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INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH
FUNCTIONS IN ONE DIMENSION

ANDERS LOGG

ABSTRACT. In preparation for a priori error analysis of the multi-adaptive Galerkin meth-
ods mcG(q) and mdG(q) presented earlier in a series of papers, we prove basic interpolation
estimates for a pair of carefully chosen non-standard interpolants. The main tool in the
derivation of these estimates is the Peano kernel theorem. A large part of the paper is
non-specific and applies to general interpolants on the real line.

1. INTRODUCTION

The motivation for this paper is to prepare for the a priori error analysis of the multi-
adaptive Galerkin methods mcG(q) and mdG(q), presented earlier in [1, 2]. This requires
a set of special interpolation estimates for piecewise smooth functions, which we prove in
this paper.

Throughout this paper, V' denotes the space of piecewise smooth, real-valued functions

on [a,b], that is, the set of functions which, for some partition a = zy < 77 < ... <
Tp < Tpy1 = b of the interval [a,b] and some ¢ > 0, are C?*! and bounded on each of the
sub-intervals (z;_1,2;), 7 =1,...,n+ 1. This is illustrated in Figure 1.

For v € V, we denote by mv a polynomial approximation of v on [a, b], such that mv ~ v.
We refer to v as an interpolant of v.

We are concerned with estimating the size of the interpolation error 7v — v in the
maximum norm, || - || = || - ||z (e,p)), i terms of the regularity of v and the length of the
interval, ¥ = b — a. Specifically, when v € C4"([a,b]) C V for some ¢ > 0, we obtain
estimates of the form

(1.1) [(70)® — @ < CRHP D), p =0, + 1.

In the general case, the interpolation estimates include also the size of the jump [v(?)], in
function value and derivatives at the points of discontinuity within (a, b).

Date: February 11, 2004.

Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE, continuous
Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates, Peano kernel theorem, interpola-
tion estimates, piecewise smooth.

Anders Logg, Department of Computational Mathematics, Chalmers University of Technology, SE-412
96 Goteborg, Sweden, email: logg@math.chalmers.se.

1



2 ANDERS LOGG

™

a 1 To b

FIGURE 1. A piecewise smooth function v and its interpolant 7v.

1.1. Outline of the paper. We first assume that v € C47([a,b]) C V and use the Peano
kernel theorem to obtain a representation of the interpolation error 7v — v (Section 2). We
then directly obtain interpolation estimates (for v € C7([a,b])) in Section 3.

In Section 4, we generalize the interpolation estimates from Section 3 to v piecewise
smooth by constructing a regularized version of v. Finally, in Section 5, we apply the
general results of Section 4 to a pair of special interpolants that appear in the a priori
error analysis of the meG(¢) and mdG(g) methods.

2. THE PEANO KERNEL THEOREM

The basic tool in our derivation of interpolation estimates is the Peano kernel theorem,
which we discuss in this section. In its basic form, the Peano kernel theorem can be stated
as follows.

Theorem 2.1. (Peano kernel theorem) For A a bounded and linear functional on V' that
vanishes on Pi([a,b]) C V, define

(2.1) K(t) = A = 1)3}),

where v4(t) = max(0,v(t)). In other words, K(t) = Aw/q!, with w(x) = [max(0,z — t)]9.
If K has bounded variation and v € C1([a,b]), then

(2.2) Av = / ’ K)o (t) dt.

Proof. See [3]. O
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Let now v € V and let
(2.3) m:V — Pla,b]) C V.
If we can show that

(1) 7 is linear on V,
(2) 7 is exact on P?([a,b]) C V, that is, mv = v for all v € P%([a, b]), and
(3) mis bounded on V/, that is, ||7v| < C||v|| for all v € V' for some constant C' > 0,

then the Peano kernel theorem directly leads to a representation of the interpolation error
T — .

