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ADAPTIVE DNS/LES: A NEW AGENDA IN CFD

JOHAN HOFFMAN AND CLAES JOHNSON

Abstract. We show that using adaptive finite element methods it is possible to accu-
rately simulate turbulent flow with the computational power of a PC. We argue that this
possibility should set a new agenda in CFD. The key to this break-through is (i) appli-
cation of the general approach to adaptitive error control in Galerkin methods based on
duality, coupled with (ii) crucial properties of turbulent flow allowing accurate computa-
tion of mean value quantities such as drag and lift without full resolution of all scales.

1. Introduction and Perspectives

Turbulence represents an outstanding open problem of fluid mechanics. The Navier-
Stokes equations formulated in 1822-45 are believed to accurately describe fluid flow over
a very wide range of applications and flow characteristics including both laminar and
turbulent flow. The Reynolds number Re = UL

ν
, where U is a characteristic flow velocity,

L a characteristic length scale, and ν the viscosity of the fluid, is often used to characterize
fluid flow. If Re ∼ 10 or smaller, then the flow is viscous and the flow field is ordered and
smooth or laminar, while if Re ≥ 100, then the flow in general will show features of non-
ordered non-smooth time-dependent or turbulent flow. In many applications of scientific
and industrial importance Re is very large, of the order 106 or larger. A turbulent velocity
field varies on a range of scales in space from a largest length 1 assuming L = 1 to a
smallest scale of size Re3/4. To accurately resolve a turbulent flow at Re = 106 in a Direct
Numerical Simulation DNS would require of the order Re3 = 1018 mesh points in space-
time, and thus would be impossible on any forseeable computer. On the other hand DNS
at Re = 102 on a PC and at Re = 103 on a supercomputer today appears feasible.

To overcome the impossibility of DNS at higher Reynolds numbers various techniques
of turbulence modeling have been attempted, with Large Eddy Simulation LES showing
most promise. In a LES one resolves the coarser flow scales and seeks to model the
influence of unresolved small scales on resolved larger scales in a turbulence model or
subgrid model. Various subgrid models have been proposed, but no clear answer to the
question of the feasibility of LES in simulation of turbulence has been given. It thus seems
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fair to describe the simulation of turbulence at high Reynolds numbers as the main open
problem of Computational Fluid Dynamics CFD today.

The purpose of this note is to present a new approach to this fundamental problem
which is now being opened using adaptive finite element methods. The new approach may
be described as Adaptive DNS/LES and is a direct application of the general approach
to adaptive error control in Galerkin methods for differential equations based on duality
developed over the last 15 years, see [5, 4, 2, 3, 12, 13], and references therein. The basic
technical tool in this approach is a representation of the error in a quantity of interest in
the form of a space-time integral of residuals of computed solutions multiplied by weight
functions coupled to the solution of an associated linearized dual problem. From the error
representation one may derive an a posteriori error estimate for the quantity of interest and
formulate a corresponding adaptive method including both a stopping criterion and a mesh
modification criteria to reach the stopping criterion. This way we are able to guarantee that
a chosen quantity of interest is computed to a certain tolerance at minimal computational
cost, that is, we can make the computation both reliable and efficient. For incompressible
flow, applications of adaptive finite element methods based on this framework have been
increasingly advanced with computation of quantities of interest such as the drag force for
2d stationary benchmark problems in [2, 6], and drag and lift forces and pressure differences
for 3d stationary benchmark problems in [9]. In [10], time dependent problems in 3d are
considered, and the extension of this framework to LES is investigated in [7, 8]. This
extension is crucial and opens for a large wealth of real world applications.

Since the approach to adaptive error control via duality is very general, we may use it
in particular to solve the Navier-Stokes equations at high Reynolds numbers, that is for
computational simulation of turbulent flow. The key question then becomes the computa-
tional cost. The adaptive method will produce a reliable result at a minimal cost, and the
main remaining question is then: What is then the cost? In particular, can we compute
turbulent high Reynolds number flows on a PC?

The goods news is now that the cost seems reasonable, at least if the quantity of interest
is a mean value such as the mean value in time of the drag force of a bluff body. Thus,
to accuratetly compute the drag force of a bluff body at Reynolds number say 106, our
experience with Adaptive DNS/LES indicates that this is possible with less than 109 mesh
points in space-time, instead of the 1018 required in direct DNS. This obviously makes a
huge difference and turns a problem from being uncomputable even on massive clusters of
supercomputers, to become computable on a PC. We give evidence below.

