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MULTISCALE CONVERGENCE AND REITERATED
HOMOGENIZATION OF PARABOLIC PROBLEMS

ANDERS HOLMBOM, NILS SVANSTEDT, AND NIKLAS WELLANDER

ABSTRACT. Reiterated homogenization is studied for divergence structure parabolic
problems of the form 2% — div (a (2,2, %,¢, %) Vu.) = f. It is shown that under
standard assumptions on the function a(z,y1,y2,t,7) the sequence {u.} of solutions
converges weakly in L2(0,T; Hi(Q)) to the solution u of the homogenized problem

2u — div (b(x, t)Vu) = f.

1. INTRODUCTION

In this paper we consider the homogenization problem for the following initial-boundary
value problem:

Oue —div (a (x, E, %,t, ik) Vu5> = fin Q x (0,7),
(1) ot € € €

ue(z,0) = up(x),
ue(z,t) = 01in 0Q x (0,7),

where € is an open bounded set in R”, T" and k are positive real numbers. Let us define
Qr =Qx (0,7) and Y; = Y7 x Y5 x (0,1), where Y; = Y5 = (0,1)". We assume that
the function a = a(z,y1,y»,t,7) belongs to C(Qr; Le (Yr)) and satisfies the coercivity
assumption

alé)? <af-€ VEER", ae. in Qp x Y.

With these structure conditions it is well-known that given f € L2(0,7; H}(Q)) and
ug € L*(Q) there exists a unique solution u, € L?(0,T; H;(2)) to (1) with time derivative
Que ¢ L2(0,T; H () for every fixed € > 0.

The homogenization problem for (1) consists in studying the asymptotic behavior of
the solutions u, as € tends to zero.

Homogenization problems with more than one oscillating scale is referred to as reit-
erated homogenization and was first introduced in [2] for linear elliptic problems. More
recently the linear elliptic problem was studied in [1] and the nonlinear monotone case
was treated in [6]. In the present report we prove a reiterated homogenization theorem
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2 ANDERS HOLMBOM, NILS SVANSTEDT, AND NIKLAS WELLANDER

(Theorem 6) for the parabolic problem (1). In particular the proof of Theorem 6 will
show how easy and powerful the two-scale and multi-scale convergence theory can be.

Throughout the paper we consider a sequence {g;} of small positive numbers tending to
zero which is denoted {e}. Any subsequence {€'} of the sequence {e} will also be denoted
{e}.

The result of Theorem 6 is that the sequence of solutions {u.} to (1) converges weakly
in L2(0,7; H}(2)) to the solution v in L*(0,7T; H}(£2)) to a homogenized problem of the
form

2_1: —div (b(z,t)Vu) = f in Q x (0,7),
(2) u(z,0) = ug(x),

u(z,t) =0 in 0Q x (0,7,

where b depends on x and ¢ but is no longer oscillating with €. Indeed b will also depend
on k, but this will be clearly spelled out in the main result (Theorem 6). As a warm up,
in order to get a feeling for the interaction between the scales, we expand the solution u.
to (1) in a multiple scales power series. Let us for the moment assume that

T T t T t T T t
3 t) = - —=,t,— t, — —,t,—
( ) U’s(xﬂ ) u(x587827 78k)+8u1(xa8 27 )+8U2( 87827 76k)+ J
where all the u;s are assumed to be e-periodic in y; = z /e, e?-peridic in y = x/¢? and
gk-periodic in 7 = t/e*, respectively. The chain rule transforms the differential operators

as
0 o 10 0 o 10 10

ot o + #or’ oz ox * £ Oy, + €20y,

The divergence and gradient operators transform accordingly and we denote differentia-
tion with respect to z, y; and y, by subscripts z, y; and ys, respectively. In a standard
way one can now insert the series (3) into the equation (1) and identify a hierarchy of
equations of siginificant orders of €. This is performed in the Appendix in the end of the
paper. In Section 1 we give some preliminaries and present some well-known and new
results needed in the proof of the main result of the paper (Theorem 6) which is presented
in Section 2 together with a compactness result (Theorem 5) for parabolic problems with
multiple spatial scales. Section 3 is devoted to the proof of Theorem 6. It is lengthy but
straightforward thanks to the preparatory Theorem 3 and Theorem 4 and the compactness
Theorem 5.

2. PRELIMINARIES

We will now recall the concept of multiscale convergence, see Allaire and Briane [1]. We
will restrict ourselves to three spatial scales and two time scales as in the initial-boundary
value problem (1) studied in this report.

Definition 1. A sequence {u.} in L?(Q) is said to multi-scale converge (with three spatial
scales) to u = u(x, yl,yg) in LQ(Q x Y1 x Ysy) if

lim [ w.(z)p(z, dx—/// u(, Y1, Y2) (T, Y1, y2) drdy,dys,
e—0 Q Y JYs
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for all functions ¢ € L*(; Cpe, (Y1 X Y3)).
Allaire and Briane proved the following compactness results:
Theorem 1. Let {u.} be bounded sequence in L*(2). Then there exists a subsequence, still

denoted {u.}, and a function v = u(x,y1,y2) in L*(Q X Y1 X Y3) such that u. multi-scale
converges to u.

