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December 17, 2003

Abstract

A general concept of two-scale convergence is introduced and two-scale compact-
ness theorems are stated and proved for some classes of non-periodic bounded func-
tions in L2(€). Further the relation to the classical notion of compensated compact-
ness and the recent concept of two-scale compensated compactness is discussed and
a defect measure for two-scale convergence is introduced.

1 Introduction

In 1989 Nguetseng [15] presented a new approach for the homogenization of partial differen-
tial equations, the so-called two-scale convergence method. The name two-scale convergence
was introduced in [1]. Nguetseng’s method has been widely used and has been developed
in various ways. It has been applied to a variety of problems, see e.g. the recent survey
[14] by Lukkassen et al. Let us in particular mention [4] where Amar proves two-scale
compactness for a sequence of functions defined on BV. The extension to the almost
periodic case is found in Casado-Diaz and Gayto [7], and in [6] Bourgeat et al develop a
stochastic two-scale convergence (in the mean). Further, in Allaire and Briane [3] two-scale
convergence is extended to the linear stationary multiscale case, and in Lions et al [13] to
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the monotone stationary multiscale case. In [11] the multiscale homogenization theorem
is proved for parabolic problems. We also refer to [12] for a recent unified approach to
homogenization in perforated domains. The two-scale convergence method relies on the
sequential matching between a bounded sequence {uy,} of functions in L?(f2) and a sequence
{vn} of functions defined through v (z) = v(z, 2), v € L*(Q x Y). The original result by
Nguetseng says that for v sufficiently smooth and Y-periodic in the second argument it
holds upp to a subsequence that

e—0

lim [ wup(x)v x—dx—//uoxy (z,y) dzdy.
Q

The purpose of the present paper is to state and prove general compactness results
that do not depend upon any periodicity assumptions on the test functions. We discuss
it in the context of the classical compensated compactness by Murat and Tartar and the
very recent concept of two-scale compensated compactness by Svanstedt and Wellander.
We will see how the additional scale, which appears in the limit, allows us to relax the
regularity needed to achieve results of compensated compactness type.

2 Weak convergence and general two-scale conver-
gence

Let us first consider the elementary case of weak compactness in L2(2). For {u;} a bounded
sequence in L?(Q) it is well known that, up to a subsequence, {u,} converges weakly, i.e.
for some u € L?(f2) it holds that

/Quh(:r)u(x)dx — /Qu x)v(x)dx

for all v € L?(2). Replacing v with a bounded sequence {v},} in L?(Q) the situation gets
less obvious. Depending on how the involved sequences of functions are chosen it may or

may not hold that
/Quh(x)uh(x)dx — /Qu(x)l/(x)dx, (1)

where u and v are the weak limits for {u;} and {v},}. The easiest way to make sure that (1)
holds is of course to make the further assumption that {v,} converges strongly. However,
the notion of two-scale convergence provides us with an alternative. For suitable choices
of v we have already noticed that

/Q un(@)n (z)dz — /Q /A oz, y)(z, y)dzdy,

where v,(2) = v(z, ) is bounded in L?(9) but not necessarily strongly convergent to
any limit in L?(2). It seems like the extra scale supports the convergence in cases where
neither {us} nor {v} is strongly convergent.



A very natural question to ask is whether there are other ways to generate weakly
convergent sequences {v,} such that (1) is true. To find out we investigate sequences of
integral expressions of the type

/gzuxagL%(x)dx ::/QQMAJQThU(x)dx,
e Tt X — L(Q)

and X C L*(Q x A), where Q C RY and A C R™ are open and bounded. We show that
results of the same kind as (1) holds under general assumptions on the operator 7, and
the admissible set X. One of the advantages with two-scale convergence is that all the
properties one seeks for in the sequence {u,} are lifted out by the suitable choice of test
functions. Therefore the characterization of the admissibility of test functions is one of
the key problems in two-scale convergence. We will prove two theorems, Theorem 1 and
Theorem 6, where the admissible of test functions belongs to two different subspaces of
L?(2x A). One is based on separability and the other one characterized by its geometrical
cone properties (Hahn-Banach).

Theorem 1 Let Q) and A be bounded open subsets of RN and RM respectively and assume
that {uy} is a uniformly bounded sequence in L*()). Then

/Q wn(z)vn (@) dz — /Q /A oz, y)o(z, y)dady,

if v, = T, v € X, where X C L*(Q x A) is a separable Banach space and

i X — L*()
has the properties
hlgglo ”ThUHL?(Q) <C ||v||L2(Q><A) (2)
and
Imholl 20 < Cllvllx - (3)

We are now ready to define two-scale convergence in its generalized setting.