Theorem 2.2. (Peano kernel theorem II) If 7 is linear and bounded (with constant C' > 0)
on'V, and is exact on P([a,b]) C V, then there is a bounded function G : |a,b] X [a,b] — R,
with |G(x,t)| < 1+ C for all z,t € [a,b], such that for all v € C1([a,b]),
ka1l 1 b
(2.4) wo(e) — o) = Tt / oD ()G, 1) d
q: a
where k = b—a. Furthermore, if g is an integrable, (essentially) bounded function on [a,b),

then there is a function Hy : [a,b] — R, with |Hy(z)| < (1 + C)||g|| for all z € [a,b], such
that for all v € C1*1([a, b]),

kQ-l-l

(2.5) / (m0(x) — v(2)) g(z) dz = / oD () H, () d.

q!
Proof. To prove (2.4), we define for any fixed x € [a, b,

Ayv = mo(x) — v(z),
which is linear, since 7 is linear. Furthermore, if v € P9([a, b]) then mv = v so A, vanishes
on P%([a,b]). From the estimate,
[Asv] = |mo(z) —v(2)] < |ro()] + |v()] < (1+ O)vll;
it follows that A, is bounded. Now,
1

K,(t) = an((-—t)i):a[w((-—t)i)(x)—(:s—t)i]

k4 c—t\? r—t\? k4
= — — — = —G(z,t
77 ((5) ) 0= (57) | -
where |G(z,t)| <1+ C for z,t € [a,b]. Thus, by the Peano kernel theorem,

q+1 b
kq‘ % / o@D ()G, 1) dt.

mo(x) —ov(r) = Ay =

To prove (2.5), define A by

Ao = / (ro(z) — v(z))g(x) dz.
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which is linear, bounded, and vanishes on P%([a, b]). Now,

K(t) = % (- — ) (@) — (& — %] g(a) da

PR o (7 e

where H,(t) < (1 + C)l|g|| for t € [a,b]. By the Peano kernel theorem, it now follows that

kQ-l-l

/ (m0(@) — v(@))g(x) dz = T / oD () H (£) dt.

q'
O

In order to derive a representation for derivatives of the interpolation error, we need to
investigate the differentiability of the kernel G(z,t).

Lemma 2.1. (Differentiability of G) If w is linear on V, then the kernel G, defined by

oo (5o (7

has the following properties:
(i) For any fized t € [a,b], G(-,t) € CT!([a,b]) and
oP

(2.7) o G(a,t) = kGl 1), D=0, 0,

where each G is bounded on |a,b] x [a,b] independent of k.
(ii) For any fized x € [a,b], G(x,-) € C1([a,b]) and

oP
(2.8) %G(x, t) =k PGp(x,t), p=0,...,q,

where each Gy, is bounded on [a,b] x [a,b] independent of k.
(i) For x #t and p1,ps > 0, we have

oP2 Pt
OxP2 Otr
where each Gy g p, py 15 bounded on [a,b] X [a,b]\{(z,t) : x =t} independent of k.

Proof. Define
Gla,t) = ((%)i) (z) — (“’ . t)i g(, 1) — b, b).

We first note that for any fixed ¢ € [a,b], h(-,t) € CT!([a,b]) with

or o (x—t\? q! x—t\"?
_— = — —= -Pp — —-bp
5xph(x’ t) oxP ( k ) b (g —p)! ( k ) K hap(@,1),

+

(2.9) Gz, t) = k~W0tPG, o (x,1),
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where h,, is bounded on [a,b] X [a,b] independent of k. Similarly, we note that for any
fixed = € [a,b], h(x,-) € C17*([a,b]) with

oP o [(x—t\? (=1 (-t
g () = 6tp< k )+ b (q—p)!( k )+ K hip (1),

where h;,, is bounded on [a, b] X [a, b] independent of k.
If we now let g 1) denote the interpolant shifted to [0, 1], we can write

s o () Y=o (55252 Y
= 7?[0,11(( t_a) )((x—a)/k),

and so, for any fixed t € [a,b], g(-,t) € P([a,b]) C CT([a,b]), with
% (x,t) =k~ Pﬁ[%’l] (( t—a ) ) (z — a)/k)) = kPgup(x,1),

where g, , is bounded on [a, b] X [a, b] independent of k. Finally, let s = (¢t — a)/k. Then,

g9(@.t) = mpa (( = 5)%) (& — a) /k)).

