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A POSTERIORI ERROR ESTIMATION IN COMPUTATIONAL
INVERSE SCATTERING

LARISA BEILINA AND CLAES JOHNSON

Abstract. We present an adaptive finite element method for an inverse acoustic scat-
tering problem, where the objective is to reconstruct an unknown wave speed coefficient
inside a body from measured wave reflection data in time on parts of the surface of the
body. The inverse problem is formulated as a problem of finding a zero of a Jacobian of
a Lagrangian. The mesh in space is adaptively determined based on an a posteriori error
estimate coupling residuals of the computed solution obtained by solving an associated
linearized problem for the Hessian of the Lagrangian. The weights reflect the sensitivity
of the reconstruction with respect to the discretization. We show concrete examples of
reconstruction based on a posteriori error estimation.

1. Introduction

In this paper we consider an adaptive hybrid finite element/difference methods for an in-
verse scattering problem for a time-dependent scalar acoustic wave equation in the form of
a parameter identification problem. The parameter represents the speed of wave propaga-
tion and occurs as a space-dependent coefficient in the wave equation, and the identification
is made from partial knowledge of the solution of the wave equation in space and time.
The objective is typically to determine the form and location of unknown objects (inho-
mogenities) inside a given surrounding body from measured wave reflection data in space
and time on parts of the surface of the body. This problem arises in many applications
including geophysics exploration, medical imaging and non-destructive testing.

The basic mathematical tool amounts to numerically solving the time-dependent acoustic
wave equation with given wave speed coefficient, combined with least squares optimization
to measured data, through which the wave speed coefficient with best wave reflection fit
to the observed data, is determined. The optimality conditions, which express stationarity
of an associated Lagrangian, involve a “forward” wave equation (state equation) and a
“backward” wave equation (adjoint state equation), together with an equation expressing
that the gradient with respect to the wave speed coefficient vanishes. The optimum is
sought in an iterative process solving in each step the forward and backward wave equations
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and updating the material coefficients, in the form of a quasi-Newton method for the
optimality equations.

The main purpose of this paper is to derive an a posteriori error estimate for the identi-
fication of the wave speed coefficient, and to present a couple of experiments showing the
possibilities of computational inverse scattering using adaptive error control. The key in-
gredients of the a posteriori error estimate is evaluation of residuals relating to the Jacobian
of the Lagrangian, combined with computation of stability factors/weights by solving an
associated dual linearized problem involving the Hessian of the Lagrangian. We follow the
main approach to adaptive error control in computational differential equations presented
in [16] and [4] and related work.

In real applications the data is generated by emitting acoustic waves on the surface of
the surrounding body, which penetrate the body and then are recorded on parts of the
surface of the body. In the computational experiments of this note, instead synthetic data
is generated by computing solutions of the wave equation with given wave speed coefficients
and recording the corresponding solution on parts of the surface of the surrounding body.
The objective is then to recover the wave speed coefficient inside the body from the recorded
boundary data, normally with some noise added.

The reconstruction problem is “ill-posed” in the sense that quite different coefficients
may correspond to very similar wave reflection data, and thus we need to “regularize”
the reconstruction by introducing a regularizing term in the Lagrangian depending on a
certain positive (small) coefficient γ, and it is important to choose γ adaptively to get a best
reconstruction. If we choose γ too large, then we cannot match the measured data, while
as γ gets smaller, the weights in the a posterori error estimate connected to the solution
of the Hessian problem become larger, and again the reconstruction suffers. Balancing
the two sources of error, we can adaptively determine a best value of γ. This value will
depend on the quality of the measured data, with poor data typically demanding more
regularization.

2. Acoustic wave propagation

The scalar wave equation modeling acoustic wave propagation in a bounded domain
Ω ⊂ Rd, d = 2, 3, with boundary Γ, takes the following form:

α
∂2p

∂t2
−4p = f, in Ω × (0, T ),

p(·, 0) = 0,
∂p

∂t
(·, 0) = 0, in Ω,

p
∣

∣

Γ
= 0, on Γ × (0, T ),

(2.1)

where p(x, t) ∈ R is the pressure satisfying homogeneous boundary and initial conditions,
the coefficient α(x) = c(x)−2 with c(x) the wave speed depending on x ∈ Ω, t is the time
variable and T is a final time, and f(x, t) is a given source function. In the applications
we also use different absorbing boundary conditions formulated to allow waves to leave
the computational domain without reflections. The problem (2.1) is the forward problem



A POSTERIORI ERROR ESTIMATION IN COMPUTATIONAL INVERSE SCATTERING 3

with the coefficient α(x) being given and and we seek the solution p(x, t). In the inverse
problem, we seek α(x) from knowledge of p(x, t) on parts of Γ.