Theorem 2. Let {u.} be a bounded sequence in H'(Q)). Then there exist subsequences
ue — u strongly in L* (),
and
Vu, = Vou(z) + Vy,u (2, y1) + Vy,ue(z, y1, y2),
in the multi-scale sense, where w € H'(Q), uy € L*(Q; H,, (V1)) and uy € L*(Q x
Vi Hye, (Y2))

per
We can also consider bounded functions in L? depending on the time variable ¢.

Definition 2. A sequence {u.} in L*(Q x (0,T)) is said to multi-scale converge in space-
time with three spatial and two temporal scales if, for a constant k > 0,

. t
21_1)1(1)// ue(z, t)p(z, o 2,,—k)da:dt=
// /// w(x, y1, Yo, t, T) (2, Y1, Y2, t, 7) dzdy: dyditdr.
Y1 /Ys

where u € L*(Q % (0,T) x Y1 x Yo% (0,1)) for all p € L*(Q x (0, T); Cper(Y1 x Y2 x (0,1))).
We also have:
Proposition 1. (Space) Let {u.} be a bounded sequence in L?(0,T; H*(?)) such that its

distributional temporal derwative {ul} is a bounded sequence in L*(0,T; (H'(Q))"). Then
its well-known that {u.} is compact in L*((0,T) x Q) and there exist subsequences

ue — u strongly in L*((0,T) x ),
and
Vue = Vau(z,t) + Vyui(x,t,11) + Vy,ua(x, t,y1, y2),
in the multi-scale sense, where w € L*(0,T; H(Q)), vy € L*((0,T) x Q; H},.(Y1)) and
ug € L2((0,T) x Q x Yy; H: (Y3)).

per
Corollary 1. (Space-time) Let {u.} be a bounded sequence in L*(0,T; H'(Q)) such that
its distributional derivative {u’} is a uniformly bounded sequence in L*(0,T; (H'(2))").
Then there exist subsequences

u, — u strongly in L*((0,T) x ),
and
Vus — V;CU(ZE, t) + Vylul(x, ta Y1, T) + Vy2U,2(.’L', ta Y1, Y2, 7—)’
in the multi-scale sense in space-time, where u € L?((0, T) H'Y(2)), u; € L*((0,T) x Q x
(0,1); H.,.(Y1)) and uz € L?((0,T) x Q x Y1 x (0,1); HY, (Y3)).

per per
In this work we will not use the following observation.
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Remark 1. If {u.} is bounded in H'(0,T; H*(Q))), then the time derivative splits. By
using test functions oscillating in time with frequency ¢, i.e. ¢(x,t, f) the split yields the
ezistence of a local function u; such that

Ou, — 8_?1, + %
ot ot or’

in the multi-scale sense (in time), whereuw € H'((0,T)xQ) and where u; € L*((0,T); H, (0,1)x

per
H'(Q)). If we instead use test functions oscillating in time with frequency €2, i.e. p(x,t, 52)

then the split yields another local function us, i.e.,

Oue — a_u + %
ot o or
in the multi-scale sense, where u € H'((0,T) x Q) and where uy € L*((0,T); Hp,,(0,1) X
H(Q)).
Remark 2. The split of the time derivative is discussed in [7] and is proved analogously
to the gradient split. In the main Theorem 6 we do not have H'-a priori bounds on the
time derivative so therefore there occur no split in the time derivative. But as seen in the
Appendiz, a formal expansion yields time split derivatives in the k =1 and k = 2 cases,
respectively. However, that is only formally and is never used since the local derivatives
vanish when the equations are averaged over fast time.

We continue by stating and proving two theorems that will be crucial in the proof of
the main Theorem 6. A similar result is earlier proved in Holmbom [5].
Theorem 3. Let {u.} be a bounded sequence in H'(Q) and let v and uy be defined as in
Theorem 2. Then,

lim . (M) @ (w g) dz = /Q/YI ui (@, y1)e(z, y1) dy:dz,

for all p(z,y1) = p1(x)pa2(y1) where o1 € C§°(Q) and g, € Cpe,. (Y1) with mean value zero
over Yi.