Definition 2 A sequence {up} in L*(Q) is said to two-scale converge to ug € L*(2 x A)
with respect to {my} if 7 : X — L*(Q) and

lim [ up(2) o (x)ds = /Q /A uo(, y)o(z, y)dzdy

h—o0 0

forallv e X.



Proof. We introduce
(Fp,v)xr x = / up(x) TR (2)d.

Q

Clearly, according to the Holder inequality,
(Fh,v)x' x < C ”ThUHL?(Q) (4)
and hence (3) yields that
(Fhyv)x' x < Cllmnvll g2y < Dllvllx - (5)
(5) means that there exists a weakly* convergent subsequence of {F,} in X  such that

(Fh, U)X’,X — (£, U)X’,X

for all v € X. Further, (2), (4), and a passage to the limit yields

(£, U)X’,X <C ”v”L?(QxA)

and thus, by using the Hahn-Banach theorem, there exists a bounded linear functional
G € (L*(Q2 x A))' such that

(F, U)x’,x = (G, U)(L2(Q><A))’,L2(Q><A)

for all v € X. Finally, according to L3-duality, there exists uy € L?(Q2 x A) such that

(G, ) (12(0x )Y 12 (0% ) :ALuo(x,y)v(x,y)dxdy

and the proof is complete. m
Below we prove that the second scale in the two-scale limit is lost if we assume that
{un} converges strongly in L*(Q).

Proposition 3 Let {1,} be like in Theorem 1 with the additional condition
Up = Thy =V = /Av(x, y)dyinL?(Q) (6)
and assume that {uy} converges strongly to u in L*(Q2). Then
/ up(x)mho(z) de — / / u(z)v(z,y) dedy = / u(z)v(z) dz
Q aly 0

for all admaissible v.



Proof. We note that

< lun = ull 2y ITavll 2 (9) — 0

/Q un (@) o () d — / w(@)ro(z) da

Q

By condition (6) it holds that

/Qu(x)'rhv(x) dx—)/Q/Au(x)v(x,y) da:dy:/ﬂu(ac)l/(x) dx

and the proof is complete. m

Remark 4 The result in the proposition above demonstrates explicitly how the additional
scale in the limits allows for convergence under conditions that would be unsufficient oth-
erwise. If {up} should be only weakly convergent we could not any more conclude that

/Quh(:r) uh(x)dx%/glu(x)l/(x) dx

while the two-scale equivalent

/uh(x)th(x) dx%//u(x,y)v(x,y) dxdy
Q aJy
would still hold.

For the proof of the second result (Theorem 6), we first need to recall the following
version of the Hahn-Banach theorem.

Lemma 5 (Hahn-Banach) Let X be a normed linear space and Y a subset to X. Fur-
ther, assume that f .Y — R is linear and that

Zcif(vi)

for some C and all v; € Y,c; € R.
Then there ezists a linear functional g that extends f from'Y to X and with ||g|| ., < C.

<C

n
E C;U;
i=1

X

Proof. Put p(v) = C||v||x in Theorem 2.3.1 in Edwards [9] m
We are now ready to state and prove

Theorem 6 Let 2 and A be bounded open subsets of RN and RM | respectively, and assume
that {up} is a uniformly bounded sequence in L*(Q), X a subset contained in L*(Q x A)
endowed with the norm of L?(Q2 x A), and

i X — L*()
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a sequence of linear maps, such that, for some C' independent of h,

n n
E C;ThV; E CiV;
i=1 i=1

<C

LX)

L2(Q2xA)

for allv; € X, ¢; € R. Then, for some ug € L*(Q x A) and up to a subsequence,

lim [ up(z)mo(z) de = /Q/Auo(x,y)v(x,y) dxdy

h—o0 0

holds for all v € X.

Proof. We introduce

(Fh,U)X',XZ/S;uh(.’E)ThU(.’E)d.r.

