
FINITE ELEMENT CENTER

PREPRINT 2003–22

Adaptive finite element methods for LES: Com-
putation of the mean drag coefficient in a turbu-
lent flow around a surface mounted cube using
adaptive mesh refinement

Johan Hoffman

Chalmers Finite Element Center
CHALMERS UNIVERSITY OF TECHNOLOGY
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ADAPTIVE FEM FOR LES

JOHAN HOFFMAN

Abstract. We consider the computation of the mean drag coefficient in a turbulent
flow around a surface mounted cube using an adaptive finite element method, based on
a posteriori error estimates, for a LES formulation of the problem. The a posteriori
error estimates are based on the solution of an associated linearized dual problem that we
approximate numerically. We prove a posteriori error estimates, and we present numerical
examples using adaptive mesh refinement based on these a posteriori error estimates.

1. Introduction

In this paper we compute the mean drag coefficient in a Large Eddy Simulation LES of
a turbulent flow around a surface mounted cube, using an adaptive finite element method
based on a posteriori error estimates in terms of the solution of an associated linearized
dual problem.

The idea of using duality arguments in a posteriori error estimation goes back to Babuška
and Miller [2] in the context of postprocessing ’quantities of physial interest’ in elliptic
model problems. A framework for more general situations has since then been systemati-
cally developed by Eriksson & Johnson and Becker & Rannacher, with coworkers, see e.g.
[10, 8, 3, 4, 26, 27]. For a more detailed account of the development of this framework,
including references, we refer in particular to the review papers [8, 4]. For incompressible
flow, applications of adaptive finite element methods based on this framework have been
increasingly advanced with computation of functionals such as the drag force for 2d sta-
tionary benchmark problems in [3, 14], and drag and lift forces and pressure differences
for 3d stationary benchmark problems in [19]. In [21], time dependent problems in 3d are
considered, and the extension of this framework to LES is investigated in [18].

In LES, we apply a spatial averaging operator (filter) to the Navier-Stokes equations
to obtain a new set of equations for the averaged (filtered) variables. Such an averaging
process involves several mathematical issues that has to be addressed; such as a possible
commutation error if the filter does not commute with differentiation, finding the correct
boundary conditions for the filtered variables, and the problem of closure due to filtering
of the non linear term in the Navier-Stokes equations. There is an extensive amount of
work on LES, in particular regarding the closure problem and the construction of subgrid
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2 JOHAN HOFFMAN

models, and we refer to [13, 34] and the references therin for details. The commutation
error is investigated in [7, 35], for example, and for work on boundary conditions (or near
wall models) for LES we refer to [24, 32] and the references therin.

In [18], a posteriori error estimates in various norms and linear functionals of the filtered
velocity field in a LES are presented. These estimates take into consideration both the
numerical error from discretization of the filtered Navier-Stokes equations and the mod-
eling error from unresolved subgrid scales, and are based on the solution of an associated
linearized dual problem that contains information about error propagation in space-time.
If we use a subgrid model in the computation, the subgrid modeling error is included in
the a posteriori error estimates, which opens the possibility of comparing the error using
different subgrid models. Altogether, the a posteriori error estimates open the possibility
of adaptively choosing both an optimal mesh and an optimal subgrid model.

This approach to a posteriori error estimation with respect to the averaged solution, using
duality teqniques, in terms of a modeling error and a discretization error was developed
for convection-diffusion-reaction equations in [15, 22, 20, 16, 17]. Related approaches with
a posteriori error estimates in terms of a modeling and a discretization contribution to
the total error have been suggested. For example, more recently in [6] similar ideas are
presented with applications to 2d convection-diffusion-reaction problems.

In this paper we consider the computation of the mean drag coefficient in a LES of
a turbulent flow around a surface mounted cube, investigated experimentally in [30, 31]
and computationally in e.g. [28], using an adaptive finite element method based on the
teqniques developed in [18]. To the best knowledge of the author, this paper represents
the first application of adaptive finite element methods, based on the solution of a dual
problem, to the turbulent Navier-Stokes equations in 3d.

An outline of this paper is as follows: In Section 2 we present the Navier-Stokes equations
as a model for viscous incompressible flow, and we state the discretization of the corre-
sponding LES equations using the cG(1)cG(1) method. In Section 3 we prove a posteriori
error estimates for the mean drag coefficient using the cG(1)cG(1) method, and we present
a corresponding algorithm for adaptive mesh refinement, and in Section 4 we compute the
mean drag coefficient using the teqniques developed in Section 3. We conclude with a
summary and some remarks on future directions.

2. Turbulent flow and LES

The incompressible Navier-Stokes equations expressing conservation of momentum and
incompressibility of a unit density constant temperature Newtonian fluid with constant
kinematic viscosity ν > 0 enclosed in a volume Ω in R

3 with homogeneous Dirichlet
boundary conditions, take the form: Find (u, p) such that

(2.1)

u̇+ (u · ∇)u− ν∆u + ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,

u = 0 on ∂Ω × I,
u(·, 0) = u0 in Ω,
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where u(x, t) = (ui(x, t)) is the velocity vector and p(x, t) the pressure of the fluid at (x, t),
and f , u0, I = (0, T ), is a given driving force, initial data and time interval, respectively.
The quantity ν∆u−∇p represents the total fluid force, and may alternatively be expressed
as

(2.2) ν∆u−∇p = div σ(u, p),

where σ(u, p) = (σij(u, p)) is the stress tensor, with components σij(u, p) = 2νεij(u)− pδij,
composed of the stress deviatoric 2νεij(u) with zero trace and an isotropic pressure: here
εij(u) = (ui,j+uj,i)/2 is the strain tensor, with ui,j = ∂ui/∂xj , and δij is the usual Kronecker
delta, the indices i and j ranging from 1 to 3. We assume that (2.1) is normalized so that
the reference velocity and typical length scale are both equal to one. The Reynolds number
Re is then equal to ν−1.