So, how can it be possible to accurately compute certain aspects of turbulent flow on a
PC ? To give a rough idea of the answer , which is given in more detail below, we recall
that the error representation by duality describes the error in the quantity of interest, such
as the drag of a bluff body, in terms of a discretization residual related to the Galerkin
discretization of Navier-Stokes equations, and a modeling residual related to the lineariza-
tion behind the dual problem, combined with weights depending on the dual solution. The
modeling residual occurs because of in the linearization, and we compare the computed so-
lution with a local mean value of the true solution, which may be pointwise approximated,
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rather than the true solution itself which may not be pointwise approximated, unless we
are willing to do a full DNS, which we are not.

The crucial fact is now the size of the weights which directly couples to the size of the
dual solution and its derivatives. The remarkable experience from our computations of
these weights in turbulent flows by solving the linearized dual problem computationally, is
now that the weights are not as large as pessimistic predictions would indicate, but rather
much smaller. The linearized dual problem is a linear convection-diffusion-reaction problem
with the crucial coefficient of the reaction term being the gradient of the computed velocity
field. This coefficient is large in turbulent areas, typically of size

√
Re, and thus potentially

generating exponential growth of the dual solution. However, the gradient of the velocity
is rapidly fluctuating and the net effect of the reaction term turns out to be much smaller
due to cancellation and thus the corresponding net growth of the dual solution is much
slower than worst case exponential.

The net result is that the drag of a bluff body may be accurately computed using
Adaptive DNS/LES without solving all of the fine scale features. However, the error
representation also indicates that it is critical to resolve some of the small scale features,
such as separation points which determine gross aspects of the flow pattern. The resulting
method Adaptive DNS/LES thus (adaptively) uses LES without full resolution of all scales
in the larger part of the turbulent region and DNS in the laminar parts of the flow.

The next pertinent question to address is then what subgrid model should be used in
the LES? The good news here is that just about any turbulence model approximating the
Reynolds stresses as a dissipative term will work fine, as long as the dissipation is large
enough. Our implementation of Adaptive DNS/LES uses a standard least-squares stabi-
lized Galerkin method and this simple recipee seems to be fully adequate as a turbulence
model in the LES. The test of “sufficient dissipation” is very simple: if the the finite ele-
ment method produces discretization residuals which are not larger than necessary, then
there is enough dissipation in the numerics, or the other way around: If the numerics
does not explode, then there is sufficent numerical dissipation. It appears that meaningful
numerics must have more dissipation than the true flow, and therefore it seems impossible
to get reasonable results with too little dissipation.

The main message here is thus that the choice of turbulence model in the LES is quite
free; just about any reasonable dissipative model will work, for example the Smagorinsky
model or least-squares stabilization. This couples to the following property of turbulent
flow around a bluff body, the turbulent dissipation per unit volume (in the turbulent wake
behind the body), is nearly constant independent of the viscosity below a certain threshold
corresponding to Re of size about 100. This constancy may be observed through the refine-
ment procedure in the adaptive method, which with increasing mesh refinement may be
seen as a decrease of effective viscosity in the numerics. So the intensity of turbulent dissi-
pation turns out to be constant once the Reynolds number is above a not so large threshold.
But as the viscosity decreases the drag increases, which couples to the observation that the
turbulent wake behind a bluff body increases in volume as the viscosity decreases. This
increase in volume of the turbulent wake seems to be well captured by adaptively using
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DNS in the surrounding laminar flow including a strong shear layer around the turbulent
wake.

The constancy of the dissipation intensity couples to the observation that if the quantity
of interest is a global quantity such as the drag, then “it does not matter” on what scale
the turbulent dissipation actually takes place. This means that it may be perfectly possible
to compute the drag of a bluff body without resolving all of the fine scales of the flow, but
only some.

We sum up as follows: using Adaptive DNS/LES it seems possible to accurately compute
(on a PC) the drag of a bluff body at high Reynolds number involving turbulent flow. The
basic reasons for this new possibility are as follows: (i) we use DNS with full resolution
in laminar parts of the flow, (ii) it turns out that LES with a simple dissipative subgrid
model is adequate in the rest of the domain.

The net result is that we may accurately compute turbulent high Reynolds number
flow on a PC, without having to invent sophisticated turbulence models. The DNS will
then cover the laminar parts of the flow and certain critical parts of the flow including
separation points and surfaces separating turbulent and laminar parts of the flow. The
Adaptive DNS/LES method automatically takes care of the DNS vs LES aspect based on
a posteriori error estimation.

