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INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH

FUNCTIONS IN ONE DIMENSION

ANDERS LOGG

Abstract. In preparation for a priori error analysis of the multi-adaptive Galerkin meth-
ods mcG(q) and mdG(q) presented earlier in a series of papers, we prove basic interpolation
estimates for a pair of carefully chosen non-standard interpolants. The main tool in the
derivation of these estimates is the Peano kernel theorem. A large part of the paper is
non-specific and applies to general interpolants on the real line.

1. Introduction

The motivation for this paper is to prepare for the a priori error analysis of the multi-
adaptive Galerkin methods mcG(q) and mdG(q), presented earlier in [1, 2]. This requires
a set of special interpolation estimates for piecewise smooth functions, which we prove in
this paper.

Throughout this paper, V denotes the space of piecewise smooth, real-valued functions
on [a, b], that is, the set of functions which, for some partition a = x0 < x1 < . . . <
xn < xn+1 = b of the interval [a, b] and some q ≥ 0, are Cq+1 and bounded on each of the
sub-intervals (xi−1, xi), i = 1, . . . , n + 1. This is illustrated in Figure 1.

For v ∈ V , we denote by πv a polynomial approximation of v on [a, b], such that πv ≈ v.
We refer to πv as an interpolant of v.

We are concerned with estimating the size of the interpolation error πv − v in the
maximum norm, ‖ · ‖ = ‖ · ‖L∞([a,b]), in terms of the regularity of v and the length of the
interval, k = b − a. Specifically, when v ∈ Cq+1([a, b]) ⊂ V for some q ≥ 0, we obtain
estimates of the form

(1.1) ‖(πv)(p) − v(p)‖ ≤ Ckq+1−p‖v(q+1)‖, p = 0, . . . , q + 1.

In the general case, the interpolation estimates include also the size of the jump [v(p)]x in
function value and derivatives at the points of discontinuity within (a, b).

Date: February 11, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE, continuous

Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates, Peano kernel theorem, interpola-
tion estimates, piecewise smooth.
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Figure 1. A piecewise smooth function v and its interpolant πv.

1.1. Outline of the paper. We first assume that v ∈ Cq+1([a, b]) ⊂ V and use the Peano
kernel theorem to obtain a representation of the interpolation error πv−v (Section 2). We
then directly obtain interpolation estimates (for v ∈ Cq+1([a, b])) in Section 3.

In Section 4, we generalize the interpolation estimates from Section 3 to v piecewise
smooth by constructing a regularized version of v. Finally, in Section 5, we apply the
general results of Section 4 to a pair of special interpolants that appear in the a priori
error analysis of the mcG(q) and mdG(q) methods.

2. The Peano kernel theorem

The basic tool in our derivation of interpolation estimates is the Peano kernel theorem,
which we discuss in this section. In its basic form, the Peano kernel theorem can be stated
as follows.

Theorem 2.1. (Peano kernel theorem) For Λ a bounded and linear functional on V that

vanishes on Pq([a, b]) ⊂ V , define

(2.1) K(t) =
1

q!
Λ((· − t)q

+),

where v+(t) = max(0, v(t)). In other words, K(t) = Λw/q!, with w(x) = [max(0, x − t)]q.
If K has bounded variation and v ∈ Cq+1([a, b]), then

(2.2) Λv =

∫ b

a

K(t)v(q+1)(t) dt.

Proof. See [3]. �
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Let now v ∈ V and let

(2.3) π : V → Pq([a, b]) ⊂ V.

If we can show that

(1) π is linear on V ,
(2) π is exact on Pq([a, b]) ⊂ V , that is, πv = v for all v ∈ Pq([a, b]), and
(3) π is bounded on V , that is, ‖πv‖ ≤ C‖v‖ for all v ∈ V for some constant C > 0,

then the Peano kernel theorem directly leads to a representation of the interpolation error
πv − v.

Theorem 2.2. (Peano kernel theorem II) If π is linear and bounded (with constant C > 0)
on V , and is exact on Pq([a, b]) ⊂ V , then there is a bounded function G : [a, b]×[a, b] → R,

with |G(x, t)| ≤ 1 + C for all x, t ∈ [a, b], such that for all v ∈ Cq+1([a, b]),

(2.4) πv(x) − v(x) =
kq+1

q!

1

k

∫ b

a

v(q+1)(t)G(x, t) dt,

where k = b−a. Furthermore, if g is an integrable, (essentially) bounded function on [a, b],
then there is a function Hg : [a, b] → R, with |Hg(x)| ≤ (1 + C)‖g‖ for all x ∈ [a, b], such

that for all v ∈ Cq+1([a, b]),

(2.5)

∫ b

a

(πv(x) − v(x)) g(x) dx =
kq+1

q!