The degrees of freedom of the interpolant 7 (( — s)i) are determined by the solution
of a linear system, and thus each of the degrees of freedom (point values or integrals) will
be a linear combination of the degrees of freedom of the function (- — s)%, each of which
in turn are C¢~! in the s-variable. Hence, g(z,-) € C?7!([a,b]) for any fixed z € [a, b], with

% (z.t) = 5; o ((- = 5)}) ((Jf—a)/kﬁ))zk‘p%ma,n ((- = 9)%) ((z — a) /k))
= k- gt,p(.fl?,t),

where ¢;, is bounded on [a, b] X [a, b] independent of k. We now take G, = ¢, — hsp and
Gip = gip — htp, which proves (2.7) and (2.8).
To prove (2.9), we note that

o A1) <x—t)q—m
) =k m4 :
g ) =R T ),

and so, for x # t,

O O ) = ey D" <f’f—t)q_(pl+p2)
) )) k . )

OxP2 Oth (¢ — (p1 + po
when pi + p» < ¢ and 2= 20 h(x,t) = 0 for p; + p» > ¢. Furthermore, for any fixed z,
opP1 P1

) =k o (= 1) (o — @)/),
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With y = (z — a)/k, we thus have

ar: on 3 or2 or1
s g 9 ) = W o (= 9)%) ().
We conclude that
or2 Pt (o14p2)
Oxpr2 Otr1 Gz, 1) =k~ Glapip (2, 1),
where Gt p, p, 18 bounded on [a,b] X [a,b]\{(x, ) : © = t}. O

By differentiating (2.4), we now obtain the following representation for derivatives of the
interpolation error.

Theorem 2.3. (Peano kernel theorem III) If 7 is linear and bounded on V', and is exact
on PY([a,b]) C V, then there is a constant C' > 0, depending only on the definition of the
interpolant (and not on k), and functions G, : [a,b] x [a,b] — R, p=10,...,q, such that
for allv € CT([a, b)),

®) ®) REPL M
210 (r)P@) — o) = g [OG, @ p= 0.,

where for each p, |G,(x,t)| < C for all z,t € [a,b] X [a, b].

Proof. For p = 0 the result follows from Theorem 2.2 with Gy = G. For p =1,...,q, we
differentiate (2.4) with respect to x and use Lemma 2.1, to obtain

q b P q—p b
(wv)(p)(x)—v(p)(x):% / v“”“(t)%@(:c,t)cht:’“77 VD ()G, (@, ) dt.

3. INTERPOLATION ESTIMATES

Using the results of the previous section, we now obtain estimates for the interpolation
error mv — v. The following corollary is a simple consequence of Theorem 2.3.

Corollary 3.1. If 7 is linear and bounded on V', and is exact on P([a,b]) C V, then there
is a constant C' = C(q) > 0, such that for all v € C11([a,b]),

(3.1) [(70)® — @ || < Ok 12|,
forp:07"-7/r+1; T:O,...,q.

Proof. If 7 is exact on P([a,b]), it is exact on P"([a,b]) C P([a,b]) for r = 0,...,q. It
follows by Theorem 2.3 that for all v € C"+Y([a, b]), we have

(r0) ' — o @] < CR P,

for p=20,...,r. When r < ¢, this holds also for p=7r+4+1 < ¢, and for p=r+1 = ¢, we
note that ||(7v)® — @ | = [[v®| = [0+ UJ

This leads to the following estimate for the derivative of the interpolant.
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Corollary 3.2. If 7 is linear and bounded on V', and is exact on P?([a,b]) C V, then there
is a constant C' = C(q) > 0, such that for all v € C1([a, b]),

(3.2) I(w0)®|| < Cll®]],
forp=20,...,q.