We present below computational results for a generic bluff body problem in the form of
the computation of the drag coefficient (normalized drag force) cD at Re = 40.000 for a
surface mounted cube. We find that cD = 1.48 using about 400.000 mesh points in space.
The only other result (!) available in the literature seems to be that of [14], where values
in the range cD = 1.12 − 1.24 are presented. Surprisingly, no measurements seem to be
available, maybe because of lacking motivation because of lacking computations and little
interest from the car industry in cubic vehicles. A measured value of cD = 1.3 is reported
[1] for a box with height-width ratio 5 : 1. It seems very likely that the cD for a cube would
be larger than that for a more slender box.

1.1. The novelty of Adaptive DNS/LES. We believe the Adaptive DNS/LES intro-
duces a true new element in CFD, specifically represented by the computation of the dual
solution, which carries the coupling between residuals and output quantities. To compute
dual solutions has been a trademark of our approach to adaptivity since the early 90s, with
full time-dependent 3d problems including the dual linearized Navier-Stokes equations first
being realized in [10]. The break-through experience was that, in contrast to early pes-
simistic predictions, the cost of solving the dual problem was very well affordable, and with
the information from the dual problem available the computation of a quantity of interest
could be made both relaible and efficient. Further, with a global quantity of interest such
as the drag of a bluff body, the dual solution turns out to be relatively smooth and thus
the drag is computable without excessive computational effort. So there are here two key
elements: first we have to solve the dual problem, and then make the observation that the
dual solution is reasonably smooth. If we can do this, then we can compute aspects of
turbulent flow on a PC.
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Note the close coupling between the quantity of interest (or output) and the dual solution:
the data to the dual problem directly reflects the output, with typically the data being
smoother for a global output than a local one. Again, this means that we may compute
with Adaptive DNS/LES a global quantity such as drag on a PC, while if we would seek to
compute the local flow velocity in space-time, then we would need (at least) DNS (which
is not affordable).

Thus, there are aspects of turbulent flow which we cannot compute, such as the flow
velocity at a specific point in the turbulent wake behind a bluff body, while a global quantity
such as the drag may be computable. Of course this seems to match with our experience:
we may believe that the drag of our car can be computed, but not the exact location in
space-time where a certain dust particle will end up on our rear wind shield.

1.2. On Turbulence Modeling. Our results indicate that, in a certain sense, the com-
putational modeling of turbulence is easy: just use any reasonable dissipative model, com-
bined with selected sparse use of DNS.

On the other hand, there may be cases where the DNS (with such a simple LES turbu-
lence model) may be required in larger portions of the domain, and then again the cost
would become prohibitive. Such cases may occur e.g. in reactive flow, where the turbulent
fine scale flow features may influence the reaction rates or effective reaction diffusivities.
In such cases, one may hope that again the DNS may be used sparsely, in this case by
local DNS in space-time combined with extrapolation. More precisely, in a local DNS over
a small volume, one would be able to resolve the fine scales and thereby determine effec-
tive reaction diffusivities relating to the turbulent mixing, and then export these effective
diffusivities to other parts of the domain with similar flow patterns.

Further, through the error representation we are able to quantitively compare different
turbulence models in LES, and thus adaptively choose the best from a given set of models
or get clues on how to develop improved models. The turbulence modeling problem is a
truely “open” problem: the turbulence model may be a free invention or artifice without
clear coupling to known physics.

1.3. On Classical Turbulence Models such as the k − ε model. The classical ap-
proach to turbulence, not including LES, is to seek transport equations for quantities
like the turbulent kinetic energy k and turbulent dissipation ε. The difficulty lies in the
derivation of such equations from the Navier-Stokes equations, where no rational analytical
procedure (or so called closure) seems to be available, and therefore the modeling seems
to have very limited success, unless possibly in some cases where a model may be fitted to
a particular flow based on experimental data, without being able to fit other cases. There
is a lot of critics of k − ε models and the hopes of great improvement today seem to be
small.