∫ b

a

v(q+1)(x)Hg(x) dx.

Proof. To prove (2.4), we define for any fixed x ∈ [a, b],

Λxv = πv(x) − v(x),

which is linear, since π is linear. Furthermore, if v ∈ Pq([a, b]) then πv = v so Λx vanishes
on Pq([a, b]). From the estimate,

|Λxv| = |πv(x) − v(x)| ≤ |πv(x)| + |v(x)| ≤ (1 + C)‖v‖,

it follows that Λx is bounded. Now,

Kx(t) =
1

q!
Λx((· − t)q

+) =
1

q!
[π((· − t)q

+)(x) − (x − t)q
+]

=
kq

q!

[

π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

]

=
kq

q!
G(x, t),

where |G(x, t)| ≤ 1 + C for x, t ∈ [a, b]. Thus, by the Peano kernel theorem,

πv(x) − v(x) = Λxv =
kq+1

q!

1

k

∫ b

a

v(q+1)(t)G(x, t) dt.

To prove (2.5), define Λ by

Λv =

∫ b

a

(πv(x) − v(x))g(x) dx,
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which is linear, bounded, and vanishes on Pq([a, b]). Now,

K(t) =
1

q!

∫ b

a

[π((· − t)q
+)(x) − (x − t)q

+] g(x) dx

=
kq+1

q!

1

k

∫ b

a

[

π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

]

g(x) dx =
kq+1

q!
Hg(t),

where Hg(t) ≤ (1 + C)‖g‖ for t ∈ [a, b]. By the Peano kernel theorem, it now follows that
∫ b

a

(πv(x) − v(x))g(x) dx =
kq+1

q!

∫ b

a

v(q+1)(t)Hg(t) dt.

�

In order to derive a representation for derivatives of the interpolation error, we need to
investigate the differentiability of the kernel G(x, t).

Lemma 2.1. (Differentiability of G) If π is linear on V , then the kernel G, defined by

(2.6) G(x, t) = π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

,

has the following properties:

(i) For any fixed t ∈ [a, b], G(·, t) ∈ Cq−1([a, b]) and

(2.7)
∂p

∂xp
G(x, t) = k−pGx,p(x, t), p = 0, . . . , q,

where each Gx,p is bounded on [a, b] × [a, b] independent of k.

(ii) For any fixed x ∈ [a, b], G(x, ·) ∈ Cq−1([a, b]) and

(2.8)
∂p

∂tp
G(x, t) = k−pGt,p(x, t), p = 0, . . . , q,

where each Gt,p is bounded on [a, b] × [a, b] independent of k.

(iii) For x 6= t and p1, p2 ≥ 0, we have

(2.9)
∂p2

∂xp2

∂p1

∂tp1

G(x, t) = k−(p1+p2)Gt,x,p1,p2
(x, t),

where each Gt,x,p1,p2
is bounded on [a, b] × [a, b]\{(x, t) : x = t} independent of k.

Proof. Define

G(x, t) = π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

≡ g(x, t) − h(x, t).

We first note that for any fixed t ∈ [a, b], h(·, t) ∈ Cq−1([a, b]) with

∂p

∂xp
h(x, t) =

∂p

∂xp

(

x − t

k

)q

+

= k−p q!

(q − p)!

(

x − t

k

)q−p

+

= k−phx,p(x, t),
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where hx,p is bounded on [a, b] × [a, b] independent of k. Similarly, we note that for any
fixed x ∈ [a, b], h(x, ·) ∈ Cq−1([a, b]) with

∂p

∂tp
h(x, t) =

∂p

∂tp

(

x − t

k

)q

+

= k−p q!(−1)p

(q − p)!

(

x − t

k

)q−p

+

= k−pht,p(x, t),

where ht,p is bounded on [a, b] × [a, b] independent of k.
If we now let π[0,1] denote the interpolant shifted to [0, 1], we can write

g(x, t) = π

((

· − t

k

)q

+

)

(x) = π

((

(· − a)

k
−

(t − a)

k

)q

+

)

(x)

= π[0,1]

((

· −
(t − a)

k

)q

+

)

((x − a)/k),

and so, for any fixed t ∈ [a, b], g(·, t) ∈ Pq([a, b]) ⊂ Cq−1([a, b]), with

∂p

∂xp
g(x, t) = k−pπ

(p)
[0,1]

((

· −
(t − a)

k

)q

+

)

((x − a)/k)) = k−pgx,p(x, t),

where gx,p is bounded on [a, b] × [a, b] independent of k. Finally, let s = (t − a)/k. Then,

g(x, t) = π[0,1]

(

(· − s)q
+

)

((x − a)/k)).