2.1. The averaged Navier-Stokes equations. In a turbulent flow we are typically not
able to resolve all scales of motion computationally. We may instead aim at computing a
running average uh of u on a scale h, defined by

(2.3) uh(x, t) =
1

h3

∫
Qh

u(x+ y, t) dy,

where h = h(x, t) is a parameter related to the local resolution of the problem and Qh =
{y ∈ R

3 : |yi| ≤ h/2}. In the LES literature it is common to define the averaging operator
through convolution by a certain filter function, and there is a multitude of filter functions
being used. Though we only consider the case of the filter corresponding to (2.3) in this
paper, the teqniques for a posteriori error estimation are general and apply to other filters,
possibly with modifications for commutation errors associated with such filters.

By an extension of (u, p, u0, f) to R
3 by reflection for all x /∈ Ω, the averaging operator

(2.3) commutes with space and time differentiation. If we take the running average of the
equations (2.1), corresponding to a LES, we obtain the following equations for uh:

(2.4)

u̇h + (uh · ∇)uh − ν∆uh + ∇ph + Fh(u) = fh in Ω × I,
∇ · uh = 0 in Ω × I,

uh = 0 on ∂Ω × I,
uh(·, 0) = u0 in Ω,

where we choose homogeneous Dirichlet boundary conditions for uh, and Fh(u) = ∇·τh(u),
where τhij(u) = (uiuj)

h−uhi u
h
j is the Reynolds stress tensor. The closure problem of LES is

how to model Fh(u) in terms of uh in a subgrid model F̂h(u
h), or τh(u) in a model τ̂h(uh).

In this paper we focus on the computation of chosen output functionals for the problem
(2.4) using adaptive finite element methods, and we refer to [13, 34] and the references
therin for work on subgrid modeling for LES.

A weak formulation of (2.4) reads: find (uh, ph) ∈ L2(I; [H
1
0(Ω)]3 × L2(Ω)), with u̇h ∈

L2(I; [L2(Ω)]3) and uh(·, 0) = uh0 , such that

(u̇h + uh · ∇uh, v) + (2νε(uh), ε(v)) − (ph,∇ · v)
−(τh(u),∇v) + (∇ · uh, q) = (fh, v),(2.5)
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for all (v, q) ∈ L2(I; [H
1
0 (Ω)]3 × L2(Ω)), where we assume that fh ∈ L2(I; [L2(Ω)]3).

Here L2(Ω) is the Hilbert space of Lebesgue square integrable functions on Ω, with
scalar product (·, ·) and norm ‖ · ‖, and Hs(Ω) is the standard Hilbert space of functions
in L2(Ω) with also partial derivatives of order ≤ s in L2(Ω). Hs

w(Ω) denotes the functions
v ∈ Hs(Ω) that satisfies the Dirichlet boundary condition v|∂Ω = w (in the sense of traces),
and in particular Hs

0(Ω) denotes the functions in Hs(Ω) that vanish on ∂Ω. We let C(I;X)
denote the space of all continuous functions v : I → X with maxt∈I ‖v(t)‖X < ∞, where
X denotes a Banach space with norm ‖ · ‖X . For further details on the function spaces
above we refer to [1, 11].

Assuming we have also Neumann boundary conditions, we denote ΓD the part of the
boundary ∂Ω where Dirichlet boundary conditions are specified, and ΓN = ∂Ω \ ΓD the
part with Neumann boundary conditions. Now Hs

w(Ω) and Hs
0(Ω) denote the spaces of

functions in Hs(Ω) that satisfies the Dirichlet boundary conditions on ΓD.
The viscous term (2νε(uh), ε(v)) in the weak formulation (2.5) may alternatively be

expressed as (ν∇uh,∇v), where we have used that (ε(uh),∇v) = (ε(uh), ε(v)) by the sym-
metry of the strain tensor. In the case of pure Dirichlet boundary conditions the two forms
are equivalent, but in the case of Neumann boundary conditions on part of the boundary
the difference is a boundary integral over ΓN of the normal derivative of u multiplied by ν
and the test function v.

2.2. Discretization: the cG(1)cG(1) method. The cG(1)cG(1) method is a variant
of the G2 method [25, 21, 18] using the continuous Galerkin method cG(1) in time instead
of a discontinuous Galerkin method. With cG(1) in time the trial functions are continuous
piecewise linear and the test functions piecewise constant. cG(1) in space corresponds to
both test functions and trial functions being continuous piecewise linear. Let 0 = t0 <
t1 < ... < tN = T be a sequence of discrete time steps with associated time intervals
In = (tn−1, tn] of length kn = tn − tn−1 and space-time slabs Sn = Ω × In, and let W n ⊂
H1(Ω) be a finite element space consisting of continuous piecewise linear functions on a
mesh Tn = {K} of mesh size hn(x) with W n

w the functions v ∈ W n satisfying the Dirichlet
boundary condition v|ΓD

= w.
We now seek functions (Uh, Ph), continuous piecewise linear in space and time, and

the cG(1)cG(1) method for the averaged Navier-Stokes equations (2.4), with homoge-
neous Dirichlet boundary conditions and subgrid model τ̂ h, reads: For n = 1, ..., N , find
(Un

h , P
n
h ) ≡ (Uh(tn), Ph(tn)) with Un

h ∈ V n
0 ≡ [W n

0 ]3 and P n
h ∈ W n, such that

((Un
h − Un−1

h )k−1
n + Ûn

h · ∇Ûn
h , v) + (2νε(Ûn

h ), ε(v))