2.1. A hybrid finite element/difference method. We use a hybrid finite ele-
ment/difference method for time-domain acoustic/elastic wave propagation obtained by
using continuous space-time piecewise linear finite elements on a partially structured mesh
in space. The resulting scheme is efficiently implemented by (i) mass lumping in space and
time making the scheme explicit in time and (ii) using a fixed finite difference stencil on
the structured mesh.

The computational space domain Ω is decomposed into a finite element domain ΩFEM

with an unstructured mesh and a finite difference domain ΩFDM with a structured mesh,
with typically ΩFEM covering only a small part of the Ω. In ΩFDM we use quadraliteral
elements in R2 and hexahedra in R3. In ΩFEM we use a finite element mesh Kh = {K}
with elements K consisting of triangles in R2 and tetrahedra in R3). We associate with
Kh a (continuous) mesh function h = h(x) representing the diameter of the element K
containing x. For the time discretization we let Jτ = {J} be a partition of the time interval
I = (0, T ) into time intervals J = (tk−1, tk] of uniform length τ = tk − tk−1.

We define the following L2 innner product and norm

((p, q)) =

∫

Ω

∫ T

0

pq dx dt, ‖p‖2 = ((p, p)),

We further use the notation Dv = ∂v
∂t

.
To formulate a finite element method for (2.1) we introduce the finite element trial space

W p
h defined by:

W p
h := {w ∈ W p : w|K×J ∈ P1(K) × P1(J), ∀K ∈ Kh, ∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of linear functions on K and J, respectively, and

W p := {w ∈ H1(Ω × I) : w(·, 0) = 0, w|Γ = 0}.

Correspondingly, we introduce the finite element test space W ϕ
h defined by:

W ϕ
h := {w ∈ W ϕ : w|K×J ∈ P1(K) × P1(J), ∀K ∈ Kh, ∀J ∈ Jτ},

where

W ϕ := {w ∈ H1(Ω × I) : w(·, T ) = 0, w|Γ = 0}.

In other words, the finite element spaces W p
h and W ϕ

h consist of continuous piecewise linear
functions in space and time, satisfying certain homogeneous (initial) conditions at t = 0
and t = T . Note the abuse of notation here, where e.g. the index p in W p

h signifies trial
space in general, while it is also used to denote the exact solution in particular.

The finite element method for (2.1) now reads: Find ph ∈ W p
h such that ∀ϕ̄ ∈ W ϕ

h ,

(2.2) −((αDph, Dϕ̄)) + ((∇ph,∇ϕ̄)) = ((f k, ϕ̄)).

Here, the initial condition Dp(0) = 0 is imposed in weak form through the variational
formulation.
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2.2. An explicit scheme for acoustic waves. Expanding p in terms of the standard
continuous piecewise linear functions in space and in time and substituting this into (2.2),
the following system of linear equations is obtained:

M(pk+1 − 2pk + pk−1) =(2.3)

τ 2F k − τ 2K(
1

6
pk−1 +

2

3
pk +

1

6
pk+1)

with initial conditions p0 = 0, p1 ≈ 0. Here, M is the mass matrix in space, K is the
stiffness matrix for the Laplacian, F k is the load vector at time level tk corresponding to
f(·, ·), and pk denotes the vector of nodal values of p(·, tk).

To obtain an explicit scheme we approximate M with the lumped mass matrix ML,
i.e., the diagonal approximation obtained by taking the row sum of M , see e.g. [19]. By
multiplying (2.3) with (ML)−1 and replacing the terms 1

6
pk−1 + 2

3
pk + 1

6
pk+1 by pk, we

obtain the following efficient explicit method:

pk+1 = τ 2(ML)−1F k + 2pk − τ 2(ML)−1Kpk − pk−1.(2.4)

3. Inverse acoustic scattering

We formulate the inverse problem for acoustic scattering as an optimization problem
where we seek the wave speed coefficient c(x) which gives a wave equation solution with best
least squares fit to time domain observations (measurements) at a finite set of observations
points xobs.