The degrees of freedom of the interpolant π[0,1]

(

(· − s)q
+

)

are determined by the solution
of a linear system, and thus each of the degrees of freedom (point values or integrals) will
be a linear combination of the degrees of freedom of the function (· − s)q

+, each of which
in turn are Cq−1 in the s-variable. Hence, g(x, ·) ∈ Cq−1([a, b]) for any fixed x ∈ [a, b], with

∂p

∂tp
g(x, t) =

∂p

∂tp
π[0,1]

(

(· − s)q
+

)

((x − a)/k)) = k−p ∂p

∂sp
π[0,1]

(

(· − s)q
+

)

((x − a)/k))

= k−pgt,p(x, t),

where gt,p is bounded on [a, b]× [a, b] independent of k. We now take Gx,p = gx,p−hx,p and
Gt,p = gt,p − ht,p, which proves (2.7) and (2.8).

To prove (2.9), we note that

∂p1

∂tp1

h(x, t) = k−p1
q!(−1)p1

(q − p1)!

(

x − t

k

)q−p1

+

,

and so, for x 6= t,

∂p2

∂xp2

∂p1

∂tp1

h(x, t) = k−(p1+p2)
q!(−1)p1

(q − (p1 + p2))!

(

x − t

k

)q−(p1+p2)

+

,

when p1 + p2 ≤ q and ∂p2

∂xp2

∂p1

∂tp1
h(x, t) = 0 for p1 + p2 > q. Furthermore, for any fixed x,

∂p1

∂tp1

g(x, t) = k−p1
∂p1

∂sp1

π[0,1]

(

(· − s)q
+

)

((x − a)/k)).
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With y = (x − a)/k, we thus have

∂p2

∂xp2

∂p1

∂tp1

g(x, t) = k−(p1+p2)
∂p2

∂yp2

∂p1

∂sp1

π[0,1]

(

(· − s)q
+

)

(y).

We conclude that
∂p2

∂xp2

∂p1

∂tp1

G(x, t) = k−(p1+p2)Gt,x,p1,p2
(x, t),

where Gt,x,p1,p2
is bounded on [a, b] × [a, b]\{(x, t) : x = t}. �

By differentiating (2.4), we now obtain the following representation for derivatives of the
interpolation error.

Theorem 2.3. (Peano kernel theorem III) If π is linear and bounded on V , and is exact

on Pq([a, b]) ⊂ V , then there is a constant C > 0, depending only on the definition of the

interpolant (and not on k), and functions Gp : [a, b] × [a, b] → R, p = 0, . . . , q, such that

for all v ∈ Cq+1([a, b]),

(2.10) (πv)(p)(x) − v(p)(x) =
kq+1−p

q!

1

k

∫ b

a

v(q+1)(t)Gp(x, t) dt, p = 0, . . . , q,

where for each p, |Gp(x, t)| ≤ C for all x, t ∈ [a, b] × [a, b].

Proof. For p = 0 the result follows from Theorem 2.2 with G0 = G. For p = 1, . . . , q, we
differentiate (2.4) with respect to x and use Lemma 2.1, to obtain

(πv)(p)(x) − v(p)(x) =
kq

q!

∫ b

a

v(q+1)(t)
∂p

∂xp
G(x, t) dt =

kq−p

q!

∫ b

a

v(q+1)(t)Gx,p(x, t) dt.

�

3. Interpolation estimates

Using the results of the previous section, we now obtain estimates for the interpolation
error πv − v. The following corollary is a simple consequence of Theorem 2.3.

Corollary 3.1. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂ V , then there

is a constant C = C(q) > 0, such that for all v ∈ Cq+1([a, b]),

(3.1) ‖(πv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

for p = 0, . . . , r + 1, r = 0, . . . , q.

Proof. If π is exact on Pq([a, b]), it is exact on Pr([a, b]) ⊆ Pq([a, b]) for r = 0, . . . , q. It
follows by Theorem 2.3 that for all v ∈ C(r+1)([a, b]), we have

‖(πv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

for p = 0, . . . , r. When r < q, this holds also for p = r + 1 ≤ q, and for p = r + 1 = q, we
note that ‖(πv)(p) − v(p)‖ = ‖v(p)‖ = ‖v(r+1)‖. �

This leads to the following estimate for the derivative of the interpolant.
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Corollary 3.2. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂ V , then there

is a constant C = C(q) > 0, such that for all v ∈ Cq+1([a, b]),

(3.2) ‖(πv)(p)‖ ≤ C‖v(p)‖,

for p = 0, . . . , q.