− (P n
h ,∇ · v) − (τ̂hn (Ûn

h ),∇v) + (∇ · Ûn
h , q)

+ δ1(Û
n
h · ∇Ûn

h + ∇P n
h , Û

n
h · ∇v + ∇q) + δ2(∇ · Ûn

h ,∇ · v)
= (fh, v + δ1(Û

n
h · ∇v + ∇q)) ∀(v, q) ∈ V n

0 ×W n,

(2.6)

where Ûn
h = 1

2
(Un

h + Un−1

h ), δ1 = 1

2
(k−2
n + |U |2h−2

n )−1/2 in the convection-dominated case

ν < Ûn
hhn and δ1 = κ1h

2 otherwise, δ2 = κ2h if ν < Ûn
h hn and δ2 = κ2h

2 otherwise, with



ADAPTIVE FEM FOR LES 5

κ1 and κ2 positive constants of unit size, and

(v, w) =
∑
K∈Tn

∫
K

v · w dx,

(ε(v), ε(w)) =
3∑

i,j=1

(εij(v), εij(w)),

(τ̂h(v),∇w) =

3∑
i,j=1

(τ̂hij(v), ∂wi/∂xj),

where we assume that the subgrid model τ̂ h is sufficiently regular for the above integrals
to make sense.

Again we note that the viscous term (2νε(Uh), ε(v)) may alternatively occur in the form
(ν∇Uh,∇v) =

∑
3

i=1
(ν∇(Uh)i,∇vi). In the case of Dirichlet boundary conditions the

corresponding variational formulations are equivalent, but not so in the case of Neumann
boundary conditions.

If we have a Neumann boundary conditions σ · n = g on ΓN ⊂ ∂Ω, then the right
hand side of (2.6) is supplemented with an integral of g · v over ΓN . This implements the
Neumann boundary condition in weak form through the presence of a term (−Ph,∇ · v) +
(2νε(Uh), ε(v)) = (σ, ε(v)) on the left hand side, which when integrated by parts generates
an integral of (σ · n) · v over ΓN . If the viscous term appears in the form (ν∇Uh,∇v),
the corresponding Neumann boundary condition has the form ν∇Uh · n− Phn = g, where
∇Uh · n is the derivative in the unit outward normal direction n. To simulate an outflow
boundary condition we may use a Neumann boundary condition with g = 0 corresponding
to a zero force at outflow, simulating outflow into a large empty reservoir. The alternative
condition ν∇Uh ·n−Phn = 0 acts slightly differently as an approximation of a transparent
outflow boundary condition, see [33].

2.3. Computation of the mean drag force. We want to compute an approximation of
the quantity

(2.7) N(σ(uh, ph)) =
1

|I|

∫
I

∫
Γ0

3∑
i,j=1

σij(u
h, ph)njφi ds dt,

where (uh, ph) solves (2.4), φ is the trace on Γ0 of a function in H1(Ω), and Γ0 ⊂ ΓD is a
closed surface representing the boundary of a body immersed in the flow. If φ is a unit
vector in the direction of the mean flow, (2.7) represents the mean of the drag force due to
(uh, ph) on Γ0 over a time interval I, and if φ is a unit vector in a direction perpendicular
to the mean flow, (2.7) is the temporal mean of the lift force on Γ0 due to (uh, ph) in
that direction. With the idea of increasing the precision, see [14], we may use (2.4) and
integration by parts to rewrite the surface integral in (2.7) as a volume integral, leading to
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the following expression for (2.7):

N(σ(uh, ph)) =
1

|I|

∫
I

(u̇h + uh · ∇uh − fh, ϕ) − (ph,∇ · ϕ)

+(2νε(uh), ε(ϕ)) − (τh(u),∇ϕ) + (∇ · uh, θ) dt,(2.8)

for any ϕ ∈ L2(I; [H
1
φ,0(Ω)]3), where H1

φ,0(Ω) = {v ∈ H1(Ω) : v|Γ0
= φ, v|Γ1

= 0}, Γ1 =
ΓD \ Γ0, and θ ∈ L2(I;L2(Ω)). We note that due to (2.4), this representation does neither
depend on the choice of θ, nor the particular extension ϕ of φ being used. We are thus led
to approximate N(σ(uh, ph)) by the quantity

Nh(σ(Uh, Ph)) =
1

|I|

∫
I

(U̇h + Uh · ∇Uh − fh,Φ) − (Ph,∇ · Φ)

+(2νε(Uh), ε(Φ)) − (τ̂h(Uh),∇Φ) + (∇ · Uh,Θ) dt,(2.9)

where (Uh, Ph) ∈ L2(I;V
n
0 ×W n) and (Φ,Θ) ∈ L2(I;V

n
φ,0 ×W n), with V n

φ,0 = {v ∈ [W n]3 :
v|Γ0

= φ, v|Γ1
= 0}.