Clearly, by (7) and the Holder inequality,

n

Z Ci(Fh: Uz‘)x’,x

i=1

= <

i:ila/ﬂuh(x)(rhvi)(m)dx

n

E CiThV;

=1

n

E CiV;

=1

<cC <D

L ()

L2(QxA)

(8) and Lemma 5 yield that there exists an extension G* of F* such that

(Gh, )2 ax )y L2 x4y < D1Vl 24 -

(9)

(9) and the separability of L?(Q x A) imply that there exists a weakly* convergent subse-

quence of {G"} in (L*(©2 x A))" such that

(Ghyv)(z2(0x )y p2(0x4) = (G5 0)(12(0x )Y L2(0x A)

for all v € L?(Q x A). Finally, according to L?-duality, there exists uy € L?(2 x A) such

that
(Gav)(L2(Q><A))',L2(Q><A) :/Q/AUO(%Z/)U(%Z/)ddey

and therefore, for the restriction F' of G to X,

(Fuobyx = | [ wolov)ota,v)dady

foranyve X. m



Remark 7 All the results in this chapter are easily generalized from L? to the LP-case
when p > 1. The case p = 1 has to be handled in a somewhat different manner. Since
L'(Q) is not reflezive, we can not apply weak sequential compactness. We can however
arque as this. Let C°(Q) denote the set of continuous functions with compact support in
Q. Then it is well known that its dual (C2(Q))' = M(Q) i.e. the space of Radon measures
on . Let us now as usual identify L'(Y) with a subspace of M(SY). It follows that, if {us}
is a sequence which is uniformly bounded in L'(Q) and if

7 CY(Q x A) — CY(R)
s a sequence of maps, such that,
Jim (|70l coa) < Cllvlloogxay - (10)

Then there exists a Radon measure pg € M(Q x A) and a subsequence, still denoted {up},
in L'(Q) such that,

lim up(2)Thv(x) do = <N0(xay)av($>y))M(QxA),Cg(QxA)-

h—o0 0

If we can argue that the limit element po actually belongs to L*(2 x A), then the two-scale
convergence is compact in L*. Weak two-scale compactness in L' can also be proved using
the usual Dunford-Pettis characterization. For a complete exposition of periodic two-scale
convergence of Radon measures we refer to [4].

Remark 8 An important question for applications is when a bounded sequence in L? is
actually an admissible set. I.e. when can we expect the following convergence to hold:

v(z, E)

€n

lim

Tim = loll 2 (v (11)

L2(;R3)

In [5] this question is answered: Namely, if {v(-, )} is uniformly bounded in L*(;R?),
if {endivo(-, )} and {excurlv(-, )} are uniformly bounded in L*(;R) and L*(;R)
respectively, then {v(-, Z-)} is an admissible set in the sense of (11).

Remark 9 (Periodic case) Let mv(x) = v(x, z/€e) where v(x,y) is periodic (unit period
for instance) and Lebesgue measurable in the second argument, and where €y, is a sequence
of positive numbers tending to zero as h tends to +o0o. Then (11) becomes

v(z, 3)

lim
h—o0

< Collz2auyy - (12)
L2(Q)

and, for some ug € L*(2 x Y) and up to a subsequence,

lim [ uy(z)v(z, — dx—//uo z,y)v(z,y) dxdy,
Q

h—o0

where Y =]0,1[™. Typical examples of admissible test functions as above are those in
L*(Q; Cper (V) and, for Q bounded, L?,.(Y;C(Q)). In fact, for these function spaces, (12)
holds with equality and with C = 1.

per (



Remark 10 (Periodic multiscale case) Letm,v(z) = v(z,z/€;, ..., z/€}) wherev(z,ys, - . .

is periodic (unit period for instance) and Lebesgue measurable in y,...,y,, and where €,
is a sequence of positive numbers tending to zero as h tends to +00. Then (11) becomes

hlg{)lo < C ||U||Lq(Q><Y1><...><Yq) )

La()

X X
’U(CL',%,...,%)

and, for some ug € LP(2 x Yy X ... x Y,) and up to a subsequence,

€T €T
li —_ .=
Jim Quh(x)v(xa R

// ) / U (T, Y1y - - - Yg)) V(T Y1, - - -, Yg)) dxdyy - . . dyg,
AY) Y,

where Y; =]0,1[M, i=1,...,q

3 Two-scale convergence and compensated compact-
ness

In the Theorems 1 and 6 we did not ask anything more than boundedness in L?(Q) from
{un}, while we made more specific assumptions on how the sequence {v,} should have ap-
peared. A quite famous result by Murat and Tartar, the div-curl lemma, adresses a similar
situation under somewhat different assumptions. Here the assumptions are strengthened
in addition to boundedness in L?(2) on both sequences by imposing constraints on cer-
tain arrangements of the partial derivatives of {u,} and {vs}. In [16] Tartar utilizes this
study and proves general compactness results for quadratic forms @Q(u) under the name
of compensated compactness. The div-curl lemma reads:

Theorem 11 Let {uy} and {vy} be bounded sequences in [L*(Q)|Y and u and v the weak
limits of suitable subsequences. If, in addition, {divu,} and {curlv,} are, possibly up to a
further subsequence, strongly convergent in W=12(Q), then

lm [ up(z) - vp(x)e(x)dx = / u(z) - v(z)e(x)ds

for any ¢ € D(Q).