Proof. It is clear that (3.2) holds when p = 0 since π is bounded. For 0 < p ≤ q, we add
and subtract v(p), to obtain

‖(πv)(p)‖ ≤ ‖(πv)(p) − v(p)‖ + ‖v(p)‖.

Since π is exact on Pq([a, b]), it is exact on Pp−1([a, b]) ⊂ Pq([a, b]) for p ≤ q. It follows by
Corollary 3.1, that

‖(πv)(p)‖ ≤ Ck(p−1)+1−p‖v((p−1)+1)‖ + ‖v(p)‖ = (C + 1)‖v(p)‖ = C ′‖v(p)‖.

�

Finally, we show that it is often enough to show that π is linear on V and exact on
P(q)([a, b]), that is, we do not have to show that π is bounded.

Lemma 3.1. If π : V → Pq([a, b]) is linear on V , and is uniquely determined by n1

interpolation conditions and n2 = q + 1 − n1 projection conditions,

(3.3) πv(xi) = v(xi), i = 1, . . . , n1,

where each xi ∈ [a, b], and

(3.4)

∫ b

a

πv(x)wi(x) dx =

∫ b

a

v(x)wi(x) dx, i = 1, . . . , n2,

where each wi is bounded, then π is bounded on V , that is,

(3.5) ‖πv‖ ≤ C‖v‖ ∀v ∈ V,

for some constant C = C(q) > 0.

Proof. Define ‖ · ‖∗ on Pq([a, b]) by

‖v‖∗ =

n1
∑

i=1

|v(xi)| +

n2
∑

i=1

∣

∣

∣

∣

1

k

∫ b

a

v(x)wi(x) dx

∣

∣

∣

∣

.

Clearly, the triangle inequality holds and ‖αv‖∗ = |α|‖v‖∗ for all α ∈ R. Furthermore, if
v = 0 then ‖v‖∗ = 0. Conversely, if ‖v‖∗ = 0 then v ∈ Pq([a, b]) is the unique interpolant
of 0, and so v = π0 = 0 by linearity. Thus, ‖ · ‖∗ is a norm. Since all norms on a finite
dimensional vector space are equivalent, we obtain

‖πv‖ ≤ C‖πv‖∗ = C‖v‖∗ ≤ C(n1 + C ′n2)‖v‖ = C ′′‖v‖.

�
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4. Interpolation of piecewise smooth functions

We now extend the interpolation results of the previous two sections to piecewise smooth
functions.

4.1. Extensions of the Peano kernel theorem. To extend the Peano kernel theorem to
piecewise smooth functions, we construct a smooth version vε of the discontinuous function
v, with vε → v as ε → 0. For the construction of vε, we introduce the function

(4.1) w(x) = Cx

q+1
∑

m=0

(

q + 1

m

)

(−1)mx2(q+1)−2m

2(q + 1) − 2m + 1
,

where

(4.2) C =

(

q+1
∑

m=0

(

q + 1

m

)

(−1)m

2(q + 1) − 2m + 1

)−1

.

In Figure 2, we plot the function w(x) on [−1, 1] for q = 0, . . . , 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

a
b
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x2

v
πv

x

w
(x

)

Figure 2. The function w(x) on [−1, 1] for q = 0, . . . , 4.

Let also Tyv denote the Taylor expansion of order q ≥ 0 around a given point y ∈ (a, b).
For ε > 0 sufficiently small, we then define
(4.3)

vε(x) =















(

1 − w((x−x1)/ε)+1
2

)

Tx1−εv(x) + w((x−x1)/ε)+1
2

Tx1+εv(x), x ∈ [x1 − ε, x1 + ε],

. . .
(

1 − w((x−xn)/ε)+1
2

)

Txn−εv(x) + w((x−xn)/ε)+1
2

Txn+εv(x), x ∈ [xn − ε, xn + ε],
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with vε = v on [a, b] \ ([x1 − ε, x1 + ε] ∪ . . . ∪ [xn − ε, xn + ε]). As a consequence of the
following Lemma, vε has q + 1 continuous derivatives on [a, b].

Lemma 4.1. The weight function w defined by (4.1) and (4.2) has the following properties:

(4.4) −1 = w(−1) ≤ w(x) ≤ w(1) = 1, x ∈ [−1, 1],

and

(4.5) w(p)(−1) = w(p)(1) = 0, p = 1, . . . , q + 1.