Remark 1. Ultimately, we are of course interested in N(σ(u, p)) rather than N(σ(uh, ph)).
The error |N(σ(u, p)) −N(σ(uh, ph))| is typically of the order O(h), and in this paper we
assume this error to be small compared to the error |N(σ(uh, ph)) − Nh(σ(Uh, Ph))|. For
example, if we want to compute the mean drag force, so that φ = (1, 0, 0) in (2.7) with the
positive x1-direction being the mean flow direction, in the case of a rectangular box with
upstream and downstream boundaries Γu and Γd respectively, corresponding unit outward
normals nu = (−1, 0, 0) and nd = (1, 0, 0), and n = (n1, n2, n3) the unit outward normal of
the whole box, we have

|N(σ(u, p)) −N(σ(uh, ph))| = |N(σ(u− uh, p− ph))|

= | 1

|I|

∫
I

∫
Γ0

(2νε11(u− uh) − (p− ph))n1 ds dt| ≡ |Iu + Ip|,

where

|Ip| = | 1

|I|

∫
I

∫
Γu

p(s) − ph(s) ds−
∫

Γd

p(s) − ph(s) ds dt|

= | 1

|I|

∫
I

∫
Γu

1

h3

∫
Qh

p(s) − p(s+ y) dy ds−
∫

Γd

1

h3

∫
Qh

p(s) − p(s+ y) dy ds dt|

= | 1

|I|

∫
I

∫
Γu

1

h3

∫
Qh

∇p(ξ1) · (−y) dy ds−
∫

Γd

1

h3

∫
Qh

∇p(ξ2) · (−y) dy ds dt|

(with ξ1, ξ2 ∈ s+Qh)

≤ 2
1

|I|

∫
I

∫
Γu∪Γd

max
ξ∈s+Qh

|∇p(ξ)| ds dt 1

h3

∫
Qh

|y| dy

≤ 2
1

|I|

∫
I

∫
Γu∪Γd

max
ξ∈s+Qh

|∇p(ξ)| ds dt
√

3

2
h ≡ Ch,
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and in a similar way we get that |Iu| ≤ νCh, where we have assumed sufficient regularity
of (u, p) in the formal calculations above.

3. Adaptive finite element methods for LES

An adaptive algorithm includes feed-back from computation to achieve the computa-
tional goal with minimal computational cost. In an adaptive finite element method this
feed-back from computation relies on a posteriori error estimates. In Algorithm 2, an
adaptive algorithm for the computation of the mean drag force N(σ(uh, ph)) is presented,
which is based on a posteriori error estimates of the form

(3.1) |N(σ(uh, ph)) −Nh(σ(Uh, Ph))| ≤
∑
K∈T k

n

EkK,

where EkK is an error indicator for element K. We have here chosen the computational
mesh T k

n to be constant in time for each iteration k in the adaptive algorithm, and we have
also chosen the time step length kn to be constant in time, namely

(3.2) kn = min
K∈T k

n

diam(K),

where diam(K) is the diameter of element K. A time dependent mesh could be used based
on Theorem 5, but the possible gain must be compared to the increased computational
cost of administrating a time dependent mesh. In this case, where we have chosen the
mesh to be constant in time, the error indicators EkK contain the total contribution to the
error from element K over the whole time interval I.

Algorithm 2 (Adaptive mesh refinement). Start at k = 0, then do

(1) compute approximation to the primal problem (2.4) on T k
n

(2) compute approximation to the dual problem (3.3) on T k
n

(3) if
∑
K∈Tk

EkK < TOL then STOP, else

(4) refine a fixed fraction of the elements in T k
n with largest EkK → T k+1

n

(5) set k = k + 1, then goto (1)

3.1. A posteriori error estimation. Algorithm 2 is based on a posteriori error estimates
of the form (3.1), which we derive by introducing the following linearized dual problem:

Find (ϕ, θ) ∈ L2(I; [H
2
ψ3

(Ω)]3×H2(Ω)), with (ϕ̇, θ̇) ∈ C(I; [H1(Ω)]3×L2(Ω)) and ϕ(T ) = 0,
such that ∫

I

−(v, ϕ̇) + ((uh · ∇)v + (v · ∇)Uh, ϕ) + (2νε(v), ε(ϕ))(3.3)

−(q,∇ · ϕ) + (∇ · v, θ) dt =

∫
I

(v, ψ1) + (q, ψ2) dt,

for all (v, q) ∈ L2(I; [H
1
0 (Ω)]3 × L2(Ω)) with v(0) = 0, given the data ψ1 ∈ L2(I; [L2(Ω)]3),

ψ2 ∈ L2(I;L2(Ω)), and ψ3 ∈ L2(I; [L2(∂Ω)]3), and where (∇Uh · ϕ)j = (Uh),j · ϕ. We
assume that there exists a unique solution to (3.3), and we note that for (3.3) to make



8 JOHAN HOFFMAN

sense we would only need that (ϕ, θ) ∈ L2(I; [H
1
ψ3

(Ω)]3 × L2(Ω)) and ϕ̇ ∈ L2(I; [L2(Ω)]3).
The extra regularity is used for interpolation error estimates in the proof of Theorem 5.

The data ψi correspond to error estimates of different output functionals. For example,
non zero ψ1 and ψ2 typically corresponds to point values or mean values of the velocity or
the pressure respectively, see e.g. [19] for various examples of data corresponding to error
estimates of different functionals. Here we want to compute the force on a body immersed
in the fluid, and we are thus interested in computing an integral over the surface of this
body. The corresponding data for the dual problem (3.3) is a non zero boundary condition
ψ3 on this surface Γ0 ⊂ ΓD. We introduce the following definitions:

(v, w)K =

∫
K

v · w dx, (v, w)∂K =

∫
∂K

v · w ds,

‖v‖K = (v, v)
1/2
K , ‖v‖∂K = (v, v)

1/2
∂K ,

|v|K = (‖v1‖K, ‖v2‖K , ‖v3‖K), |v|∂K = (‖v1‖∂K, ‖v2‖∂K, ‖v3‖∂K),(3.4)

|v|K,∞ = (max
η∈In

‖v1(η)‖K,max
η∈In

‖v2(η)‖K,max
η∈In

‖v3(η)‖K),

|v|∂K,∞ = (max
η∈In

‖v1(η)‖∂K,max
η∈In

‖v2(η)‖∂K,max
η∈In

‖v3(η)‖∂K),

with the obvious simplifications for scalar functions v and w. To estimate interpolation
errors over the space-time slabs Sn = Ω × In in the proof of Theorem 5, we recall the
following two lemmas from [18]:

