

for (CellIterator cell(mesh); !cell.end(); ++cell)

if ( ... )

cell->mark();

// Refine mesh

mesh.refine();

Program A.5: Code for adaptive mesh refinement in DOLFIN.

A.6. Graphical visualization. DOLFIN contains no built-in visualization and relies on
interaction with external tools for visualization, such as the open-source program OpenDX.
Post-processing (as well as pre-processing) is thus accomplished by implementation of the
file formats needed for exchange of data. Using a modular approach, DOLFIN has been
designed to allow easy extension by addition of new file formats.

A.7. Easy integration of new modules. A system for easy integration of new solvers/modules
for specific problems has been implemented in DOLFIN. The hope is that people contin-
uously will contribute by implementing their solvers as a module which will add to the
functionality of DOLFIN.
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PDE solvers in two and three dimensions for general convection–diffusion–reaction prob-
lems are implemented. A solver for the incompressible Navier–Stokes equations, which is
able to handle free and moving boundaries, including LES and various subgrid models, is
currently being implemented.

A.8. Multi-adaptive ODE-solver. A general multi-adaptive ODE-solver, including au-
tomatic generation and solution of dual problems, automatic error estimation, and adap-
tivity, is currently being implemented in DOLFIN, as the a result of a merge with the
existing project Tanganyika [4].

A.9. Other features. Other important features implemented in DOLFIN include:

• multigrid (in preparation),
• log system.
• parameter management,

A multigrid solver is currently being implemented in cooperation with graduate students
at the Department of Computational Mathematics at Chalmers.

A uniform log system for event notification, including diagnostic messages, warnings and
progress status, is used throughout the code. This gives flexibility as to the way in which
information is formatted and displayed. The current log system includes both a simple
terminal-based and curses-based (graphical) format.

Parameter management, such as specification of tolerances and coefficients, is handled by
a central database of parameters, which can be dynamically added, changed and retrieved.



20 T. DUPONT, J. HOFFMAN, C. JOHNSON, R. KIRBY, M. LARSON, A. LOGG, AND R. SCOTT

Appendix B. Analysa

B.1. Background. Analysa [2] was based on a finite element library called fec [9].
Analysa uses a particular embodiment of Scheme called alscheme. This augments Scheme
by adding an object system called tinyClos, and this allows one to program in a way
similar to what is often done in C++. In addition, alscheme implements constraints, and
it incorporates the library slib which provides many convenient features. Consult the
alscheme manual for details.

B.2. Form notation. Variational forms are defined in a list following the key word
integral-forms. The first example in Program B.1 is the “mass” inner product form,
followed by the standard “stiffness” form k for Laplace’s equation, etc.

(parameters

(alpha 1.0)

(nu 1.0)

(rho 10000.0)

)

(integral-forms

((m u v) (* u v))

((k u v) (dot (gradient u) (gradient v)))

((d u v) (* (divergence u) (divergence v)))

((p u v) (+ (* alpha (m u v))

(* nu (k u v))

(* rho (d u v))))

)

Program B.1: Examples of four variational forms and some associated parameters in
Analysa.

The variational form itself is the integral of the specified formula over the domain of u,
which is assumed implicitly to be the same as the domain of v. The key-word operators
gradient, divergence, dot and so forth correspond to multi-variate calculus concepts.
The parameters alpha, nu, etc., would have been defined in a prior statement as shown in
Program B.1.

B.3. Piecewise-polynomial interpolants. In Analysa, finite-dimensional spaces of func-
tions are used to approximate functions defined by differential equations or other implicit
definitions. In many cases, the function approximations can be thought of as “interpolat-
ing” the function being approximated.

Finite elements have both a local version (the element) and a global incarnation which
involves piecing together copies of the local element on a mesh. The local part is defined in
Analysa by a keyword. Analysa does not provide a mechanism for specifying new elements.
However, it does allow for a parameterized element type. At the moment, the only element
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type supported is the Lagrange element in two and three dimensions. The degree of the
polynomials can be arbitrary, though. An example of the notation is

(elements

(elagrans (lagrange-simplex 7))

)

which constructs an element of degree seven. The dimension of the underlying space is
implicitly determined from the mesh when the element is used.