Proof. It is clear from the definition that w(1) = 1 and w(−1) = −1. Taking the derivative
of w, we obtain

dw

dx
(x) = C

q+1
∑

m=0

(

q + 1

m

)

(−1)m d
dx

x2(q+1)−2m+1

2(q + 1) − 2m + 1
= C

q+1
∑

m=0

(

q + 1

m

)

(−1)mx2(q+1)−2m

= C(x2 − 1)q+1 = C(x + 1)q+1(x − 1)q+1,

and so w(p) is zero at x = ±1 for p = 1, . . . , q+1. Furthermore, since dw
dx

has no zeros within
(−1, 1), w attains its maximum and minimum at x = 1 and x = −1 respectively. �

This leads to the following extension of Theorem 2.2.

Theorem 4.1. (Peano kernel theorem for piecewise smooth functions) If π is linear and

bounded (with constant C > 0) on V , and is exact on P q([a, b]) ⊂ V , then there is a

bounded function G : [a, b]× [a, b] → R, with |G(x, t)| ≤ 1 + C for all x, t ∈ [a, b], such that

for v piecewise Cq+1 on [a, b] with discontinuities at a < x1 < x2 < . . . < xn < b, we have

(4.6) πv(x) − v(x) =
kq+1

q!

1

k

∫ b

a

v(q+1)(t)G(x, t) dt +
n
∑

j=1

q
∑

m=0

Cqjm(x)km[v(m)]xj
,

where k = b − a and for each Cqjm we have |Cqjm(x)| ≤ C for all x ∈ [a, b]. Furthermore,

if g is an integrable, (essentially) bounded function on [a, b], then there is a function Hg :
[a, b] → R, with |Hg(x)| ≤ (1 + C)‖g‖ for all x ∈ [a, b], such that

(4.7)
∫ b

a

(πv(x) − v(x))g(x) dx =
kq+1

q!

∫ b

a

v(q+1)(x)Hg(x) dx +

n
∑

j=1

q
∑

m=0

D′

qjm(x)km+1[v(m)]xj
,

where for each D′

qjm we have |D′

qjm(x)| ≤ C for all x ∈ [a, b].

Proof. Without loss of generality, we can assume that v is discontinuous only at x1 ∈ (a, b).
Fix x ∈ [a, b]\{x1}, take 0 < ε < |x − x1|, and define vε as in (4.3). Then,

πv − v = (πv − πvε) + (πvε − vε) + (vε − v),

where |πv(x)− πvε(x)| → 0 and |vε(x)− v(x)| → 0 when ε → 0. Since vε ∈ Cq+1([a, b]), we
have by Theorem 2.2,

πvε(x) − vε(x) =
kq

q!

∫ b

a

v(q+1)
ε (t)G(x, t) dt = I1 + I2 + I3,



10 ANDERS LOGG

where

I1 =
kq

q!

∫ x1−ε

a

v(q+1)(t)G(x, t) dt,

I2 =
kq

q!

∫ x1+ε

x1−ε

v(q+1)
ε (t)G(x, t) dt,

I3 =
kq

q!

∫ b

x1+ε

v(q+1)(t)G(x, t) dt.

Since v|[a,x1) ∈ C [q+1]([a, x1)) and v|(x1,b] ∈ C [q+1]((x1, b]), it is clear that

I1 + I3 =
kq

q!

∫ b

a

v(q+1)(t)G(x, t) dt + O(ε).

We therefore focus on the remaining term I2. With wε(t) = w((t−x1)/ε)+1
2

, we have

I2 =
kq

q!

∫ x1+ε

x1−ε

v(q+1)
ε (t)G(x, t) dt

=
kq

q!

∫ x1+ε

x1−ε

[(1 − wε)Tx1−εv + wεTx1+εv](q+1) (t)G(x, t) dt

=

q+1
∑

m=0

kq

q!

(

q + 1

m

)
∫ x1+ε

x1−ε

[

(1 − wε)
(m)T

(q+1−m)
x1−ε v + w(m)

ε T
(q+1−m)
x1+ε v

]

(t)G(x, t) dt

=

q+1
∑

m=0

kq

q!

(

q + 1

m

)

I2m,

with obvious notation. Evaluating the integrals I2m, we have for m = 0,

I20 =

∫ x1+ε

x1−ε

[

(1 − wε)
(0)T

(q+1−0)
x1−ε v + w(0)

ε T
(q+1−0)
x1+ε v

]

(t)G(x, t) dt = O(ε),

while for m = 1, . . . , q + 1, we obtain

I2m =

∫ x1+ε

x1−ε

[

(1 − wε)
(m)T

(q+1−m)
x1−ε v + w(m)

ε T
(q+1−m)
x1+ε v

]

(t)G(x, t) dt

=

∫ x1+ε

x1−ε

w(m)
ε (t)(T

(q+1−m)
x1+ε v(t) − T

(q+1−m)
x1−ε v(t))G(x, t) dt.