More precisely, our goal is to find the function c(x) which minimizes the quantity

(3.1) E(p, c) =
1

2

∫ T

0

∫

Ω

(p− p̃)2δobsdxdt+
1

2
γ

∫

Ω

(|∇α|2 + α2) dxdt,

where p̃ is observed data at xobs, p satisfies (2.1) and thus depends on c, δobs =
∑

δ(xobs) is
a sum of multiples of delta-functions δ(xobs) corresponding to the observation points, and
γ is a regularization parameter.

To approach this minimization problem, we introduce the Lagrangian

L(u) = E(p, c) − ((αDp,Dϕ)) + ((∇p,∇ϕ)) − ((f, ϕ)),

where u = (p, ϕ, α), and search for a stationary point with respect to u satisfying ∀ū

(3.2) L′(u; ū) = 0,

where L′(u; ·) is the Jacobian of L at u, and we assume that ϕ(·, T ) = ϕ̄(·, T ) = 0 and
p(·, 0) = p̄(·, 0) = 0, together with homogeneous Dirichlet boundary conditions.
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The equation (3.2) expresses that in Ω × (0, T )

α
∂2p

∂t2
−4p = f,(3.3)

α
∂2ϕ

∂t2
−4ϕ = −(p− p̃)δobs,(3.4)

−γ4α + γα−

∫ T

0

∂p

∂t

∂ϕ

∂t
dt = 0,(3.5)

together with homogeneous boundary and initial conditions. The equation (3.3) is the state
equation for the state p, the equation (3.4) is the adjoint state equation for the costate ϕ,
and the equation (3.5) expresses stationarity with respect to the coefficient c.

3.1. A finite element method for inverse acoustic scattering. To formulate a finite
element method for (3.2) we introduce the finite element space Vh of piecewise constants
for the coefficient c(x), defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K), ∀K ∈ Kh},

we recall the definition of W p
h related to the state p and W ϕ

h for the costate ϕ, and we
define Uh = W p

h ×W ϕ
h × Vh.

The finite element method for (3.2) now reads: Find uh ∈ Uh, such that

(3.6) L′(uh; ū) = 0 ∀ū ∈ Uh,

where the Laplacian regularization term is implemented using a discontinuous Galerkin
method, see e.g. [10]. We solve this discrete problem using a quasi-Newton method with
limited storage, with details of the implementation given in [9].

4. A posteriori error estimation for the Lagrangian

We obtain an a posteriori error estimate for error in the Lagrangian by first noting that

L(u) − L(uh) =

∫ 1

0

d

dε
L(εu + (1 − ε)uh)dε

=

∫ 1

0

L′(εu+ (1 − ε)uh; u− uh)dε

= L′(uh; u− uh) +R,

where R is a second order remainder term. Using next the Galerkin orthogonality (3.6)
with a splitting u− uh = (u− uI

h) + (uI
h − uh) where uI

h ∈ Uh denotes an interpolant of u,
and neglecting the term R, we get the following error representation:

(4.1) L(u) − L(uh) ≈ L′(uh; u− uI
h),

involving the residual L′(uh; ·) with u− uI
h appearing as a weight. We estimate u− uI

h in
terms of derivatives of u and the mesh parameters h and τ , and we finally approximate the
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derivatives of u by corresponding derivatives of uh. The a posteriori estimate (4.1) takes
the following concrete form if we omit the γ-terms (for details, see [9]):

|L(u) − L(uh)| ≤

∫ T

0

∫

Ω

Rp1
σϕ dxdt+

∫ T

0

∫

Ω

Rp2
σϕ dxdt

+

∫ T

0

∫

Ω

Rp3
σϕ dxdt+ +

∫ T

0

∫

Ω

Rϕ1
σp dxdt

+

∫ T

0

∫

Ω

Rϕ2
σp dxdt+

∫ T

0

∫

Ω

Rϕ3
σp dxdt

+

∫ T

0

∫

Ω

Rασα dx(4.2)