Proof: From Theorem 2, by choosing test functions ¢ (z,y) = ¥1 ()2 (y) in Cg°(Q; Cpe,.(Y1; R
P € CFP(Q), Py € C2 (Y13 R™), we have

per

tim [ (Vue(z) — V(@) - va (o)) = / V2, 41) - 1 (&) () dyn i

e—0 Q aJy
The divergence theorem applied on both sides gives

lim | (u(z) — u(z)) (%(f)divxwl (@) + 1 () div,, 1/;2(%)) dr =

e—0 Q

// U1(33ay1)?/11(x)divyl%(yl)d%dx-
aJv

By the mean value zero condition over Y; for ¢, we can apply the well-known Fredholm
alternative and conclude that there exists a unique Yi-periodic solution n € C%.(Y7) to

per
divyl (V?hn) = (9, In Y1
€ C2.(Y1;R™)).

per

"))
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Now we simply let ¢; = 9; and 9, = V1 to obtain ¢, = divy,4,. The strong conver-
gence of {u.} in L?*(2) to u in Theorem 2 gives the result. O

As a consequence of Theorem 2 we can extend the result of Theorem 3 to the case of
3 scales and state the following:

Theorem 4. Assume that u,(z,y) is of Caratheodory type and let {u.} be a bounded
sequence in H'(Q)). Further let u,uy,us be defined by the limit in Theorem 2 . Then

iy [ DD o ) (0,2, 1) -

e—0 52

// / ug(x, Y1, y2)o(x, Y1, y2) dedy dys.
Y1 JYs

in L*(Q x Yi; Hp,, (Y2)) for o(z,y1,42) = o1(x)@a(y1)ps(yz) where o1 € C°() and

P2, p3 € Cpeo.(Y) with mean value zero overY .

Remark 3. An example of a function which has the regularity conditions which allows a
scaling of the function uy = ui(x,y1) is given in Cioranescu and Donato [3], Chapter 9.
Suppose

o) = D) G100

where Vyw; € L"(Y1;R"), i = 1, ..., n and Vyu € L*(;R*), with 1 <71, s < oo and
1/r+1/s=1/2. Then, for test functions ¢ € C§(;C (Y1;R™)),

per

/Vylul o(x, g )dx —>/ Vyui(z,91) - ¢(z, y)dyide.
Y1

Remark 4. The result remains valid also for the case r = s = 2, but then the two-scale
convergence takes place in L'.

Proof: Let us choose test functions ¢ € C§°(2; Cpe, (Y1 x Yz : R")) The result of
Theorem 2 says that

lim (ung(x) — Vyu(z) — Vy,uy (ac, g)) X (x, g, :—2) der =

e—0 Q

/ / Vy2u2(x7 Y1, y2) : @b(% Y1, y2) dxdy, dys.
Y1 /Y2

An integration by parts on both sides gives

lim : (ug(x) —u(x) — euy (x, g)) ((divz + e divy, + e 2divy, ) ¢ (ac, f’ f)) dr =

€0 g g2

// / Uz(ﬂﬁay1,y2)diVy2¢($,y1,y2)dﬂﬁdyldyQ-
aJv Jv,
By Theorem 3

lim (us(x) —u(x) — euy (x, g)) ((divz + e divy, ) ¢ (m, E’ f)) dx = 0.

e—0 Q
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Therefore
[ ue(z) —u(z) — ey (z,2)
lim

e=0 [ 62

div,, (3: g :—2) dz =

// / u2 (2, Y1, y2)divy, Y (z, y1, yo) dedy,dys.
QJY: /Y,

Referring to Lemma 2.4 in [8] we can argue as in Theorem 3 and obtain any ¢ as ¢
divy, .

Remark 5. If Vyu; € L"(Y;R") and Vyu € L* (S R™), where1 <71, s < oo, 1/r+1/s
1/2, then the convergence in Theorem 4 takes place in L*. However, since the limit ug is

an element in L*(Q x Yi; H},(Y2)), this is just a technical argument.

ol

3. THE MAIN RESULTS
Let us rewrite (1) in the variational formulation:
Find u, € L*(0,T; Hy(Q)) such that

Op(x,t) x x |t
— /QT ug(x,t)T dzdt + /QT a (:c, = 8—2,15, s_k) Vue(z,t) - Vo(z,t) dedt

(4) = f(z,t)o(z,t) dodt for all ¢ € L*(0,T; Hy(52))

ue(z,0) = uo(x).

We first observe that by the structure conditions on a(z,yi,ys,t,7) one immediately
obtains the following a priori estimates (see e.g. [3] Ch. 11):

ou,
||Us||L2(0,T;Hg(Q)) <C ||a—ts||L2(0,T;H*1(Q)) <C

We begin with the following compactness result:

Theorem 5. Let {u.} be a sequence of solutions to the variational problem (4) above.
By sending € — 0 the sequence {u.} multi-scale converges to the unique solution u to the

following problem
Op(z, 1)
—/QT u(z,t) 5 dxdt

(5) +/ [/ a(@,y1, 42,4, 7)[Vou+ Vyur + Vyyuoldyidyz dr | - Vip(z, 1) dudt
Qr VY,

= [ flz,t)p(z,t)dzdt for all ¢ € L*(0,T; H}(Q)),

Qr
with wnitial condition
ue(x,0) = uo(x),
where

(6) u = U(.ﬁ,t), Uy = U1($,y1,t, 7—)7 and U2 = Uz(.f,yl,yg,t,T)-
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Proof: By the structure conditions on the function a, the product function
T T ; t (z,1)
A\, = 5, —¢ xz,
e gk ) ¥

is an admissible test function and therefore by using Corollary 1 and by exploiting the
strong L?((0,T) X Q)- convergence of u., which is an immediate consequence of the a
priori estimates above, the result follows. a