Let now h = (T
(q+1−m)
x1+ε v − T

(q+1−m)
x1−ε v)G(x, ·) and note that by Lemma 2.1, h ∈ Cq−1([x1 −

ε, x1 + ε]). Noting also that w
(m)
ε (x1 ± ε) = 0 for m = 1, . . . , q + 1, we integrate by parts to
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obtain

I2m =

∫ x1+ε

x1−ε

w(m)
ε (t)h(t) dt

= (−1)m−1

∫ x1+ε

x1−ε

w′

ε(t)h
(m−1)(t) dt =

(−1)m−1

2ε

∫ x1+ε

x1−ε

w′((t − x1)/ε)h
(m−1)(t) dt

=
C(−1)m−1

2ε

∫ x1+ε

x1−ε

(((t − x1)/ε)
2 − 1)q+1h(m−1)(t) dt,

=
C(−1)m−1

2

∫ 1

−1

(s2 − 1)q+1h(m−1)(x1 + εs) ds,

where C is the constant defined in (4.2). Evaluating the derivatives of h, we obtain

h(m−1) =
dm−1

dtm−1
(T

(q+1−m)
x1+ε v − T

(q+1−m)
x1−ε v)G(x, ·)

=
m−1
∑

j=0

(

m − 1

j

)

(T
(q+1−m+j)
x1+ε v − T

(q+1−m+j)
x1−ε v)G

(m−1−j)
t (x, ·)

=
m−1
∑

j=0

(

m − 1

j

)

(v(q+1−m+j)(x+
1 ) − v(q+1−m+j)(x−

1 ) + O(ε))G
(m−1−j)
t (x, ·)

=
m−1
∑

j=0

(

m − 1

j

)

[

v(q−(m−1−j))
]

x1

G
(m−1−j)
t (x, ·) + O(ε),

where G
(p)
t (x, t) denotes ∂p

∂tp
G(x, t). Consequently,

I2 =

q+1
∑

m=1

m−1
∑

j=0

cqmjk
q
[

v(q−(m−1−j))
]

x1

∫ 1

−1

(s2 − 1)q+1G
(m−1−j)
t (x, x1 + εs) ds + O(ε)

=

q+1
∑

m=1

m−1
∑

j=0

cqmjk
q
[

v(q−(m−1−j))
]

x1

G
(m−1−j)
t (x, x1)

∫ 1

−1

(s2 − 1)q+1 ds + O(ε)

=

q
∑

m=0

cqmkqG
(q−m)
t (x, x1)

[

v(m)
]

x1

+ O(ε).

Letting ε → 0, we obtain

πv(x) − v(x) =
kq

q!

∫ b

a

v(q+1)(t)G(x, t) dt +

q
∑

m=0

cqmkqG
(q−m)
t (x, x1)

[

v(m)
]

x1

,
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for x ∈ [a, b]\{x1}. By continuity this holds also when x = x1. From Lemma 2.1, we know

that G
(q−m)
t (x, x1) = k−(q−m)Gt,q−m(x, x1) where Gt,q−m is bounded. Hence,

πv(x) − v(x) =
kq

q!

∫ b

a

v(q+1)(t)G(x, t) dt +

q
∑

m=0

cqmkq−(q−m)Gt,q−m(x, x1)
[

v(m)
]

x1

=
kq

q!

∫ b

a

v(q+1)(t)G(x, t) dt +

q
∑

m=0

Cqm(x, x1)k
m
[

v(m)
]

x1

,

where Cqm(x, x1) is bounded on [a, b]× [a, b] independent of k. The second result, (4.7), is
proved similarly. �

We now extend this to a representation of derivatives of the interpolation error, corre-
sponding to Theorem 2.3.

Theorem 4.2. (Peano kernel theorem for piecewise smooth functions II) If π is linear

and bounded on V , and is exact on Pq([a, b]) ⊂ V , then there is a constant C > 0,
depending only on the definition of the interpolant (and not on k), and functions Gp :
[a, b]× [a, b] → R, p = 0, . . . , q, such that for v piecewise Cq+1 on [a, b] with discontinuities

at a < x1 < x2 < . . . < xn < b, we have

(4.8) (πv)(p)(x)−v(p)(x) =
kq+1−p

q!

1

k

∫ b

a

v(q+1)(t)Gp(x, t) dt+
n
∑

j=1

q
∑

m=0

Cqjmp(x)km−p[v(m)]xj
,

for p = 0, . . . , q, with |Gp(x, t)| ≤ C for all x, t ∈ [a, b] × [a, b], and |Cqjmp(x)| ≤ C for all

x ∈ [a, b] \ {x1, . . . , xn}.