1.4. On Dynamic LES. The classical LES turbulence model is the Smagorinsky model
introducing a turbulent viscosity of the form CHα|∇u|, where H is a parameter represent-
ing the smallest scale of the flow, α is a positive number (normally α = 2) and C is a
positive constant or coefficient depending on space and time. In Dynamic LES one seeks



6 JOHAN HOFFMAN AND CLAES JOHNSON

to determine the α and C that would best model a particular flow. The term dynamic
refers to the fact that one seeks to determine these best values based on computation and
some form of extrapolation. There are also mixed models where in addition to Smagorinsky
viscosity one seeks to use scale similarity to capture whatever is not captured in Smagorin-
sky viscosity. Such effects are referred to as backscattering and are supposed to model a
possible influence on large scales from small scales. Again the success with such mixed
models has been limited and no conclusive experience seems to exist.

As already indicated, our experience is that LES, when adaptively coupled with DNS,
may work well with e.g. a standard Smagorinsky model or numerical viscosity, and that
the further elaboration in dynamic mixed models may not be worthwhile.

1.5. What numerical viscosity do we use? We remark that in our implementation we
use a specific numerical viscosity arising from a least-squares stabilization of the Galerkins
method. This numerical viscosity seems to be close to a standard Smagorinsky model
concerning its action on the finest scales of the turbulent flow, where most of the turbulent
dissipation takes place, while the stabilization term introduces little dissipation on coarser
scales. In particular, our viscosity as well as the standard Smagorinsky model, seems to
be consistent with the Kolmogorov similarity principles for turbulent flow.

1.6. On Understanding Turbulence. We claim that using Adaptive DNS/LES one may
accurately compute (certain aspects of ) turbulent flow. In principle this is a fully auto-
matic procedure for which no “understanding” of turbulence seems to be needed. We just
compute and then observe what we have computed. Of course after having made obser-
vations based on computation we may seek to bring some order and find some structure
in what we see, possibly using some simple mental models connected to the flow. This is
analogous to the observation that (i) we are able to live (or “compute”) our lives without
too much “understanding” (which is particularly evident when we observe other people).
On the other hand, sometimes we seem to be able to collect some “understanding”of our
own lives from the experience we get by living (computing) our lives. Thus, computing and
“understanding”are not in opposition; from computing we may get “insight”. However, to
gain insight without ever computing or making practical experiments may be very difficult,
at least for human beings.

1.7. Turbulent Compressible Flow. In this note we focus on turbulent incompressible
flow. The general scope presented applies as well to compressible flow. The typical flow
feature of compressible flow as shock waves may be expected to involve turbulent flow:
most likely the flow inside a shock on a the wing of a 777 will be turbulent, as well as in
the wake behind the wing. Again Adaptive DNS/LES should allow accurate computation
without invoking RANS models as is now standard. In a RANS model one seeks to find
and solve equations for global mean values in space-time. It seems that today few advocate
RANS as a method to compute turbulent flow.

1.8. Further applications. There is a large variety of bluff body problems, which may
be viewed as variants of the generic bluff body problem of the surface mounted cube,
including sails, ship hulls, cars, trains, aeroplanes, turbomachines, and many more... It is
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clear that a possibility of accurate computation turbulent flow may strongly influence the
development in these fields.

1.9. The Clay Prize. One of the 10 Clay $106 Prize problems concerns a mathematical
proof of existence of a (smooth) solution to the Navier-Stokes equations. Despite strong
efforts for over 70 years by very clever mathematicians little progress has been made towards
a solution. It is possible that computational evidence on the nature of (turbulent) solutions
may give added insight and open for a solution. Maybe.

2. A New Agenda in CFD?!

Adaptive DNS/LES introduces a true new element in CFD, and thereby opens new
possibilities of computational simulation of complex flows including turbulent flows, with
duality playing the key role. We strongly believe that now the agenda in CFD will have to
be reformulated, and computation of dual solutions to gain sensitivity information relating
to discretization and modeling, should be the new standard.

To motivate our stand point we now present results obtained by applying Adaptive
DNS/LES to a generic bluff body problem in the form a surface mounted cube at Re =
40.000.

3. A generic bluff body problem: surface mounted cube

We consider the problem of a turbulent flow around a surface mounted cube, investigated
in [15, 16, 14, 8]. In our computational model we use the Navier-Stokes equations to
model the incompressible fluid around a cubic body of dimension H ×H ×H that sits on
the floor of a rectangular channel of length 15H, height 2H, and width 7H, centered at
(3.5H, 0.5H, 3.5H). At the inlet we use a velocity profile interpolated from experiments,
we use no slip boundary conditions on the body and the vertical boundaries, slip boundary
conditions on the lateral boundaries, and a transparent outflow boundary condition. The
viscosity ν is chosen to give a Reynolds number Re = UbH/ν = 40.000, where we have
used Ub = 1.0. We compute on tetrahedral meshes using the cG(1)cG(1), see Section 4.2,
for both the primal and the dual problem.