Remark 6. It now remains to find the equations that uy and us satisfy. The dynamics
will be captured by considering test functions which capture the oscillations in time. Due
to the spatial and temporal oscillations in the coefficient we seek for u. of the form (3).
But, due to Theorem 5 we know that the candidates are of the form (6). This can also
be verified, at least formally, by equating the different orders in e of (1) while inserting
(8). In the Appendiz we perform a multiple scales expansion in order to derive the correct
equations for uy and us respectively.

Our aim is now to derive rigorously the local equation. We will use Theorem 3, Theo-
rem 4 and Theorem 5 together with test functions which are in resonance with the oscil-
lating coefficients a. = a(z, %, 5,1, Eik) Before stating and proving the reiterated homoge-
nization theorem we introduce some notations and abreviations: We simply write a to de-
note a(x, y1, Y2, t,7) and u, u; and us to denote u(x,t), ui(x, y1,t,7) and us(x, y1,ys,t,7),
respectively. We also write dy,dxr to denote dy,dysdxdrdt. Moreover, we denote by ¢,
smooth oscillating test functions of the types ¢(z, 2, 5,1, gik), oz, 2, 5,1), o(x, L, t, Eik)
or p(z, 2,1t).

Theorem 6. (Reiterated homogenization) Consider the sequence of initial-boundary value
problems (1),

Ou, ) t .
8ut — div (a (x, g, :—Q,t, 5_k) Vug) =fin Q x (0,7),
ue(z,0) = up(x),
us(x,t) = 01in 092 x (0,7),
It follows that as € — 0:
ue — u, in L*(0,T; Hy(Q)) weakly,
L2 L) Vu, = b(a, )V, in L2A(Q)" weakl
alx,—, —,t,— Uge x, , in weakly,
7 8’ 827 7 gk u y
where b is the homogenized coefficient and where u solves the homogenized problem (2):

(?9—1: —div (b(z,t)Vu) = f in Q2 x (0,7T),

u(z,0) = ug(x),
u(z,t) =0 in 0Q x (0,T),

or in variational form (5):
Op(x, 1)
— u(x,t) ———= dxdt
/QT (1) ot
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+/ [/ a(z,y1, Y2, t, T) [Vt + Vyus + Vy,usldyrdy, dr | - Vo(,t) dedt
or Ly,

f(z,t)o(x,t) dedt
Qrp
The unknown functions u, uy; and us together satisfy a characteristic system of local
equations of different order of €. Depending on the value of the oscillation power k in the
fast time variable, there are 7 different cases of systems of local equations namely:

0<k<?2
p
/ / a[ku + Vy1“1 + Vy2U2] : Vyz(/)(ma Y1,Y2, ta T) dy’rde = 0.
Qr

/ / a’[ku + Vylul + Vyzu’?] ) vyl (p(x, Y1, t, 7_) dy,dxr = 0.
Qp

k=2
(
/ / a[Vzu + Vyur + Vy,usl - Vo, 0(x, y1, ¥, t, 7) dy,dzr = 0.
Qp
0
< _/ / ul(xaylataT)a_w(x:ylat:T) ddexT+
Qr T
a[Vzu + Vyur + Vy,us] - Vo, 0(x, y1,t, 7) dy,der = 0.
\ YQr JY;
2<k<3
)
/ / a[Vzyu + Vyur + Vy,ug] - Vy,0(x,y1,t, 7) dy,der = 0.
Qp
< _/ / ula_(‘p(x’ylat’T)ddexT:()-
Qr JY; 87'
/ / a[Vzu + Vyur + Vy,uo] - Vo, 0(x, 91, t, 7) dy,der = 0.
Qr
k=3

( a(P
- U —(.CE, Y1,Y2, t’ T) ddexT
/QT /;/T or

+/ a’[ku + Vylu’l + Vy2U2] : Vyz(p(x: Y1,Y2, t, T) ddexT =0
Qr JY,

/ / us — (z, y1,t, 7) dy dep+
Qp
a[Vzu + Vylul + Vy,us) - Vyo(z,y1,t, 7) dy,dep = 0.