Proof. For p = 0, the result follows from Theorem 4.1 with G0 = G and Cqjm0 = Cqjm.
For p = 1, . . . , q, we differentiate (4.6) with respect to x, to obtain

(πv)(p)(x) − v(p)(x) =
kq

q!

∫ b

a

v(q+1)(t)
dp

dxp
G(x, t) dt +

n
∑

j=1

q
∑

m=0

C
(p)
qjm(x)km[v(m)]xj

.

From Lemma 2.1, we know that dp

dxp G(x, t) = k−pGx,p(x, t), where Gx,p is bounded on
[a, b] × [a, b]. Furthermore, from the proof of Theorem 4.1, we know that

C
(p)
qjm(x) =

dp

dxp
Cqjm(x) =

dp

dxp
cqmGt,q−m(x, xj) = cqmkq−m ∂p

∂xp

∂q−m

∂tq−m
G(x, xj),

and so, by Lemma 2.1,

C
(p)
qjm(x) = cqmkq−mk−(q−m+p)Gt,x,q−m,p(x, xj) = Cqjmp(x)k−p,

where each Cqjmp is bounded on [a, b]\{x1, . . . , xn}. �
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4.2. Interpolation estimates. The following corollary, corresponding to Corollary 3.1,
is a simple consequence of Theorem 4.2.

Corollary 4.1. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂ V , then there

is a constant C = C(q) > 0, such that for all v piecewise Cq+1 on [a, b] with discontinuities

at a < x1 < . . . < xn < b,

(4.9) ‖(πv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖ + C
n
∑

j=1

r
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
,

for p = 0, . . . , r + 1, r = 0, . . . , q.

Proof. See proof of Corollary 3.1. �

We also obtain the following estimate for derivatives of the interpolant, corresponding
to Corollary 3.2.

Corollary 4.2. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂ V , then there

is a constant C = C(q) > 0 and a constant C ′ = C ′(q, n) > 0, such that for all v piecewise

Cq+1 on [a, b] with discontinuities at a < x1 < . . . < xn < b,

(4.10) ‖(πv)(p)‖ ≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
≤ C ′

(

‖v(p)‖ +

p−1
∑

m=0

km−p‖v(m)‖

)

,

for p = 0, . . . , q.

Proof. It is clear that (4.10) holds when p = 0, since π is bounded. As in the proof of
Corollary 3.2, we add and subtract v(p) for 0 < p ≤ q, to obtain

‖(πv)(p)‖ ≤ ‖(πv)(p) − v(p)‖ + ‖v(p)‖.

Since π is exact on Pq([a, b]), it is exact on Pp−1([a, b]) ⊂ Pq([a, b]) for p ≤ q. It follows by
Corollary 4.1 that

‖(πv)(p)‖ ≤ Ck(p−1)+1−p‖v((p−1)+1)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
+ ‖v(p)‖

≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

≤ C‖v(p)‖ + 2Cn

p−1
∑

m=0

km−p‖v(m)‖ ≤ C ′

(

‖v(p)‖ +

p−1
∑

m=0

km−p‖v(m)‖

)

.

�
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5. Two special interpolants

In this section, we use the results of Sections 2–4 to prove interpolation estimates for
two special interpolants.

For the mcG(q) method, we define the following interpolant:

π
[q]
cG : V → Pq([a, b]),

π
[q]
cGv(a) = v(a) and π

[q]
cGv(b) = v(b),

∫ b

a

(v − π
[q]
cGv)w dx = 0 ∀w ∈ Pq−2([a, b]),

(5.1)

where V denotes the set of functions that are piecewise Cq+1 and bounded on [a, b]. In

other words, π
[q]
cGv is the polynomial of degree q that interpolates v at the end-points of

the interval [a, b] and additionally satisfies q − 1 projection conditions. This is illustrated

in Figure 3. We also define the dual interpolant π
[q]
cG∗ as the standard L2-projection onto

Pq−1([a, b]).
For the mdG(q) method, we define the following interpolant:

π
[q]
dG : V → Pq([a, b]),

π
[q]
dGv(b) = v(b),
∫ b

a

(v − π
[q]
dGv)w dx = 0 ∀w ∈ Pq−1([a, b]),

(5.2)

that is, π
[q]
dGv is the polynomial of degree q that interpolates v at the right end-point of

the interval [a, b] and additionally satisfies q projection conditions. This is illustrated in

Figure 4. The dual interpolant π
[q]
dG∗ is defined similarly, with the only difference that we

use the left end-point x = a for interpolation.
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Figure 3. The interpolant π
[q]
cGv (dashed) of the function v(x) = x sin(7x)

(solid) on [0, 1] for q = 1 (left) and q = 3 (right).
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Figure 4. The interpolant π
[q]
dGv (dashed) of the function v(x) = x sin(7x)

(solid) on [0, 1] for q = 0 (left) and q = 3 (right).