In Figure 1 we show a snapshot of the solution and the corresponding computational
mesh after 13 adaptive mesh refinements, using Algorithm 1 stated below, to compute an
approximation of the mean drag coefficient c̄D over a time interval I = [T0, T ], defined by

(3.1) c̄D =
1

|T − T0|

∫ T

T0

cD(t) dt,

where cD(t) is the drag coefficient at time t. In Figure 2 we show the computed values of
c̄D (for a time interval of length 40H). The approximations of c̄D approaches 1.45-1.5, a
value that is well captured already using less than 105 mesh points.

We know of no experimental reference values of c̄D, but in [14] c̄D is approximated
computationally. The computational setup is similar to the one in this paper except the
numerical method, a different length of the time interval, and that we in this paper use
a channel of length 15H, compared to a channel of length 10H in [14]. Using different
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Figure 1. Velocity |u| (upper), pressure |p| (middle), and computational
mesh (lower), after 13 adaptive mesh refinements at z = 3.5H and y = 0.5H.
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Figure 2. Mean drag coefficient c̄D as a function of the number of mesh points.

meshes and subgrid models, approximations of c̄D in the interval [1.14, 1.24] are presented
in [14].

4. Adaptive DNS/LES

To compute the drag force we solve the incompressible Navier-Stokes equations express-
ing conservation of momentum and incompressibility of a unit density constant temperature
Newtonian fluid with constant kinematic viscosity ν > 0 enclosed in a volume Ω in R

3 with
homogeneous Dirichlet boundary conditions, given by: Find (u, p) such that

(4.1)

u̇+ (u · ∇)u− ν∆u + ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,

u = 0 on ∂Ω × I,
u(·, 0) = u0 in Ω,

where u(x, t) = (ui(x, t)) is the velocity vector and p(x, t) the pressure of the fluid at (x, t),
and f , u0, I = (0, T ), is a given driving force, initial data and time interval, respectively.
The quantity ν∆u−∇p represents the total fluid force, and may alternatively be expressed
as

(4.2) ν∆u−∇p = div σ(u, p),

where σ(u, p) = (σij(u, p)) is the stress tensor, with components σij(u, p) = 2νεij(u)− pδij,
composed of the stress deviatoric 2νεij(u) with zero trace and an isotropic pressure: here
εij(u) = (ui,j+uj,i)/2 is the strain tensor, with ui,j = ∂ui/∂xj , and δij is the usual Kronecker
delta, the indices i and j ranging from 1 to 3. We assume that (4.1) is normalized so that
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the reference velocity and typical length scale are both equal to one. The Reynolds number
Re is then equal to ν−1.

4.1. LES: The averaged Navier-Stokes equations. In a turbulent flow we are typically
not able to resolve all scales of motion computationally. We may instead aim at computing
a running average uh of u on a scale h, defined by

(4.3) uh(x, t) =
1

h3

∫
Qh

u(x+ y, t) dy,

where h = h(x, t) is a parameter related to the local resolution of the problem and Qh =
{y ∈ R

3 : |yi| ≤ h/2}. In the LES literature it is common to define the averaging operator
through convolution by a certain filter function, and there is a multitude of filter functions
being used. Though we only consider the case of the filter corresponding to (4.3) in this
paper, the teqniques for a posteriori error estimation are general and apply to other filters,
possibly with modifications for commutation errors associated with such filters.

By an extension of (u, p, u0, f) to R
3 by reflection for all x /∈ Ω, the averaging operator

(4.3) commutes with space and time differentiation. If we take the running average of the
equations (4.1), corresponding to a LES, we obtain the following equations for uh:

(4.4)

u̇h + (uh · ∇)uh − ν∆uh + ∇ph + Fh(u) = fh in Ω × I,
∇ · uh = 0 in Ω × I,

uh = 0 on ∂Ω × I,
uh(·, 0) = u0 in Ω,

where we choose homogeneous Dirichlet boundary conditions for uh, and Fh(u) = ∇·τh(u),
where τhij(u) = (uiuj)

h−uhi u
h
j is the Reynolds stress tensor. The closure problem of LES is

how to model Fh(u) in terms of uh in a subgrid model F̂h(u
h), or τh(u) in a model τ̂h(uh).