Proof. 1t is clear that (3.2) holds when p = 0 since 7 is bounded. For 0 < p < ¢, we add
and subtract v®), to obtain

(o) P < [I(r0)® — ]| + 0@

Since 7 is exact on P4([a, b]), it is exact on PP~!([a,b]) C P([a,b]) for p < q. It follows by
Corollary 3.1, that

()P < CHPDHP @D 4 o = (C + 1) = C' o).
0J

Finally, we show that it is often enough to show that 7 is linear on V' and exact on
P@([a,b]), that is, we do not have to show that 7 is bounded.

Lemma 3.1. If 7 : V. — P%([a,b]) is linear on V, and is uniquely determined by ny
interpolation conditions and no = q + 1 — ny projection conditions,

(3.3) mu(z;) =v(z;), i=1,...,n,

where each z; € |a,b], and

b b
(3.4) / mo(x)w;(z) de = / v(x)wi(x)de, 1=1,...,n9,
where each w; is bounded, then w is bounded on V', that is,

(3.5) [mol] < Cllvll Yo eV,

for some constant C' = C(q) > 0.

Proof. Define || - || on P%([a,b]) by

ni n2
lolle = lo(@)] + )
=1 =1

Clearly, the triangle inequality holds and |av||. = |a|||v||« for all @ € R. Furthermore, if
v = 0 then ||v||, = 0. Conversely, if ||v]|. = 0 then v € P?([a,b]) is the unique interpolant
of 0, and so v = 70 = 0 by linearity. Thus, || - ||« is a norm. Since all norms on a finite
dimensional vector space are equivalent, we obtain

Iwoll < Cllwolle = Cllvfls < Cna + Cna) o]l = Clo]].

%/abv(x)wi(x) dx|.
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4. INTERPOLATION OF PIECEWISE SMOOTH FUNCTIONS

We now extend the interpolation results of the previous two sections to piecewise smooth
functions.

4.1. Extensions of the Peano kernel theorem. To extend the Peano kernel theorem to
piecewise smooth functions, we construct a smooth version v, of the discontinuous function
v, with v, — v as € — 0. For the construction of v, we introduce the function

at+l _1)mg2(g+1)—2m
(4.1) w(z) = Cz Y (q + 1) 2(( Y

m g+1)—2m+1
where
o _{ym -
(4.2) CZ(%(qm )2(q—|—(1)—)2m+1>
In Figure 2, we plot the function w(x) on [—1,1] for ¢ =0,...,4.
1
osf |
osf |
0al |
oot |
S ol |
0z} |
oal |
o5l |
o8l |
YT 08 06  os 02 0z 04 o6 08 1

FIGURE 2. The function w(z) on [—1,1] for ¢ =0,...,4.

Let also T,v denote the Taylor expansion of order ¢ > 0 around a given point y € (a, b).
For € > 0 sufficiently small, we then define
(4.3)
(1 WOty 7y o(e) + OO, L o(a), € oy — e a + e,
ve(z) =

(1 _ w) Ty, —cv(z) + 2O o(2), © € (2, — €, 2, + €],
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with ve = v on [a,b] \ ([r1 —€,21 + €] U ... Uz, — €2, + €]). As a consequence of the
following Lemma, v, has ¢ + 1 continuous derivatives on |a, b].

Lemma 4.1. The weight function w defined by (4.1) and (4.2) has the following properties:

(4.4) —1l=w(-1) <w) <w(l)=1, ze[-1,1],
and
(4.5) w?(-1) =wP(1)=0, p=1,...,q+1.