Recently Tartar’s compensated compactness result has been extended to the method
of two-scale convergence in [5] by Wellander, Birnir and Svanstedt. The two-scale version
of the div-curl lemma reads:

s Yg)



Theorem 12 Let {up} and {v,} be bounded sequences in [L?(Q)]N and denote by ug
and vy the weak two-scale limits of suitable subsequences. If, in addition, ep{divu,} and
en{curly,} are bounded in L*(Q), then, possibly up to a further subsequence,

z
lim [ o) (@)l Ddo = [ [ walon) - wnle.p)ete sy
Eh QJy
for any ¢ € D(Q; Cf°(Y)).

Remark 13 Note that we may also consider this like that the second scale allows for the
convergence of the product of three weakly convergent sequences in the sense that

[ un@)-v Jim s@en@a = [ [ wla,n)- oo g)ple pidsdy

where n(z) = p(z, )

Remark 14 The relationship betweens Theorems 11 and 12 deserves some attention. It
is easy to see that Theorem 12 leads to the result in Theorem 11 if we chose p(x,y) = p(x)
and

/YUO(JJ,y)-v(x,y)dy=/yu(>(:r,y)dy-/Yv(x,y)dy- (13)

If for example ug(x,y) = u(x) the identity (13) follows immediately from the fact that the
weak limit u is obtained from the two-scale limit ug through

uw) = [ wle.p)dy.

It is well known that the loss of the second scale appears when {uy} is strongly convergent.
Howewver, for this case the result in Theorem 11 appears trivially by elementary functional
analysis. An important question in this connection is whether the second scale may vanish
under some conditions not including strong convergence. We demonstrate a such situation
below. By the assumption that {curlv,} is bounded in L*(Q) we conclude from two-scale
compactness that curl,vy = 0. Classical vector calculus arguments then says that there
ezists a function ¥ such that

vo(z,y) = v(z) + V,¥(z,y).

Moreover divyug = 0 and this together with integration by parts applied on the second term
yields

L[ ot 0@+ V0@ aneta)ds = [ ([ vale.ndy) - o@)ote)ds
Thus, by letting
@) = [ wole.v)dy.
this gives the identity
[ ot v n)dneterts = [ uo) - ola)pta)ds
for all ¢ € D(Q).



4 Generalized two-scale convergence and defect mea-
sures

In this final section we exhibit an explicit example of a sequence {7} of operators of
the type introduced in Theorem 1 and investigate the relationship with well known cases.
Outgoing from this we introduce an approach that can be seen as a type of generalized
unfolding (see [8]) and make some preliminary observations concerning how to introduce a
defect measure for generalized two-scale convergence.

4.1 A special case for general two-scale convergence

Let us consider again the expression

/ un () v (z) dz.

Q

If we let {v,} appear through a sequence of Hilbert-Schmidt operators {7} like

(@) = oe) = [ wnly)ola, )y,
Y
where {w;,} is bounded in L%(Q), then {v,} converges strongly in L?(2) (see([2]) 8.9) and
hence
/uh () vy (z)dz — /u () v (z) dx.
Q Q

For the corresponding operator with two scales given by

(@) = T () = / wn(z, y)o(z, y)dy,

Y

where {wy} is bounded in L?(2 x A), the strong convergence for {v},} does not hold in
general. If we chose e.g.

wh(xa y) = wllz(x)wz(y)

with {wj}} bounded in L?(Q) and w? € L?(A), the convergence of {v;,} in L?(Q2) will be
no stronger than that of {w}}. However, still it is strong enough to allow for generalized
two-scale convergence in the sense of (14) below.

We are now ready to show that, under assumptions neither including strong conver-
gence in any Lebesguespace nor differentiability or continuity requirements on the involved
functions, it holds up to a subsequence that

h—o0

lm [ up (x) vy (z)de = //uo (z,y)v (z,y) dzdy (14)

10



where ug € L? (2 x A) and

up U= /uo (z,y)dy in L*(Q). (15)

This is true if {us} and {v},} are bounded in L? () and

vy (z) = mo (2) = /wh (z,y)v(x,y) dedy

for some v € X = L*(Q x A), and {w,} a bounded sequence in X such that up to a
subsequence
wy, = w in L*(Q x A)

and
w? =W in L*(Q x A),
where W € L>(Q2 x A).
/wh (z,y)dy = 1.
A

The reason for this last condition is that the average over A for the two-scale limit ug shall
coincide with the corresponding weak limit u. It remains to show that