where the different residuals R are defined as

Rp1
=

∣

∣f
∣

∣, Rp2
= max

S⊂∂K
h−1

k

∣

∣

[

∂sph

]
∣

∣, Rp3
= αhτ

−1
∣

∣

[

∂tph

]
∣

∣,

Rϕ1
=

∣

∣ph − p̃
∣

∣, Rϕ2
= max

S⊂∂K
h−1

k

∣

∣

[

∂sϕh

]
∣

∣, Rϕ3
= αhτ

−1
∣

∣

[

∂tϕh

]
∣

∣,

Rα =

∣

∣

∣

∣

∂ϕh

∂t

∣

∣

∣

∣

·

∣

∣

∣

∣

∂ph

∂t

∣

∣

∣

∣

,

and the different weights σ have the following form:

σϕ = C1τ |[∂tϕh]| + C1h |[∂sϕh]| ,

σp = C1τ |[∂tph]| + C1h |[∂sph]| ,

σα = C2

∣

∣[αh]
∣

∣,

where [v] on a space element K (or time-interval J) denotes the maximum of the modulus of
the jump of the quantity v across a face ofK (or boundary node of J), and in particular [∂sv]
on a space-element K denotes the maximum modulus of a jump in the normal derivative
ov v across a side of K, and [∂tv] on a time-interval J is the maxium modulus of the jump
of the time derivative of v across a boundary node of J . Here C1 ∼ 0.1 and C2 ∼ 1 are
interpolation constants.

5. An a posteriori error estimate for parameter identification

Now we present a more general a posteriori error estimate, which may be used to estimate
the error in the parameter identification, our prime quantity of interest. This estimate
involves the solution ũ of the dual problem:

(5.1) −L′′(uh; ū, ũ) = (ψ, ū) ∀ū,

where ψ acts as given data, and L′′(u; ·, ·) is the Hessian of the Lagrangian L(u) at u, which
expresses the sensitivity of the Jacobian L′(u; ·) with respect to changes in u. Assuming
this problem can be solved, we obtain choosing here ū = u − uh and using the fact that
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L′′(u; ū, ũ) is symmetric in ū and ũ, the following error representation:

((ψ, u− uh)) = −L′′(uh; u− uh, ũ)

= −L′(u; ũ) + L′(uh; ũ) +R

= L′(uh; ũ) +R = L′(uh; ũ− ũI) +R,

where ũI is an interpolant of ũ and again R is a second order remainder. Neglecting R we
obtain the following analog of (4.1)

((ψ, u− uh)) ≈ L′(uh; ũ− ũI),

with ũ replacing u in the second argument. With proper choice of ψ and estimating
ũ− ũI as above by solving approximately for ũ, we may this way obtain, for example, an
a posteriori error estimate for a mean value of the error in the parameter identification.
The concrete form of this estimate is the same as that given above for the Lagrangian with
only u replaced by ũ in the weights.

Choosing different ψ as data in the dual problem, we obtain a posteriori control of the
error in different quantities of interest. Below, we will typically choose ψ = (0, 0, 1) in a
domain containing the object, in which case the a posteriori error estimate gives control
of a mean value of the coefficient α. We note that in the a posterori error estimate, the
solution component α̃ of the solution to the dual problem, or more precisely the jump [α̃]
of a computed α̃, appears as a weight in the equation expressing stationarity with respect
to the coefficient α. We may thus view the jump [α̃] as a quantitative measure of a main
aspect of sensitivity in the identification of α.

5.1. The Hessian for the acoustic wave equation. The Hessian L′′(u; ·, ·) of the La-
grangian L(u) takes the form

L′′(u; ū, ũ) = −((αDp̃,Dϕ̄)) + ((∇p̃,∇ϕ̄))

+ ((p̄, p̃))δobs
− ((ᾱDp̃,Dϕ))

− ((αDp̄,Dϕ̃)) + ((∇p̄,∇ϕ̃)) − ((ᾱDp,Dϕ̃))

− ((α̃Dp,Dϕ̄)) − ((α̃Dp̄,Dϕ)) + γ((∇ᾱ,∇α̃)) + γ((ᾱ, α̃))

and the dual problem thus takes the following strong form:

αD2ϕ̃− ∆ϕ̃ + p̃δobs
+D2ϕα̃ = ψ1,

αD2p̃− ∆p̃+D2pα̃ = ψ2,(5.2)
∫ T

0

D2ϕp̃ dt+

∫ T

0

ϕ̃D2p dt− γ4α̃+ γα̃ = ψ3,

together with initial and boundary conditions. The quantitative stability properties of this
linear system in the form of estimation of the solution ũ in terms of the data ψ, determines
the sensitivity in the parameter identification to perturbations. Thus, we may say that the
secret of parameter identification is reflected by the quantitative stability (or solvability)
properties of the linear system (5.2), properties which can be determined by computational
solution.
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With correct data, the dual solution ϕ will be small and thus we may expect to be able
to neglect the terms with D2ϕ as coefficient in (5.2). In this case one can directly prove
uniqueness of the solution if γ > 0, which is a good sign, but the quantitative stability
properties still remain to be evaluated. We may further expect the stability properties of
this system to improve (the sensitivity to decrease), with increasing number of observation
points and correct observations.

5.2. An iterative method for solving the Hessian problem. To solve the dual Hes-
sian problem (5.2) with u = (p, α, ϕ) computed as above and the D2ϕ terms eliminated, we
use the following iterative algorithm (where typically ψ = (0, 0, 1) on some set including
the object and zero else, corresponding to a mean value of the wave speed coefficient):

1. Choose an initial value ũ = ũold.
2. From the third equation in (5.2) update α̃ according to

(5.3) (1 + ργ)α̃new = α̃old + ρ(ψ3 −

∫ T

0

ϕ̃oldD2p dt+ γ4α̃old)

3. From the second equation update p̃ by solving the wave equation

(5.4) αD2p̃new − ∆p̃new = ψ2 −D2pα̃new

4. From the first equation update ϕ̃ by solving the wave equation

(5.5) αD2ϕ̃new − ∆ϕ̃new = ψ1 − p̃new
δobs

5. Then set ũold = ũnew and go back to 2, and repeat until desired convergence is
achieved.

Here, ρ > 0 is a step length at our choice.
As will be seen below, the Hessian problem is rather “ill-posed” in the sense that the value

of the solution component α̃ will be critically dependent on the regularization parameter
γ, and in particular will increase as 1

γ
as γ tends to zero. Luckily, as we noticed above, in

the a posteriori error estimate the jump [α̃] appears rather than α̃ itself (because of the
Galerkin orthogonality), and the jump turns out to be less sensitive to the smallness of
γ than α̃ itself, and thus the error a posteriori estimation does not degenerate for small
γ. Note that because of the normalization used, we will have to choose γ small (of the
order 0.001 to 0.0001) in the inverse problem to not disturb the reconstruction by too much
regularization. It is thus essential that the Hessian problem produces a solution component
α̃ with a jump that is not too large.

More precisely, keeping just the α̃ terms the a posteriori error estimate for the coefficient
α takes the form:

(5.6) Eα ≡ |(α− αh, ψ3)| ≤

∫ T

0

∫

Ω

∣

∣

∣

∣

∂ϕh(x, t)

∂t
·
∂ph(x, t)

∂t

∣

∣

∣

∣

·
∣

∣[α̃h]
∣

∣ dxdt.
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a) b)

Figure 6.1. Cubic scatterer inside the finite element domain ΩFEM

6. Numerical examples

We seek to identify a cubic scatter inside a computational domain Ω = [0, 5.0]× [0, 2.5]×
[0, 2.5], which is split into a finite element domain ΩFEM = [0.3, 4.7]× [0.3, 2.3]× [0.3, 2.3]
with a nonstructured mesh, and a surrounding domain ΩFDM with a structured mesh,
see Fig. 6.1. We want to reconstruct the value of the coefficient α and we generate data
corresponding to α = 2 inside the cube, and α = 1 in the rest of the domain. The space
mesh in ΩFEM consists of tetrahedra and in ΩFDM of hexahedra with mesh size h = 0.2. We
apply the method given above implemented as a hybrid finite element/difference method
as presented in [8] with finite elements in ΩFEM and finite differences in ΩFDM with
absorbing boundary conditions on the boundary of Ω. We generate pulses on top of ΩFEM

and record on the bottom of ΩFEM , see Fig. 6.2.
We initiate six spherical pulses at the points (0.45, 2.2, 1.25),