B.4. Finite element space. The element and mesh are put together via the built-in
operator fe in Analysa which creates the function space. Again, there is a define operator
spaces followed by a list of pairs (a b) where a is the name of the space and b describes
how it is constructed. The specific notation is

(spaces

(globulspas (fe elagrans (all RT-mesh) r^2:))

(boundryspas (fe elagrans (boundary RT-mesh) r^2:))

(interior-spase (fe elagrans ((- all boundary) RT-mesh) r^2:))

)

This links the “reference element” elagrans with the mesh RT-mesh being used to create
the space of piecewise-polynomial Lagrange interpolants with respect to the mesh RT-mesh.
We see that this will be a space of functions defined on two-dimensional space (because
the mesh comes from such a domain) with vector values (indicated by the notation rˆ2:).
Similarly,

(global-spice (fe elagrans (all RT-mesh) r:))

defines a space of functions defined on the same domain in two-dimensional space with
scalar values.

The basic space constructor fe is a function of three variables: the element, the mesh,
and the value space. Its result is the space of interpolants based on that local element,
defined on that mesh, with corresponding values of the type specified.

These spaces of functions are defined on the different meshes. There are built-in op-
erators on meshes which allow one to work with functions defined on sub-meshes. For
example, (all RT-mesh) means that values at all mesh points should be used, whereas
(boundary RT-mesh) indicates that only boundary points should be used. The calculus

(- all boundary)

specifies the interior mesh points by taking the (set-theoretic) difference of all and boundary.
The approach of linking a local definition of the interpolation process with a global

subdivision (collection of pieces which can be mapped to the local domain) comes from the
standard implementation technique for the finite element method [8].

Suppose rhsf is a function given by a product of “sine” functions. Then the interpolant
of a this function is defined by the code in Program B.2.
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(functions

(rhsf (interpolant globulspas (lambda (v)

(let ((x (_ v 0)) (y (_ v 1)))

(* (sin x) (sin y))

))))

)

Program B.2: Code to define a scalar-valued interpolant in Analysa.

B.5. Projections. It is necessary to work with spaces defined on different domains in
a boundary value problem. The basic equations for the Dirichlet problem involve deter-
mination of values of an interpolant in the interior, but if data is non-homogeneous, a
specification of it on the boundary will be needed.

Suppose that we define a global space a using the all constructor for space, a boundary
space b using the boundary constructor, and c for the interior space using the (- all

boundary) constructor. Similarly let us suppose we have interpolants u in a, v in b, and w

in c. Then we clearly must do something to combine u, v and w since they are not in the
same spaces. But they are in related spaces. Thus, it makes sense say to add a projection
of one to another, e.g.,

(+ w (projection u c))

which defines a new function in c. This makes good sense since the space c is contained
in the space a. But it is also possible to extend something from b to a just by setting the
values in the interior to zero. Thus

(+ u (projection v a))

is defined in Analysa as well. The extension

(projection w a)

is also done by setting values on the boundary to zero. Note that

(projection (projection v a) c)

would always be zero, since we extend by zero and then restrict to the interior.

B.6. Form actions. In many cases, you do not want to evaluate the matrix (or tensor)
associated with a form at all. The action of a form may be all that is required. Let us
begin by defining this for a bilinear form a(·, ·).

Suppose that we have a space S with basis {ϕi : i = 1, . . . , N}, and define the corre-
sponding matrix K whose entries are a(ϕi, ϕj). Then we can express matrix multiplication
of the form V = KU in terms of what it does to elements of the space S as follows. Let u

correspond to U (u :=
∑

i Uiϕi) and let v correspond to V (v :=
∑

i Viϕi). The components
of V are of course defined by

(B.1) Vi =
∑

j

a(ϕi, ϕj)Uj = a(ϕi, u)
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for all j = 1, . . . , N . Thus, we suggest the notation

(B.2) v = a(S, u)

to express the same meaning. Correspondingly, Analysa implements

(B.3) K = a(S, S)

to define the matrix K. Thus, we have a hierarchy of tensors that can be defined from
a form: a(u, v) is a number, a(u, S) is a vector, and a(S, S) is a matrix. This is just
notation, but it is quite suggestive and unambiguous. Note that a(u, S) may be different
from a(S, u). Also, forms may be defined on Cartesian products of different spaces, not
just copies of the same space. Thus, you might have a matrix given by a(S1, S2) for two
different spaces S1 and S2.