\ Qr JY;
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3<k<4

k>4

0
_/ / Uy a_go(xaylay%ta’r) dde'TTZO
Qr JY; T

/ / CL[V_IU + vy1u1 + Vy2u2] ’ Vyggo(:v, Y1, Y2, ta T) ddexT = 0.
ar Jy,

0
_/ / u2£(xay1;y2;tﬂ7) ddexT:O
Qr JY; or

/ [/ a[Vzu + Vyuy + Vy,usldysdr | - Vo, p(x, y1,t) dyidzdt = 0.
\ JQr

T

Op
/ / 1 5 (z,y1, Y2, t,7) dy,dor = 0.
Qp

op
/ / us = (x, y1, Y2, t, 7) dy,dar+
Qr

a'[ku + vylul + vaUQ] : VyQQD(iU, Y1, Y2, ta T) ddexT = 0.
Qr JY,

/ [/ a[Vyu + Vyui + Vy,ugldysdr | - Vo, p(x, y1,t) dyidadt = 0.
\ JQr Y,

/ / 09 (@, 91,92, t,7) dy dxp = 0.
Qr a

op

or

/ / us — (2, y1, Y2, t, 7) dy,dzr = 0.
Qr

/ / a[vxu + Vy1“1 + VQZUQ] ' Vy2Q0(.T, Y1, Y2, ta T) dy’rde =0.
QT T

/ [/ a[Vyu + Vy,uy + Vy,usldysdr | - Vo, (2, y1,t) dyidadt = 0.
\ JQr LJY:

Remark 7. The homogenized map b is derived in the usual way by a separation of vari-
ables. Lets consider the variational form of the e 2-equation for the case 0 < k < 2:

/ / a[ku + Vylul + Vy2u2] : vy290(33a Y1, Y2, ta 7—) ddexT - 0
QT T



10 ANDERS HOLMBOM, NILS SVANSTEDT, AND NIKLAS WELLANDER

By linearity we can decouple variables:
u2($a ta Y1, Y2, T) = (vz‘u(x’ t) + Vy1u1($a ta Y1, T)) : w?(yQa T)'

We can now write the decoupled local e~?-equation as the parameter dependent (parameter

T ) problem:
Find w5 (-,7) € Hp,(Y2) such that for almost every T € (0, 1)
owk (ya, 7))\ O
/ aij (2, Y1, Y2, 7) <5j At )) ‘g(yQ)dyQ —0,

Y2 Y2, Y2,

for all ¢ € C%.(Y2), and we define
owk (yy, T
big (2, t,y1,7) =/ aij (2,8, Y1, Y2, T) <5j - M) dys.
Y Y2,

L_equation can then be written (using the same traditional arguments

The local decoupled e~
as above):

Find v*(-,7) € H. (Y1), such that for almost every T € (0,1)

per

ovr (y1, 0
/ bzlj (‘,E’ ta Y1, Y2, 7_) (6J - la(yl T)> g(yl) dyl = 07
Y1 ylj Y1,

for all o € C2.(Y7).

per

Finally we define

1 k
bir(z,t) = /Y /0 bzlj(xata Y1, T) (5]' - L)l@(yl”r)> dy,dT.
1 ylj

This procedure is standard and analogous for the different cases. The existence and unique-
ness of local solutions is carried out in [4] in the linear periodic case.

4. PROOF OF THEOREM 6

Let us choose test functions ¢, = ¢(z, £, &1, Eik) By the chain rule the variational
formulation of (1) reads: Find u. € L?(0,T; Hy(2)) such that

Op. e Fdp.
—/ Ue Pe 1 & PP dudt+ / a:Vu. - (Vi +e 'V, +& °V,,)p. dudt
Qr 3t 87— Qr

(7) = [ foedadt Vo, € L*(0,T : Hj())
Qr
ue(z,0) = up(x).
Let us now case by case show that the local equations for u, u; and us will appear as mul-
tiscale limits of (7) with appropriate choices of test functions .. As the formal analysis

in the Appendix shows, there are seven different significant cases for £ to be considered:
0<k<2,k=22<k<3,k=3,3<k<4,k=4and k > 4, respectively.
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0<k<?2

Step 1: Let us consider (7). We choose test functions . = ¢(z,%,5,¢,%). A mul-
tiplication by €2 on both sides of the equation and a limit passage yields the ~ —2
equation:

/ / a‘[vmu + vylul + Vy2u2] ’ VyQQD(.’E, Y1, Y2, ta T) dde(ET, =0.
Qr Jy;

Step 2: Choose test functions ¢, = ¢(z, 2,¢, %). and study the equation

0pe _kaéos
_ n d
/QTU ((% +¢ o rdt+

/ a:Vu. - (Vi + eV, ) pe dzdt = f. dzdt
Qr

Qr
A multiplication by € on both sides of the equation and a limit passage yields the ~ —1
equation:

/ / a|Vyu + Vy,ur + Vy,ug| - Vy,0(x, 41,1, 7) dy,der = 0.
ar Jy,
k=2

Step 1: We choose test functions ¢, = o(z, 2, 5,1, 6%) and study the equation

0o, 728(;05
/QTUE ( 5 +e 87’) dxdt+

(8) / a:Vu, - (Vi + &'V, +67°V,,)p.dadt = [ fo. dxdt
Qr

Qr

A multiplication by &% on both sides of the equation and a limit passage in (8), using
Corollary 1, yields the ~ —2 equation:

/ / a[ku’ + Vylul + vy2u2] ) vy2(10($7 Y1, Y2, T) dde-rET = 0.
QT T

Step 2: We chose test functions ¢, = ¢(z, £, ,E%) and consider the difference between

(7) and the weak limit (5) in Theorem 5.
0p:  _,0p:
— e — + dzdt+
/QT (ue — u) < 5 € 87’) xdt

/ <a5Vu8 = / a[Vzu + Vyur + Vy,uo) dyd7’> (Ve +e7'Vy,)pe dzdt = 0.
QT T

A multiplication by £! on both sides of the equation and a limit passage, where Theorem 3
is used in the first term yields the ~ —1 equation:

0
_/ / U1($;y1,t, T)_go(xaylata T) ddexT+
ar Jy, or
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/ / a[Vyu + Vy,ur + Vy,ug] - Vy,0(x, 41, t, 7) dy,der = 0.
ar Jy,
2<k<3

Step 1: Choose test functions ¢, = ¢(z, %, 5,t) and study the equation

—/ usagog dzdt+
op Ot

/ a:Vue - (Vg + &'V, +67°V,,)p. dudt = foe dzdt.
Qr

Qr

Multiplication by £? and a limit passage yields the ~ —2 equation:

/ / a[Vyu + Vy,ur + Vy,ug] - Vy,0(x, 41,1, 7) dy,der = 0.
Qr Jy,

Step 2: Choose test functions ¢, = ¢(z, Z,1, Eiz) and consider

dp. e *0p. 0.
—/QT [(us—u)(at + 5, )—uat dxdt+

/ a:Vue - (Vy + €71V, +72V,,)p. dzdt = foe dzdt.
Qr

Qr

A multiplication by £ ! and a limit passage, where Theorem 3 is used yields the ~ —k+1

equation:
0
/ / Uy _gp(xaylat’ T) ddexT =0.
Qr JY; 87'

And hence u; = uq(x, y1,1t)-

Step 3: Choose test functions ¢, = ¢(, £,t) and study the equation

— / usa% dxdt+
T

/ a:Vu, - (Vi +e7'Vy,) . dedt = fo. dxdt.
Qp

Qp
Multiplication by € and a limit passage yields the ~ —1 equation:

/ / a[Vyu + Vy,ur + Vy,ug| - Vy,0(x, 41, ¢, 7) dyder = 0.
QT T
k=3

Step 1: We consider again the difference between (7) and the weak limit (5) in The-

orem 9, i.e.
e —3 .
/QT(uE u) ( 5 +¢ 87’) dxdt+
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/ (aEVus - / a[Vzu + Vyu + Vy,uo) dydr) (Vg +e7'Vy, +€72V,,) . drdt = 0
Qr Y,

A multiplication by €2 on both sides of the equation and a limit passage, where Theorem 3
is used, yields the ~ —2 equation:

O
- ur o= (2, Y1, Y2, 8, 7 dy‘rdx

(9) +/ / az[v;cu -+ Vy1u1 + Vy2’u,2] . VyQQO(m, Y1, Y2, t, 7_) ddemT _ 0
QT Y-

Step 2: We chose test functions ¢, = ¢(z, 2,1, 5%) Scale y; = z/e in u;, multiply (9) by
e and subtract this from the difference between (7) and (5). This gives

a € _8 € 8 €
—/QT(ug—u—eul) (ai +e73 8()07) d:cdt—/QTeula—gotda:dt—F

/ (aEVug — / al-] dydr — 6/ al-] dy2> (Ve +e 'V, ). dzdt = f e dxdt,
Qr Y, Yo Qr
where a[-| = a[V u+ Vy,us + Vy,us] = alz, y1, y2, t, 7) [Vau+ Vy,us + Vi, us]. A multipli-

cation by ! on both sides of the equation and a limit passage, where Theorem 4 is used,
yields the ~ —1 equation:

dyp
— — t,7)dy,d
/g;T /T U2 87' (xayla 77_) Yr T+

/ / a[Vyu + Vyur + Vy,us] - Vi, 0(z, 91,8, 7) dy-dzr = 0.
r Jv,

3<k<4

Step 1: We still choose test functions ¢. = ¢(z, £, %,t, %). But now we study

&pg 7ka§06 8905 / —1 )}
. - . dwdt V. - (Vg + 6V, +2V,,)p. drdt
/QT(u u)<8t +¢€ 87) U dz + QTa Ue - (Vg +e Vy +e 7V, ) do

= foe dxdt

Qr
A multiplication by €¥~! on both sides of the equation and a limit passage, where Theo-
rem 3 is used, yields the ~ —k + 1 equation:

0
_/ / Uy a_gp(xvylay%ta/r) ddexT:()
Qr Jy, T

From this we conclude that u; = ui(x,y1,1), i.e. independent of 7.

r X

Step 2: Choose test functions ¢, = ¢(z, %, 5,t) and study the equation

0p.
—/QT U Y dxdt+
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/ a:Vue - (Vo + €'V, +£72V,,)p. dzdt = fo. dxdt.
Qr