A weak formulation of (4.4) reads: find (uh, ph) ∈ L2(I; [H
1
0(Ω)]3 × L2(Ω)), with u̇h ∈

L2(I; [L2(Ω)]3) and uh(·, 0) = uh0 , such that

(u̇h + uh · ∇uh, v) + (2νε(uh), ε(v)) − (ph,∇ · v)
−(τh(u),∇v) + (∇ · uh, q) = (fh, v),(4.5)

for all (v, q) ∈ L2(I; [H
1
0 (Ω)]3 × L2(Ω)), where we assume that fh ∈ L2(I; [L2(Ω)]3).

Here L2(Ω) is the Hilbert space of Lebesgue square integrable functions on Ω, with
scalar product (·, ·) and norm ‖ · ‖, and Hs(Ω) is the standard Hilbert space of functions
in L2(Ω) with also partial derivatives of order ≤ s in L2(Ω). Hs

w(Ω) denotes the functions
v ∈ Hs(Ω) that satisfies the Dirichlet boundary condition v|∂Ω = w (in the sense of traces),
and in particular Hs

0(Ω) denotes the functions in Hs(Ω) that vanish on ∂Ω. We let C(I;X)
denote the space of all continuous functions v : I → X with maxt∈I ‖v(t)‖X < ∞, where
X denotes a Banach space with norm ‖ · ‖X .

Assuming we have also Neumann boundary conditions, we denote ΓD the part of the
boundary ∂Ω where Dirichlet boundary conditions are specified, and ΓN = ∂Ω \ ΓD the
part with Neumann boundary conditions. Now Hs

w(Ω) and Hs
0(Ω) denote the spaces of

functions in Hs(Ω) that satisfies the Dirichlet boundary conditions on ΓD.
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4.2. Discretization: cG(1)cG(1). The cG(1)cG(1) method is a variant of the G2 method
[11, 10, 7] using the continuous Galerkin method cG(1) in time instead of a discontinuous
Galerkin method. With cG(1) in time the trial functions are continuous piecewise linear
and the test functions piecewise constant. cG(1) in space corresponds to both test func-
tions and trial functions being continuous piecewise linear. Let 0 = t0 < t1 < ... < tN = T
be a sequence of discrete time steps with associated time intervals In = (tn−1, tn] of length
kn = tn − tn−1 and space-time slabs Sn = Ω × In, and let W n ⊂ H1(Ω) be a finite element
space consisting of continuous piecewise linear functions on a mesh Tn = {K} of mesh size
hn(x) with W n

w the functions v ∈ W n satisfying the Dirichlet boundary condition v|ΓD
= w.

We now seek functions (Uh, Ph), continuous piecewise linear in space and time, and
the cG(1)cG(1) method for the averaged Navier-Stokes equations (4.4), with homogeneous
Dirichlet boundary conditions reads: For n = 1, ..., N , find (Un

h , P
n
h ) ≡ (Uh(tn), Ph(tn))

with Un
h ∈ V n

0 ≡ [W n
0 ]3 and P n

h ∈ W n, such that

((Un
h − Un−1

h )k−1
n + Ûn

h · ∇Ûn
h , v) + (2νε(Ûn

h ), ε(v)) − (P n
h ,∇ · v)

+ (∇ · Ûn
h , q) + SD(δ, Ûn

h , P̂
n
h , v, q) = (fh, v) ∀(v, q) ∈ V n

0 ×W n,
(4.6)

where Ûn
h = 1

2
(Un

h + Un−1

h ), with the stabilizing term

SD(δ, Ûn
h , P̂

n
h , v, q) ≡ δ1(Û

n
h · ∇Ûn

h + ∇P n
h − fh, Ûn

h · ∇v + ∇q) + δ2(∇ · Ûn
h ,∇ · v),

and δ1 = 1

2
(k−2
n + |U |2h−2

n )−1/2 in the convection-dominated case ν < Ûn
hhn and δ1 = κ1h

2

otherwise, δ2 = κ2h if ν < Ûn
hhn and δ2 = κ2h

2 otherwise, with κ1 and κ2 positive constants
of unit size, and

(v, w) =
∑
K∈Tn

∫
K

v · w dx =
∑
K∈Tn

(v, w)K,

(ε(v), ε(w)) =

3∑
i,j=1

(εij(v), εij(w)).