(1.25, 2.2, 1.25), (2.05, 2.2, 1.25), (2.95, 2.2, 1.25), (3.75, 2.2, 1.25) and (4.55, 2.2, 1.25), given
by the source function

(6.1) f1(x, x0) =

{

103 sin2 πt if 0 ≤ t ≤ 0.1 and |x− x0| < r,
0 otherwise;

In Fig. 6.2 we present the computed exact solution of the problem (2.1) inside ΩFEM .
The observation points are placed at the surface of the ΩFDM on the opposite side to
the initialization points. We use a total of 22 observation points. We perform tests with
T = 3.0 and 300 time steps.

The optimization algorithm is started with an initial value of the parameter α = 1.0
at all points of the computational domain. The computations was performed on five
times adaptively refined meshes. In Table 1 we show computed L2 norms of p − pobs on
adaptively refined meshes with the regularization parameter γ = 0.0001. In Fig. 6.5 we
present isosurfaces of the reconstructed parameter α on adaptively refined meshes.

In Fig. 6.3 we present the L2 norms of α̃ and ϕ̃ as functions of the number of iterations
according to (5.3)-(5.5), computed with the regularization parameter γ = 0.0001 and
ρ = 100. In Fig. 6.4 we present corresponding values of α̃ at two different points.



10 LARISA BEILINA AND CLAES JOHNSON

t=0.2 t=0.7

t=0.3 t=0.9

t=0.5 t=1.1

t=0.6 t=1.5

Figure 6.2. The exact solution displayed in ΩFEM .
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a) b)

Figure 6.3. In a) we display, in the case γ = 0.0001 and ρ = 100, the L2

norm of ϕ̃ as a function of the number of iterations in the Hessian problem.
The corresponding data for α̃ is given in b). We notice that the norm of α̃
is of the order 1/γ, see also Fig 6.4.

.

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000
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6000

7000
α−tilde at point (2.5,1.3,1.3) with ρ=1000 and with reg.term

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500
α−tilde at point (20.7,2.1,1.5) with ρ=1000 and with reg.term

a) b)

Figure 6.4. In a) we display the value of α̃ in the point (2.5,1.3,1.3) as a
function of the number of iterations in the Hessain problem. The correspond-
ing values at (0.7,2.1,1.5) are displayed in b). Again we have γ = 0.0001 and
ρ = 100.

Evaluating the a posteriori error estimate (5.6) for the error Eα in the parameter α,
we find Eα ≤ 0.28, which seems to be consistent with the level surface plots of Fig. 6.5.
Again, notice that the jump [α̃] across inter-element edges of α̃ occurs as a weight in the
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opt.it. 2783 nodes 2847 nodes 3183 nodes 3771 nodes 4283 nodes 6613 nodes
1 0.0493302 0.0516122 0.051569 0.0529257 0.0535081 0.0537523
2 0.0405683 0.0423093 0.0419412 0.0428817 0.0433272 0.0439134
3 0.0235056 0.0239327 0.0245081 0.0271383 0.0285571 0.031920
4 0.0191902 0.0192185 0.0187792 0.0205331 0.0221997 0.0239426
5 0.0115005 0.0110448 0.0174202 0.0205711 0.0104240
6 0.0156732 0.0112331 0.0101503
7 0.0121359 0.0102246
Table 1. The table presents the L2 norm of computed p − pobs with γ =
0.0001 on different adaptively refined meshes and with 5 stored corrections
in the quasi-Newton method.

a posteriori error estimate, not the value of α̃ itself, and that the jump [α̃] is less sensitive
to the smallness of the regularization parameter γ than α̃ itself.
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coarse mesh, 9 q.N. it., α ≈ 1.21 1 time ref., 8 q.N.it., α ≈ 1.27

3 times ref.mesh, 4 q.N.it, α ≈ 1.23 4 times ref.mesh, 9 q.N.it, α ≈ 1.23

5 times ref.mesh, 8 q.N.it, α ≈ 1.74 5 times ref.mesh, 9 q.N.it, α ≈ 1.91

Figure 6.5. The plots show level surfaces of the reconstructed parame-
ter α on adaptively refined meshes with different number of quasi-Newton
iterations (q.N.it) in the optimization.
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