Lemma 3. For (v, w) ∈ L2(In; [L2(Ω)]3 ×L2(Ω)), (ϕ, θ) ∈ L2(In; [H
2
0 (Ω)]3 ×H2(Ω)), with

(ϕ̇, θ̇) ∈ C(In; [L2(Ω)]3 × L2(Ω)), and (Φ,Θ) ∈ V n
0 ×W n constant in time, we have

|
∫
In

(v, ϕ− Φ) dt| ≤
∫
In

∑
K∈Tn

|v|K · (Ck
n,Kkn|ϕ̇|K,∞ + Ch

n,Kh
2
n,K|D2ϕ|K) dt,

|
∫
In

(w, θ − Θ) dt| ≤
∫
In

∑
K∈Tn

|w|K(Ck
n,Kkn|θ̇|K,∞ + Ch

n,Kh
2
n,K|D2θ|K) dt,

where hn,K is the diameter of element K ∈ Tn, and D2 measures second order derivatives
with respect to x.

Lemma 4. For w ∈ L2(In; [L2(Ω)]3), ϕ ∈ L2(In; [H
2
0 (Ω)]3), ϕ̇ ∈ C(In; [H

1(Ω)]3), and
Φ ∈ V n

0 constant in time, we have

|
∫
In

∑
K∈Tn

∫
∂K\∂Ω

w · (ϕ− Φ) ds dt|

≤
∫
In

∑
K∈Tn

|w|∂K\∂Ω · (Ck
n,Kkn|ϕ̇|∂K\∂Ω,∞ + Ch

n,Kh
3/2
n,k |D2ϕ|K) dt,

where hn,K is the diameter of element K ∈ Tn, and D2 measures second order derivatives
with respect to x.
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In the rest of this paper we will refer to the discretization error as the error we get when
approximating (2.5) by (2.6) assuming the subgrid model to be exact, and the modeling
error as the error from the approximation τ̂ h(Uh) ≈ τh(u) in (2.6). We note that for the
discretization error we have a Galerkin orthogonality property (see e.g. [8]), which enables
us to sharpen the a posteriori error estimates for this error. This is not the case for the
modeling error, which may result in less sharp estimates for this error.

For simplicity, we present the a posteriori error estimate for the cG(1)cG(1) method with
δ1 = δ2 = 0, which thus introduces an error in the a posteriori error estimates depending
on the stabilization parameters δ1 and δ2. For the case δ1, δ2 6= 0, we would adjust the
dual problem (3.3) to be the transposition of the linearized variational form corresponding
to the stabilized method, which is beyond the scope of this paper. In [23], the choices of
different dual problems for stabilized finite element methods are investigated in the case
of linear problems.

Theorem 5. If uh solves (2.4), (Uh, Ph) solves (2.6) with δ1 = δ2 = 0, and (ϕ, θ) solves
(3.3) with data ψ1 = ψ2 = ψ3|Γ1

= 0 and ψ3|Γ0
= φ, then

|N(σ(uh, ph)) −Nh(σ(Uh, Ph))| ≤
∑
K∈Tn

EK =
∑
K∈Tn

(eKD + eKM) = eD + eM ,

where eD and eM are the discretization and modeling errors respectively, defined by

eKD =
1

|I|

N∑
n=1

∫
In

|R1(Uh, Ph)|K · ω1 + |R2(Uh)|K ω2 +R3(Uh) · ω3 dt,

eKM =
1

|I|

N∑
n=1

∫
In

|R4(u, Uh)|K · ω4 +R5(Uh) · ω5 dt,

with the residuals

R1(Uh, Ph) = U̇h + (Uh · ∇)Uh + ∇Ph − ν∆Uh + ∇ · τ̂h(Uh) − fh,

R2(Uh) = ∇ · Uh,

R3(Uh) =
1

2
max
S⊂∂K

(|[(ν∇Uh − τ̂h(Uh))1 · nS]|, ..., |[(ν∇Uh − τ̂h(Uh))3 · nS]|),

R4(u, Uh) = ∇ · (τh(u) − τ̂h(Uh)),

R5(Uh) =
1

2
max
S⊂∂K

(|[(τ̂h(Uh))1 · nS]|, ..., |[(τ̂h(Uh))3 · nS]|),
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where (M)i denotes the i:th row of the matrix M and [·] denotes the jump over interior
element boundaries ∂K \ ∂Ω, and the dual weights

ω1 = Ck
n,Kkn|ϕ̇|K,∞ + Ch

n,Kh
2
n,K|D2ϕ|K,

ω2 = Ck
n,Kkn|θ̇|K,∞ + Ch

n,Kh
2
n,K|D2θ|K,

ω3 = Ck
n,Kkn|ϕ̇|∂K\∂Ω,∞ + Ch

n,Kh
3/2
n,k |D2ϕ|K,

ω4 = |ϕ|K,
ω5 = |ϕ|∂K\∂Ω,∞,

where hn,K is the diameter of element K ∈ Tn, D2 measures second order derivatives with
respect to x, and Ch

n,K, C
k
n,K represent interpolation constants.