4.3. Computation of the mean drag force. We want to compute an approximation of
the quantity

(4.7) N(σ(u, p)) ≡ 1

|I|

∫
I

∫
Γ0

3∑
i,j=1

σij(u, p)njφi ds dt,

where (u, p) solves (4.1), φ is the trace on Γ0 of a function in H1(Ω), and Γ0 ⊂ ΓD is a closed
surface representing the boundary of a body immersed in the flow. If φ is a unit vector in
the direction of the mean flow, (4.7) represents the mean of the drag force due to (u, p) on
Γ0 over a time interval I, and if φ is a unit vector in a direction perpendicular to the mean
flow, (4.7) is the temporal mean of the lift force on Γ0 due to (u, p) in that direction. With
the idea of increasing the precision, see [6], we may use (4.1) and integration by parts to
rewrite the surface integral in (4.7) as a volume integral, leading to the following expression
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for (4.7):

N(σ(u, p)) =
1

|I|

∫
I

(u̇+ u · ∇u− fh, ϕ) − (p,∇ · ϕ)

+(2νε(u), ε(ϕ)) + (∇ · u, θ) dt,(4.8)

for any ϕ ∈ L2(I; [H
1
φ,0(Ω)]3), where H1

φ,0(Ω) = {v ∈ H1(Ω) : v|Γ0
= φ, v|Γ1

= 0}, Γ1 =
ΓD \ Γ0, and θ ∈ L2(I;L2(Ω)). We note that due to (4.1), this representation does neither
depend on the choice of θ, nor the particular extension ϕ of φ being used. We are thus led
to approximate N(σ(u, p)) by the quantity

Nh(σ(Uh, Ph)) =
1

|I|

∫
I

(U̇h + Uh · ∇Uh − fh,Φ) − (Ph,∇ · Φ)

+(2νε(Uh), ε(Φ)) + (∇ · Uh,Θ) dt,(4.9)

where (Uh, Ph) ∈ L2(I;V
n
0 ×W n) and (Φ,Θ) ∈ L2(I;V

n
φ,0 ×W n), with V n

φ,0 = {v ∈ [W n]3 :
v|Γ0

= φ, v|Γ1
= 0}.

Below we will replace N(σ(u, p)) by N(σ(uh, ph)), with the motivation that a global
mean value such as N(σ(u, p)) should be insensitive to taking local mean values.

4.4. Adaptive algorithm. An adaptive algorithm includes feed-back from computation
to achieve the computational goal with minimal computational cost. In an adaptive fi-
nite element method this feed-back from computation relies on a posteriori error esti-
mates. In Algorithm 1, an adaptive algorithm for the computation of the mean drag force
N(σ(uh, ph)) is presented, which is based on a posteriori error estimates of the form

(4.10) |N(σ(uh, ph)) −Nh(σ(Uh, Ph))| ≤
∑
K∈T k

n

EkK,

where EkK is an error indicator for element K. We have here chosen the computational
mesh T k

n to be constant in time for each iteration k in the adaptive algorithm, and we have
also chosen the time step length kn to be constant in time, namely

(4.11) kn = min
K∈T k

n

diam(K),

where diam(K) is the diameter of element K. In Figure 4 we plot a snapshot of the dual
solution after 14 mesh refinements, and in Figure 3 we plot a posteriori error estimates of
the error in c̄D for the 15 first refinements (vs. the estimated reference value 1.48).

Algorithm 1 (Adaptive DNS/LES). Start at k = 0, then do

(1) compute approximation to the primal problem on T k
n

(2) compute approximation to the dual problem on T k
n

(3) if
∑
K∈Tk

EkK < TOL then STOP, else

(4) refine a fixed fraction of the elements in T k
n with largest EkK → T k+1

n

(5) set k = k + 1, then goto (1)
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Figure 3. Various evaluations of the a posteriori error estimates in Theo-
rem 2, with (’o’ and ’+’) or without (’×’) absolute values inside the summa-
tion over the elements, approximating the error (’*’) in c̄D, versus number
of mesh points.