Qp

A multiplication by €2 and a limit passage yields the ~ —2 equation:

/ / U,[qu + Vylul + Vy2u2] ) vyZ(p(x7 Y1, Y2, t7 T) ddexT =0.
QT T

z
) g

Step 3: Choose test functions . = ¢(z, 2,t, Eik), scale y; = z/e in u; and study

Op: | _40p: 9.
/QT(ug u — euy) ( T +e 87’) (u+euy) 5 dxdt+

/ a:Vu, - (Vi +e 'V, +67°V,,)p. drdt = fop. dxdt
Qr

Qr

A multiplication by £¥=2 on both sides of the equation and a limit passage, where Theo-
rem 4 is used, yields the ~ —k + 2 equation:

0
_/ / U2 a_gp(xvylay%ta/r) ddexT:()
Qr JY; T

And hence uy = ug(x, y1,¥y2,t), i.e. independent of 7.

Step 4: Next we choose test functions . = ¢(x, £,t) and study the equation

—/ Ug 8(;p€ dzdt +/ a:Vue - (Vg +e7'Vy, ). dudt = fo. dxdt
QT t QT QT

A multiplication by ! on both sides of the equation and a limit passage yields the ~ —1
equation:

/ [/ a[Vyu + Vyup + Vy271:2]dy2d7':| -V o(x, y1,t) dyrdzdt = 0.
or Ly,
k=4

Step 1: We choose test functions ¢, = ¢(z, , 1, 6%) Then we study

0. _4 0 e / 1 _9
/QT(UE u) ( 5t +¢€ 87) U dzdt + o acVue - (Vg +e "V +e °Vy,) e drdt

= foedxdt

Qr

A multiplication by £® on both sides of the equation and a limit passage, where Theorem 3
is used, yields the ~ —3 equation:

0
_/ / Uy 8_S0($ay17y27t7T)dde$T:0-
Qr JY, g
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From this we conclude that u; = uy(x,y1,1), i.e. independent of 7.

Step 2: Scale y; = x/e in u; and study

8905 _46Q05 aSOE
_/QT(ug—u EUy) ( 5 +e 87’) (u+euy) 5 dxdt+

/ a:Vu, - (Vi +e 'V, +67°V,,)p. drdt = fop. dxdt
Qr

Qr
A multiplication by €2 on both sides of the equation and a limit passage, where Theorem
4 is used, yields the ~ —2 equation:

0
- / / Uz a_gp(mvylay%ta 7-) ddemT'i'
Qr Jy, T

/ / a’[ku + Vy1u1 + Vy2U2] ) Vyzﬂo(xa Y1, Y2, ta T) ddeCUT = 0.
ar Jv,

Step 3: Next we choose test functions ¢. = ¢(x, Z,t). This yields

- / ug% dzdt + / a:Vu, - (Vg + 8_1Vy1)g05 dzdt = fooe dxdt
or Ot Qr Qr

A multiplication by ! on both sides of the equation and a limit passage yields the ~ —1
equation:

/ [/ a[Vyu + Vyup + Vy271:2]dy2d7':| -V o(x, y1,t) dyrdzdt = 0.
or Ly,
k>4

Step 1: We choose test functions ¢, = ¢(z, 2, 5, t, Eik) And we study

Op: 4 0¢. 0. / . L
— - - € €’ T 1 2/ ¥E dxdt
/QT(UE u) ( 5 +e 5 u—, dzdt + QTa Vu, - (Vy+e 7V, +°V,, ). dz

= fopedzdt

Qr
A multiplication by £*~! on both sides of the equation and a limit passage, where Theo-
rem 3 is used, yields the ~ —k + 1 equation:

0
_/ / U a_go(xaylay%ta’r) ddexT: 0.
QT T T
From this we conclude that u; = ui(x, y1,1), i.e. independent of 7.

Step 2: Scale y; = z/e in u; and study

aQDE 71@6@6 8(;06
/QT(uE U — EUy) < 5 +¢€ 87’) (u+ euq) 5 dzdt+
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/ a:Vu. - (Vo +e7'V,, +e72V,,)p. dzdt = fo. dxdt
Qr

Qp
A multiplication by €¥~2 on both sides of the equation and a limit passage, where Theorem
4 is used, yields the ~ —k + 2 equation:

0
_/ / Ug 8_g0($aylay2:t’7—) ddexTZO
Qr JY; T

From this we conclude that uy = uy(x, y1, y2,1), i-e. independent of 7.