Proof. To derive a posteriori error estimates for N(σ(uh, ph)), the natural quantity to
consider is the difference between (2.8) and (2.9), see [14, 19]. If we set (ϕ, θ) = (Φ,Θ) ∈
L2(I;V

n
φ,0 ×W n) in (2.8) and then subtract (2.9), we get

N(σ(uh, ph)) −Nh(σ(Uh, Ph))(3.5)

=
1

|I|

∫
I

(u̇h + uh · ∇uh,Φ) − (ph,∇ · Φ) + (2νε(uh), ε(Φ)) − (τh(u),∇Φ) + (∇ · uh,Θ)

−((U̇h + Uh · ∇Uh,Φ) − (Ph,∇ · Φ) + (2νε(Uh), ε(Φ)) − (τ̂h(Uh,∇Φ) + (∇ · Uh,Θ)) dt.

The dual problem (3.3) with data

(3.6) ψ1 = ψ2 = ψ3|Γ1
= 0, ψ3|Γ0

= φ,

and φ from (2.7), gives that

1

|I|

∫
I

(u̇h + uh · ∇uh, ϕ) − (ph,∇ · ϕ) + (2νε(uh), ε(ϕ)) − (τh(u),∇ϕ) + (∇ · uh, θ)

−((U̇h + Uh · ∇Uh, ϕ) − (Ph,∇ · ϕ) + (2νε(Uh), ε(ϕ)) − (τ̂h(Uh),∇ϕ) + (∇ · Uh, θ) dt

=
1

|I|

∫
I

−(ϕ̇, e) + (uh · ∇e+ e · ∇Uh, ϕ) − (ph − Ph,∇ · ϕ) + (2νε(e), ε(ϕ))

+(∇ · e, θ) + (τ̂h(Uh) − τh(u),∇ϕ) dt =
1

|I|

∫
I

(τ̂h(Uh) − τh(u),∇ϕ) dt,(3.7)

using partial integration with ϕ(T ) = e(0) = 0, where e = uh − Uh, and that (uh · ∇)uh −
(Uh · ∇)Uh = (uh · ∇)e + (e · ∇)Uh. By (2.5), (3.5), and (3.7), we then have that

N(σ(uh, ph)) −Nh(σ(Uh, Ph))

=
1

|I|

∫
I

((U̇h + Uh · ∇)Uh − fh, ϕ− Φ) − (Ph,∇ · (ϕ− Φ)) + (∇ · Uh, θ − Θ)

+(2νε(Uh) − τ̂h(Uh),∇(ϕ− Φ)) + (τ̂h(Uh) − τh(u),∇ϕ) dt.(3.8)

From this error representation formula there are various possibilities to estimate the inte-
grals in (3.8).
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Integration by parts in the viscous term results in non zero boundary integrals over
interior element boundaries ∂K \ ∂Ω, for each t, since ∇U is piecewise constant in x over
the elements and thus discontinuous over interior element boundaries, and we have the
same problem for the subgrid model τ̂h(Uh). This is not the case for the pressure term
since the pressure is continuous in x over element boundaries, and so is ϕ− Φ and τ h(u).

To estimate these element boundary integrals we use a standard finite element teqnique,
see e.g. [9], where we first rewrite the sum of interior element boundary integrals as a sum
of jumps in normal derivative of the form [ν∇Uh ·nS] over all interior faces S in Tn, with nS
being a globally defined unit normal vector associated with the face S. We then attribute
half of the jump to each of the two elements sharing the face and rewrite the sum again
over the elements K ∈ Tn, to get

|N(σ(uh, ph)) −Nh(σ(Uh, Ph))|

≤ 1

|I|

N∑
n=1

∫
I

{ |(U̇h + (Uh · ∇)Uh + ∇Ph − ν∆Uh + ∇ · τ̂h(Uh) − fh, ϕ− Φ)|

+ |(∇ · Uh, θ − Θ)| + |
∑
K∈Tn

∫
∂K\∂Ω

1

2
[(ν∇Uh − τ̂h(Uh)) · nS] · (ϕ− Φ) ds|

+ |(∇ · (τh(u) − τ̂h(Uh)), ϕ)| + |
∑
K∈Tn

∫
∂K\∂Ω

1

2
[τ̂h(Uh) · nS] · ϕ ds| } dt.

We finally use Cauchy-Schwarz inequality for each element, and then Lemma 3 and Lemma 4
to estimate the interpolation errors.

�

Remark 6. The modification of Theorem 5 for the case of inhomogeneous Dirichlet bound-
ary conditions on part of the boundary, such as a given inflow velocity, is straight forward
by incorporating this boundary condition in the corresponding trial spaces.

3.2. Remarks on the linearization error in the dual problem. The a posteriori
error estimate in Theorem 5 is designed to be useful in an adaptive algorithm as a stopping
criterion, a refinement criterion for the space and time discretization, and an error indicator
for the subgrid model. To evaluate the error bounds in Theorem 5 we approximate the
dual weights ωi numerically, by computing approximate solutions to the dual problem
(3.3). In this paper we solve the dual problem using the cG(1)cG(1) method on the
same computational mesh as we use for the primal problem, which is neither necessary
nor optimal but is chosen here for reasons of simplicity. In the computation of the dual
problem we do not have access to uh, the solution of (2.4). Instead we approximate uh

by Uh, a finite element approximation of uh, which thus introduces a linearization error
uh − Uh in the dual problem.

Here we make the assumption that Uh converges to uh pointwise and that thus the
linearization error converges pointwise to zero. Such an assumption gives some justification
for using Theorem 5, although there may still be problems when the computational mesh
is not fine enough, and/or the subgrid model is not accurate enough. Practical experience
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from using this type of a posteriori error estimates for adaptive mesh refinement for various
problems has been positive, with effective mesh refinement criterions and sharp a posteriori
error estimates, see e.g. [19, 4] for examples of incompressible flow.