Jim (|70 20y < Cll9ll L2k a) (16)
and
[0l L2(@) < Clvllx - (17)

The weak convergence of w? in L?(Q x A) together with Jensens inequality yields that (16)
now becomes

2

foleey = | [wn@noeni) = [([un@@yara

L2(Q) Q A

//wi (, y) v* (ac,y)dﬂﬁdy—>//W(ﬂc,y)v2 (z,y) dvdy

IN

IN

2
C ||U||L2(Q><A)

Clearly

|mwam=://ﬁmwwmm@m
Q A

N

2 2 2
< lwnllzaxay 10llza@xay < Cllvlzaxa

11



and hence also (17) is proven. For any v = v (z) € L* () we obtain

h—o0

:’}i)rgo/uh(x) ://uo z,Y)v da:dy—/(/uo (z, y) dy)v (z) dz

Q A

lim [ up(2) vy, (z)dz = lim up, (x) /wh (z,y) v (x) dydx

and thus (15) is proven. Moreover, if we assume that w =1 it easy to show that
vy — / v(z,y)dy weakly in L*(Q).
A

Remark 15 Changing the order of mtegmtwn it is possible to reformulate the left hand
side of (14) into weak convergence in Ls(Q x A) like

{Uhs THV) 20 :/Uh( Th ( // ) wn (2,y) v (2,y) dydz,
Q

Q

where v € LY(Q x A) and {upwy} is bounded in L3(QY x A). We can look upon this as if
we had "unfolded” uy by means of the adjoint operator

Tl:uh (.I,y) = Up (.I) Wh (iﬁ,y) .

It is now possible to perform the two-scale convergence process in the equivalent form

(Thun, V) 120xy) =//Ti{uh (z,y) v (z,y) dedy
Q A

://uh (z) wy, (x,y)u(x,y)dxdy—)//uo (z,y) v (z,y) dzdy.

Note that the limit uy € L?(Q x A) eventhough it is the weak limit of a sequence that is
just bounded in L3 (9 x A).

The remark below provides us with a link between the type of two-scale convergence
introduced in this section and traditional periodic two-scale convergence.

Remark 16 Let v € C*(Q;C2 (Y)), where Y = (0,1)", i.e. the set of smooth functions

per
with (unit) period in the second argument. We can construct the usual set of periodic

oscillating test functions v(x,xz/ey) by setting

on(@) = Tao(z) = /Y aen )0 (. y)dy = v(z, 2 /en),

where &, 18 the usual delta distribution.

12



4.2 Defect measures for two-scale convergence

A general complication with two-scale convergence is that the sequence to be analyzed
and the corresponding two-scale limit lives in completely different spaces. The operator
75 helps us to overcome this problem. Among others it makes it possible to introduce a
defect measure ¢p for two-scale convergence. Below we suggest a defect measure and show
how it can be simplified when the two-scale limit uy belongs to the admissible space X.
We compare 7;u;, with the two-scale limit in the norm topology of L? (2 x A).

: . 2
sp (un,ug) = hh_>nolo |74 un — “0||L2(Q><A)
= hh—>nolo // (Trun (2,9))? = 277 up (2, y) uo (x,y) + u2 (z,y) dedy
Q A

= Jim [ [ G ()" ~ 20 @) o (0) + 4 (0, dy

h—o0

h—o0

0 A

= lim // (T7un (z,9))* — u2 (z,y) dedy
QA

if ug € X. In this case we have

h—o0

lim // (riun (z,9)) — u2 (z,y) dedy
QA

as a measure on what is missing to obtain strong convergence. The properties of such
defect measures and under which conditions 7; and its possible generalizations exists with
appropiate characteristics will be scrutinized in a forthcoming paper.

We close this section by presenting an explicit example of unfolding operators in the
periodic setting.

Example This example is due to Cioranescu et. al. [8]. Let ¥ = (0,1)" and let {¢,}
be a sequence of positive real numbers tending to zero as h — oo. For any x € R* we write

(2 +2)

where [-] denotes the integer part and where we use the fact that for any z € R* and h € N
there exists a unique number k£ € Z" such that

X
—=k+y, yey.
€n

For any u € L?(2) we now define the unfolding operators in the periodic setting. See also
i L2(Q) = L2(Q2xY)

13



as

. z
Thu(z,y) =u <6h [;:| + 6hy> }
Y

Acknowledgement: The authors wish to thank prof. Francois Murat for inspiring
discussions particularily concerning the relationship between classical and two-scale com-
pensated compactness.
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