Step 3: Next we choose test functions ¢, = ¢(z, Z, 5,t) and study the equation

9.
— / Ug (;” dzdt + / a:Vu, - (Vi +e 'V, +672V,,)p.dadt = | fo. dzdt
QT t QT QT

A multiplication by €2 on both sides and a limit passage yields the ~ —2 equation
/ / a’[vmu + Vy1u1 + Vy2“2] ) VyZQD(.T, Y1, Y2, tv 7-) ddexT = 0.
Qr Jy;

Step 4: Next we choose test functions ¢, = ¢(, £,t) and study the equation

—/ Ug 9 dzdt +/ a:Vue - (Vg +e7'V,, ) g dzdt = / fo. dxdt
Qr at Qr Qr

A multiplication by €' on both sides of the equation and a limit passage yields the ~ —1
equation:

/ [/ a[Vau + Vy,ur + Vyzuz]dyng] -V o(z,y1,t) dyrdzdt = 0.
ar Ly,

|

Remark 8. Theorem 7 easily generalizes to the case of N spatial scales and more than
one temporal scale. The difference is that the number of intervals to be studied increases.
Also one needs to prove a generalization of Theorem 4 to the case of N scales.

Remark 9. In the present paper we have analyzed a prototype problem in order to un-
derstand analytically the mechanism when more fine scales are added to the problem. We
see that the occurence of phenomena like resonances increases and we can obtain a va-
riety of local effects which in the end has a large impact on the global behaviour of the
solution. FEspecially we note that by adding spatial scales the problem becomes more and
more sensitive to a perturbation with respect to the number k.

5. APPENDIX: MULTIPLE SCALES EXPANSIONS

Let us revisit the expansion (3). By the chain rule we have

ue _ 2+ +9 (u+ euy + *ug +...)
ot \at ' ° or sl T et

and

—div(aVu,) = —(div, + e 'divy, + e 2divy,) [a(Viu + Vy,up + Vy,us) +
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+ €(Vz’u,1 + VyluQ + vyz’U,g;) + .. )] .

The three relevant orders of € to study are —2, —1 and 0. We will use below the fact that
we can not verify the existence of the terms V,ui, Vy,us and Vy,uz in L? by the mul-
tiscale compactness Theorem 5. We therefore omit their contribution also in the formal
expansion. With higher regularity they might exist and this will lead to a more complex
array of local problems. We just point out in the cases £ = 1 and £ = 2 that there
occur, formally, two time derivatives in the zero order equation. However, the local time
derivative vanish after an averaging in local time. Compare with Remark 1 where this
is explained and with Remark 2 above. The structure of the hierarchy of equations will
depend on k£ > 0. It turns out that there are 7 different significant cases to consider,
namely: 0 < k <2, k=2,2< k<3, k=3 3<k<4, k=4andk > 4, respec-
tively. We choose k£ = 1 for the case 0 < k < 2 in order to point out the remark from above.

kE=1:

~ =21 —divy,(a(Vyu + Vyus + Vy,ug)) = 0.

0
~ —1: a—z — divy, (a(Vyu + Vy,ur + Vy,us)) = 0.
ou Ouy )
~ 0: n + 5 div,(a(Veu + Vyur + Vy,ug)) = f.
k=2:
ou )
0
~ —1: % — divy, (a(Vzu + Vy,us + Vy,ug)) = 0.
ou  Ous )
~ 0: E + W - lem(a(sz‘u + Vy1u1 + Vyz'UQ)) = f
2<k<3
ou
~ —k: 5 = 0
~ =21 —=divy,(a(Vyu + Vyur + Vy,ug)) = 0.
6u1
~—1: —divy, (a(Vyu + Vy,u + Vy,ug)) = 0.
ou )
~ 0 — —divy(a(Vau + Vyur + Vy,ug)) = f.

ot
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k= 3:
ou
~-=-3 —=0
or
0
~ =2 % — divy, (a(Vzu + Vy,ug + Vy,ug)) = 0.
0
~ —1: # — divy, (a(Vzu + Vyuy + Vy,ug)) = 0.
ou .
~ 0: 5 divy(a(Vau 4+ Vy,ur + Vy,ug)) = f.
3<k<4:
ou
or
aul
~ —k 1: — = 0
+ or
~ =2t —=divy,(a(Vyu + Vyus + Vy,ug)) = 0.
BuQ
~—k+2:. — =0.
+ or 0
~—1: —divy, (a(Vyu + Vy,ur + Vy,ug)) = 0.
ou .
~ 0: a5 divy(a(Vau + Vyur + Vy,ug)) = f.
k= 4:
ou
or
Bul
~ —3: 5 = 0
0
~ 2 % — divy, (a(Vzu + Vyur + Vy,us)) = 0.
~—1: —divy, (a(Vyu + Vy,u1 + Vy,ug)) = 0.
ou .
~ 0 5 divy(a(Vau + Vyur + Vy,ug)) = f.
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ou

~—k: — =0.
or

8u1

+ or

8u2

~—k+2: — =0.
+ or

~ =21 —=divy,(a(Veu + Vy,us + Vy,ug)) = 0.

~ —1: — divy, (a(Vou + Vyup + Vyug)) = 0.

ou

~ 0: E

— dive(a(Vau + Vyur + Vy,up)) = f.

where

1
&(ac,t)z/ a(x,y1,ye,t, T) dT.
0
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