Alternative forms of the linearized dual problem (3.3) are possible. For example, one may
linearize the dual problem at u, the exact solution of (2.1). Although, this is not practical
for numerical approximation of the dual problem since the corresponding linearization error
u−Uh can never be pointwise small in a LES. Typically the error u−Uh is large pointwise,
since u contains finer scales than Uh.

4. Numerical results

We now use Algorithm 2 to compute the mean drag coefficient for a surface mounted
cube in a turbulent channel flow. We use the cG(1)cG(1) method for both the primal and
the dual problem, on tetrahedral meshes T k

n . In the definition of the averaging operator
(2.3) corresponding to the LES for the adaptive step k, we let h = h(x) be defined to be
the piecewise constant function that equals the diameters of the tetrahedrons in T k

n .
We use no subgrid model in the computations, but we use the following scale similarity

subgrid model from [29] to estimate the size of the modeling residual R4(u, Uh) = ∇·τh(u):
(4.1) τhij(u) ≈ CLτ

2h
ij (uh) = CL((u

h
i u

h
j )

2h − (uhi )
2h(uhj )

2h),

with CL = 1, and uh approximated by Uh in the computations.

4.1. Flow around a surface mounted cube. We consider the problem of a turbulent
flow around a surface mounted cube, investigated in [30, 31, 28]. In our computational
model we use the Navier-Stokes equations to model the incompressible fluid around a cubic
body of dimension H × H × H that sits on the floor of a rectangular channel of length
15H, height 2H, and width 7H, centered at (3.5H, 0.5H, 3.5H). At the inlet we use a
velocity profile interpolated from experiments, we use no slip boundary conditions on the
body and the vertical boundaries, slip boundary conditions on the lateral boundaries, and
a transparent outflow boundary condition. The viscosity ν is chosen to give a Reynolds
number Re = UbH/ν = 40.000, where we have used Ub = 1.0.

4.2. Adaptive computation of the mean drag coefficient. In Figure 1 we show a
snapshot of the solution and the corresponding computational mesh after 13 adaptive mesh
refinements, using Algorithm 2 to compute an approximation of the mean drag coefficient
c̄D over a time interval I = [T0, T ], with T0 = 10 and T = 20, defined by

(4.2) c̄D =
1

|T − T0|

∫ T

T0

cD(t) dt,

where cD(t) is the drag coefficient at time t, and c̄D = N(σ(uh, ph)) × 2/(H2U2
b ). To

estimate the computational cost of computing an approximation of c̄D we study the solution
of the corresponding dual problem with data according to (3.6), and φ = (2/(H 2U2

b ), 0, 0)
on the surface of the cube. One way to estimate the computational cost is through the
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Figure 1. Primal velocity |u| (upper), primal pressure |p| (middle), and
computational mesh (lower), after 13 adaptive mesh refinements at z = 3.5H
and y = 0.5H.
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Figure 2. Residuals |R1(Uh, Ph)| (upper), |R2(Uh)| (middle), and
|R4(u, Uh)| (lower), after 13 adaptive mesh refinements at z = 3.5H and
y = 0.5H.
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Figure 3. Dual velocity |ϕ| (upper) and dual pressure |θ| (lower), after 13
adaptive mesh refinements at z = 3.5H (upper) and y = 0.5H (lower).

computation of stability factors, see e.g. [19]. For example, in Figure 5 we plot the stability
factor S1,1(T0), defined by

(4.3) S1,1(T0) =
1

|T − T0|

∫ T

T0

∫
Ω

|ϕ(x, t)| dx dt,

where ϕ is the solution of the dual problem (3.3) with data as above. We find that the
computational cost at first increases with the length of the time interval [T0, T ] (T fix, T0

varying), but when the interval exceeds a certain length the computational cost does not
increase significally beyond a certain level. Thus the computational cost of computing c̄D
is relatively constant for time intervals longer than a certain length in this problem.

The error indicator EkK in Algorithm 2, giving the computational mesh in Figure 1,
depends on the product of the residuals and the dual solution. In Figure 2 we show a
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Figure 4. Drag coefficient c̄D as a function of time, after 13 adaptive mesh
refinements (upper), and mean drag coefficient c̄D over the time interval
[10, 20], as a function of the number of degrees of freedom (lower).

snapshot of the residuals after 13 adaptive mesh refinements, and in Figure 3 we show a
snapshot of the corresponding dual solution.

We find that the discretization residuals R1(Uh, Ph), corresponding to the momentum
equation, and R2(Uh), corresponding to the continuity equation, are large at the upstream
corners of the cube and along the high velocity streaks around the cube, and the modeling
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Figure 5. Stability factor S1,1(T0) (upper), and discretization error eD (′o′)
and modeling error eM (′∗′) (lower), after 13 adaptive mesh refinements as
functions of the length of the time interval [T0, T ], with T fix and T0 varying,
assuming Uh(T0) = uh(T0).

residual R4(u, Uh) is large on the top and the bottom of the channel and in the recircu-
lation zone downstream the cube. The dual velocity, indicating domain of influence for
R1(Uh, Ph) and R4(u, Uh), is large upstream the cube, along the boundary of the cube, and
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Figure 6. A posteriori error estimates of the discretization error eD (′o′)
and the modeling error eM (′∗′) for the time interval [10, 20], as functions of
the number of degrees of freedom in a log10-log10 plot.

in the recirculation zone downstream the cube, and the dual pressure, indicating domain
of influence for R2(Uh), is large near the inlet as well as near the upstream corners of the
cube.

In Figure 4 we plot the corresponding drag coefficient as a function of time, and the
mean drag coefficient over the time interval [10, 20] as a function of the number of de-
grees of freedom. We find that even though we do not reach full convergence using the
avaliable number of degrees of freedom, the value for the mean drag coefficient seems to
asymptotically approach a value between 1.45-1.5.