To illustrate the use of the form action, let us suppose that we have an additional form
m(u, v) and that we wish to solve an equation of the form

(B.4) KU = MF

where f =
∑

i Fiϕi. We can do this in two ways. We can define an interpolant φ =
m(f, S) and then provide this to the appropriate solution routine. Or we could define
M = m(S, S) and compute the matrix-vector product MF explicitly. In the former case,
it is not necessary to compute the matrix M at all.

The notation for general multi-linear forms is the same. Thus c(u, u, S) is a vector. Its
definition and evaluation do not require that a high-order tensor be evaluated and stored.
In solving non-linear problems, there is never the need to have the full tensor evaluated.
Only the actions on specific interpolants are required. However, in certain cases a matrix
such as c(S, u, S) might be of interest.

B.7. Solvers. Analysa provides several built-in solvers for linear problems, but it also
allows general solvers to be described using Scheme. Suppose that we have defined a form
pf, a space int-spas and a member rhs of that space. Then

(define p-matrx (pf int-spas int-spas))

(lu-factor! p-matrx)

(set-values! u (lu-solve p-matrx rhs))

forms the matrix p-matrix corresponding to the form pf, factors it, and solves using these
factors (via sparse Gaussian elimination using minimum degree ordering). The result has
been updated in u.

A solver for the Stokes equations is presented in Program B.3. It involves an iteration in
which repeated lu-solves are done on a fixed matrix p-matrix (which gets factored only
once). However, the equation being solved is not just the one associated with p-matrix.
The solution involves satisfying the divergence constraint. This gets imposed by the form
divform. Note that at each iteration, the action of divform is computed on u to yield du.
For details, see [8]. The “format” statements come from slib and provide C-like printing
functionality.
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(solvers

(penalty

(set-values! u (projection bc global-space))

(set-values! w (projection bc global-space))

(set-values! dw (projection bc global-space))

(define k 0)

(define unorm (norm2 u))

(define dunorm unorm)

(define p-matrix (p interior-space interior-space))

(set-values! rhs (- (projection (m global-space f) interior-space)

(projection (p global-space (projection bc global-space))

interior-space)))

(lu-factor! p-matrix)

(format #t "# of elements in factored p-matrix: ~a~%"

(+ (math.no-of-original-elements p-matrix)

(math.no-of-fillin-elements p-matrix)))

(while (and (< k max-iters)

(> dunorm (* tolerance unorm)))

(set-values! u (+ (projection

(lu-solve p-matrix (+ rhs (projection dw interior-space)))

global-space)

(projection bc global-space)))

(set! unorm (norm2 (projection u interior-space)))

(set-values! du (divform u global-space))

(set! dunorm (norm2 (projection du interior-space)))

(set-values! w (- w (* rho u)))

(set-values! dw (- dw (* rho du)))

(set! k (+ k 1))

(format #t " penalty solver: iteration ~a, divergence ~a~%"

k (/ dunorm unorm))

)

)

)

Program B.3: A solver for the Stokes equations in Analysa.

B.8. Graphical visualization. Analysa provides a window-based display for visualizing
the results. The things you can see are controlled by a displays list of the form

(displays

(mesh gm)

(all g u)

)

The command

(refresh all)

causes a display to be updated on the screen.
Analysa chooses particular display types automatically depending on the value space

for a given interpolant. Thus a vector-valued interpolant is displayed using a vector plot.
A scalar-valued function is done differently. Three-dimensional graphics is of course quite
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complex. Analysa implements some slicing capability for enhanced visualization in three
dimensions.

B.9. Numerical quadrature and variable coefficients. Analysa utilizes a type of
Gaussian quadrature that is exact for polynomials on triangles and tetrahedra. When
there are coefficients to be included in a form, there is the need to integrate non-polynomial
functions. There are different philosophies on how to handle this. Analysa takes the point
of view that all approximations should be done in explicit spaces. So a variable coefficient
would first be interpolated into a space (but perhaps a higher-order space). Then the
variable coefficient form is represented simply as a multi-linear form with the coefficient
being replaced by its interpolant.
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