It is clear that both π
[q]
cG and π

[q]
dG are linear and so, by Lemma 3.1, we only have to show

that π
[q]
cG and π

[q]
dG are exact on Pq([a, b]).

Lemma 5.1. The two interpolants π
[q]
cG and π

[q]
dG are exact on Pq([a, b]), that is,

(5.3) π
[q]
cGv = v ∀v ∈ Pq([a, b]),

and

(5.4) π
[q]
dGv = v ∀v ∈ Pq([a, b]).

Proof. To prove (5.3), take v ∈ Pq([a, b]) and note that p = π
[q]
cGv − v ∈ Pq([a, b]). Since

p(a) = p(b) = 0, p has at most q− 2 zeros within (a, b) and so we can take w ∈ P q−2([a, b])

with pw ≥ 0 on [a, b]. By definition,
∫ b

a
pw dx = 0, and so we conclude that p = 0.

To prove (5.4), take p = π
[q]
dGv − v ∈ Pq([a, b]). Then, p(b) = 0 and so p has at most

q − 1 zeros within (a, b). Take now w ∈ Pq−1([a, b]) with pw ≥ 0 on [a, b]. By definition,
∫ b

a
pw dt = 0, and so again we conclude that p = 0. �

The desired interpolation estimates now follow Corollaries 3.1, 3.2, 4.1, and 4.2.

Theorem 5.1. (Estimates for π
[q]
cG and π

[q]
dG) For any q ≥ 1, there is a constant C = C(q) >

0, such that for all v ∈ Cr+1([a, b]),

(5.5) ‖(π
[q]
cGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.6) ‖(π
[q]
cGv)(p)‖ ≤ C‖v(p)‖,

for p = 0, . . . , q. Furthermore, for any q ≥ 0, there is a constant C = C(q) > 0, such that

for all v ∈ Cr+1([a, b]),

(5.7) ‖(π
[q]
dGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,
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for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.8) ‖(π
[q]
dGv)(p)‖ ≤ C‖v(p)‖,

for p = 0, . . . , q.

Theorem 5.2. (Estimates for π
[q]
cG and π

[q]
dG II) For any q ≥ 1 and any n ≥ 0, there is a

constant C = C(q) > 0, such that for all v piecewise Cr+1 on [a, b] with discontinuities at

a < x1 < . . . < xn < b,

(5.9) ‖(π
[q]
cGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖ + C

n
∑

j=1

r
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
,

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.10) ‖(π
[q]
cGv)(p)‖ ≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
,

for p = 0, . . . , q. Furthermore, for any q ≥ 0 and any n ≥ 0, there is a constant C = C(q) >
0, such that for all v piecewise Cr+1 on [a, b] with discontinuities at a < x1 < . . . < xn < b,

(5.11) ‖(π
[q]
dGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖ + C

n
∑

j=1

r
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
,

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.12) ‖(π
[q]
dGv)(p)‖ ≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p
∣

∣

∣

[

v(m)
]

xj

∣

∣

∣
,

for p = 0, . . . , q.

Note that the corresponding estimates hold for the dual versions of the two interpolants,

π
[q]
cG∗ and π

[q]
dG∗ , the only difference being that r ≤ q − 1 for π

[q]
cG∗ .

Finally, we note the following properties of the two interpolants, which is of importance
for the a priori error analysis.

Lemma 5.2. For any v ∈ C([a, b]) and any q ≥ 1, we have

(5.13)

∫ b

a

(
d

dx
(v − π

[q]
cGv)) w dx = 0 ∀w ∈ Pq−1([a, b]).

Proof. For any w ∈ Pq−1([a, b]), we integrate by parts to get
∫ b

a

(
d

dx
(v − π

[q]
cGv)) w dx =

[

(v − π
[q]
cGv)w

]b

a
−

∫ b

a

(v − π
[q]
cGv) w′ dx = 0,

by the definition of π
[q]
cG. �
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Lemma 5.3. For any v ∈ C([a, b]) and any q ≥ 0, we have

(5.14) [v(a) − π
[q]
dGv(a)]w(a) +

∫ b

a

(
d

dx
(v − π

[q]
dGv)) w dx = 0 ∀w ∈ Pq([a, b]).

Proof. Integrate by parts as in the proof of Lemma 5.2 and use the definition of π
[q]
dG. �
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