We know of no experimental reference values of c̄D, but in [28] c̄D is approximated
computationally. The computational setup is similar to the one in this paper except the
numerical method, a different length of the time interval, and that we in this paper use
a channel of length 15H, compared to a channel of length 10H in [28]. Using different
meshes and subgrid models, approximations of c̄D in the interval [1.14, 1.24] are presented
in [28].

After 13 adaptive mesh refinements we have ∼ 1.3 · 106 degrees of freedom, using
about 1.5 GB of memory on a regular PC. For H = 0.1, the diameter of the smallest
element in the mesh T 14

n is about 10−3, which corresponds to a local Reynolds number
Reloc ≈ (2H/h)4/3 ≈ 1200 (with channel height 2H), using standard Kolmogorov argu-
ments of turbulent flow [12], or Reloc ≈ h−1 = 1000, assuming the numerical viscosity of
the cG(1)cG(1) method is acting as a term δ1(∇Uh,∇Uh) with δ1 ∼ h. That is, we are lo-
cally able to resolve scales corresponding to a Reynolds number of about 1000, even though
it would be impossible to do globally to a similar computational cost. Since turbulence
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often is a local phenomena, adaptive methods are ideal for computation of turbulence. In
theory, if we refine the same elements in each step of the algorithm we would get a finest
h ≈ H× (1/2)13 ≈ 10−5, corresponding to Reloc ≈ 105. That is, we would be able to locally
resolve flows corresponding to a Reynolds number of 105 in a Direct Numerical Simulation
using an ordinary PC or laptop computer.

4.3. A posteriori error estimates. After 13 adaptive mesh refinements we plot the
a posteriori error estimates of the discretization and the modeling errors in Figure 5 as
functions of the length of the time interval [T0, T ] (T fix, T0 varying), where we have
assumed that the initial solution is exact for each T0, so that Uh(T0) = uh(T0). We note
the similarity to the plot of the stability factor S1,1(T0), and we find that the error estimates
give rather large bounds for the error in the case of longer time averages.

In Figure 6 we plot the discretization and the modeling errors for c̄D over the time
interval [10, 20] as functions of the number of degrees of freedom, where we note an expected
decrease in the estimate of the discretization error as we refine the mesh. We also note
that the estimate of the modeling error on the other hand increases. This might at first
seem alarming, but is in fact to be expected since in this case we have used the simple
model (4.1) to estimate the Reynolds stresses in the modeling residual. Even though the
true Reynolds stresses are smaller for a finer resolution h of the problem, the model (4.1)
will in fact first increase as we resolve more scales of motion since it is solely based on
the resolved velocity fluctuations on the scale 2h, and since we are not using any subgrid
model in the computations the estimate of the modeling residual will also increase. This is
of course a problem, and in a continuation of this study we seek sharper estimates of the
Reynolds stresses based on scale extrapolation.

Remark 7. The use of a stabilized Galerkin finite element method in the computations
may be viewed as a type of subgrid model in itself, since we then in fact solve a modified set
of equations using a standard Galerkin method. We will further investigate this relation
between numerical stabilization and subgrid modeling in a continuation of this work. In
this paper we only consider the stabilization to be part of the numerical method and not an
explicit subgrid model. This means in particular that in fact the modeling residual may be
overestimated since we do not subtract the contribution from this implicit subgrid model.

Remark 8. In each step of Algorithm 2 we mark ∼ 50% of the elements for refinement.
To get a consistent mesh we have to refine additional elements, so the exact fraction of the
elements that are refined each step vary. For more details on mesh refinement algorithms
we refer to [5], and the references therin.

Remark 9. We have assumed R3(U, P ) to be neglible compared to the other residuals in
the computations, due to the multiplication by ν.

Remark 10. In the computations we use a slightly different form of the dual problem (3.3),
obtained by partial integration in the term ((uh · ∇)v, ϕ), giving instead −((uh · ∇)ϕ, v).
For pure Dirichlet boundary conditions the two forms are equivalent, but in the case of
Neumann boundary conditions the difference is a surface integral of (uϕ) · n multiplied by
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v over the Neumann part of the boundary. In the computations we have a Neumann type
outflow boundary condition, but we find that ϕ is close to zero on this outflow boundary,
see Figure 3, and we thus consider our computational approximation of the dual problem
to be justified.

Remark 11. We have used Ck
n,K = 1/2 and Ch

n,K = 1/8 as constant approximations of
the interpolation constants in Theorem 5. These values are motivated by simple analysis
on reference elements.

5. Summary

In this paper we have proved a posteriori error estimates, and used a corresponding
adaptive finite element method to compute approximations of the temporal mean of the
drag coefficient in a turbulent flow around a surface mounted cube. The a posteriori
error estimates, based on the solution of an associated linearized dual problem, are used
to estimate the computational cost associated with the approximation of the mean drag
coefficient and as error indicators for the adaptive mesh refinement algorithm.

We emphasize the local nature of turbulence in this problem that makes adaptive meth-
ods ideal for efficient and accurate computations. Due to the computational goal of ap-
proximating the mean drag coefficient we refine the mesh according to the corresponding
a posteriori error estimate, resolving scales of motion corresponding to local Reynolds
numbers of about 1000, and in theory we would be able to resolve local scales of motion
corresponding to local Reynolds numbers of the order 105 to a similar computational cost.

In continuations of this study we will address methods for sharp estimation of the model-
ing residual, as well as adaptive strategies to combine numerical stabilization with subgrid
modeling for LES.
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