4.5. A posteriori error estimation. Algorithm 1 is based on a posteriori error estimates
of the form (4.10), which we derive by introducing the following linearized dual problem:
Find (ϕ, θ) ∈ L2(I; [H

1
ψ3

(Ω)]3 × L2(Ω)) with ϕ̇ ∈ L2(I; [L2(Ω)]3) and ϕ(T ) = 0, such that∫
I

−(v, ϕ̇) + ((uh · ∇)v + (v · ∇)Uh, ϕ)(4.12)

+(2νε(v), ε(ϕ)) − (q,∇ · ϕ) + (∇ · v, θ) dt = 0,

for all (v, q) ∈ L2(I; [H
1
0 (Ω)]3 ×L2(Ω)) with v(0) = 0, given the data ψ3 ∈ L2(I; [L2(∂Ω)]3)

defined below, and where (∇Uh · ϕ)j = (Uh),j · ϕ.

Theorem 2. If uh solves (4.4), (Uh, Ph) solves (4.6), and (ϕ, θ) solves (4.12), then

|N(σ(uh, ph)) −Nh(σ(Uh, Ph))| = |
∑
K∈Tn

EK| ≤
∑
K∈Tn

|EK|,

where EK = eKD + eKM is an error indicator for element K, and

eKD =
1

|I|

∫
In

((U̇h + Uh · ∇)Uh − fh, ϕ− Φ)K − (Ph,∇ · (ϕ− Φ))K + (∇ · Uh, θ − Θ)K

+ (2νε(Uh),∇(ϕ− Φ))K + SD(δ, Uh, Ph, ϕ− Φ, θ − Θ)K dt,

eKM =
1

|I|

∫
In

(τh(u),∇ϕ− Φ)K − SD(δ, Uh, Ph, ϕ− Φ, θ − Θ)K dt,
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Figure 4. Dual velocity |ϕ| (upper) and dual pressure |θ| (lower), after 13
adaptive mesh refinements at z = 3.5H (upper) and y = 0.5H (lower).

Proof. To derive a posteriori error estimates for N(σ(uh, ph)), the natural quantity to
consider is the difference between (4.8) and (4.9), see [6, 9]. If we set (ϕ, θ) = (Φ,Θ) ∈
L2(I;V

n
φ,0 ×W n) in (4.8) and then subtract (4.9), we get

N(σ(uh, ph)) −Nh(σ(Uh, Ph))(4.13)

=
1

|I|

∫
I

(u̇h + uh · ∇uh,Φ) − (ph,∇ · Φ) + (2νε(uh), ε(Φ)) + (∇ · uh,Θ)

−((U̇h + Uh · ∇Uh,Φ) − (Ph,∇ · Φ) + (2νε(Uh), ε(Φ)) + (∇ · Uh,Θ)) dt.

The dual problem (4.12) with data

(4.14) ψ3|Γ1
= 0, ψ3|Γ0

= φ,
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and φ from (4.7), gives that

1

|I|

∫
I

(u̇h + uh · ∇uh, ϕ) − (ph,∇ · ϕ) + (2νε(uh), ε(ϕ)) + (∇ · uh, θ)

−((U̇h + Uh · ∇Uh, ϕ) − (Ph,∇ · ϕ) + (2νε(Uh), ε(ϕ)) + (∇ · Uh, θ) dt

=
1

|I|

∫
I

−(ϕ̇, e) + (uh · ∇e+ e · ∇Uh, ϕ) − (ph − Ph,∇ · ϕ)(4.15)

+(2νε(e), ε(ϕ)) + (∇ · e, θ) dt = 0,

using partial integration with ϕ(T ) = e(0) = 0, where e = uh − Uh, and that (uh · ∇)uh −
(Uh · ∇)Uh = (uh · ∇)e + (e · ∇)Uh. By (4.5), (4.13), and (4.15), we then have that

N(σ(uh, ph)) −Nh(σ(Uh, Ph)) =
1

|I|

∫
I

((U̇h + Uh · ∇)Uh − fh, ϕ− Φ)

−(Ph,∇ · (ϕ− Φ)) + (∇ · Uh, θ − Θ) + (2νε(Uh),∇(ϕ− Φ))(4.16)

+SD(δ, Uh, Ph, ϕ− Φ, θ − Θ) − SD(δ, Uh, Ph, ϕ− Φ, θ) − (τh(u),∇(ϕ− Θ)) dt.

�

From this error representation formula there are various possibilities to estimate the
integrals in (4.16), see Figure 3. We notice that in the initial stages of the adaptive
refinement, the estimators with the absolute values “inside” closely follow the actual error
(vs. the estimated reference value 1.48 from the finest computation), while the estimator
with absolute value “outside” seems to under estimate the error. For the fine part of the
process the quality of the estimates is somewhat unclear since we do not know the true
drag coefficient with sufficient precision.
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