Proof. 1t is clear from the definition that w(1) = 1 and w(—1) = —1. Taking the derivative
of w, we obtain

q+1 22(g+1)—2m+1
b - o ()R B (e
x 2(q —2m
= CO@@*-1)" =C(x+ 1)1z — 1)7H

and so w® is zero at x = +1 for p =1, ..., ¢g+1. Furthermore, since i_: has no zeros within
(—1,1), w attains its maximum and minimum at z = 1 and x = —1 respectively. O

This leads to the following extension of Theorem 2.2.

Theorem 4.1. (Peano kernel theorem for piecewise smooth functions) If 7 is linear and
bounded (with constant C' > 0) on V, and is exact on P([a,b]) C V, then there is a
bounded function G : [a,b] X [a,b] — R, with |G(z,t)| < 1+C for all z,t € [a,b], such that
for v piecewise CT™' on [a, b] with discontinuities at a < 1 < T3 < ... < x, < b, we have

ka1 1 b
(4.6) mu(x) —v(z) = J %/ DGz, t) dt + Z Z Cyjm(z ]xj>

7j=1 m=0

where k = b — a and for each Cy;p, we have |Cyjpn(z)| < C for all x € |a,b]. Furthermore,

if g is an integrable, (essentially) bounded function on |a,b], then there is a function H, :
la,b] — R, with |[H,(z)| < (14 C)||g|| for all z € [a,b], such that

(4.7)
/a (ro(z) —v(x))g(z) de = quJ'r /a q+1 x)dr + Z Z Dq]m 2)k™ )]xja

7j=1 m=0

where for each Dy, we have |Dy;, ()| < C for all x € [a,b].

m

Proof. Without loss of generality, we can assume that v is discontinuous only at z1 € (a, b).
Fix = € [a, b]\{x1}, take 0 < € < |z — 1], and define v, as in (4.3). Then,

T — v = (v — ) + (Tve — ve) + (ve — V),
where |mv(z) — v (z)| — 0 and |ve(z) — v(z)] — 0 when € — 0. Since v, € C?([a, b]), we
have by Theorem 2.2,

ke[
T (x) — v (z) = a/ VNG, t) dt = T, + Ip + I,
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where

kq Tr1—€

L= v Y (G (2, t) dt,
4 Ja
k,q xr1+e€

Iy = — VY ()G (x, t) dt,
q: T1—€
ke [?

Iy =~ Y ()G, t) dt.
q' xr1+e

Since v|jgz,) € C4([a, 21)) and v| (4, 4 € ClHI((24,0]), it is clear that

g b
L+ 13= %/ V()G (z, t) dt + Ofe).

We therefore focus on the remaining term Ir. With w(t) = %, we have
kq xr1+e€
L = = VY ()G (z,t) dt

¢" Sy
kq xr1+e€ 1

= (1 = we) Ty v + w Ty e0] T ()G, t) dt

s Jaxy—e

q+1 T1+e€

-y ?( . ) / [(1 — w)MTIE Ty gm0 %;] ()G (. t) dt
m=0 1’ Ti—¢
q+1 L4 g+ 1

= Z ol [2m>
— g\ m

with obvious notation. Evaluating the integrals I5,,, we have for m = 0,

xr1+e€
Io = / (1= w7 + 0O T O] (G, t) de = O(e),

Tr1—E€ xr1+e€
1—€

while for m =1,..., ¢+ 1, we obtain

xr1+e

x1+e€
Ly = / (1= w) ™ T w T ) (G w,1) dt

xr1+e
_ / W™ () (T () — T (1)) G ) .

xr1+e Tr1—E€
1—€

Let now h = (T — T "™ )G (2, -) and note that by Lemma 2.1, h € C9~([z, —

xr1+e€ Tr1—€

€, 21 + €]). Noting also that w™ (x1£e)=0form=1,...,¢+ 1, we integrate by parts to
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obtain

xr1+e€
L — / W™ ($)h(t) dt

1—€

el I e ey R (R Ve IOT

1—€ 1—€

_1\ym—1 T1+e€
= (Y RV T IOP
€ e
_1\ym—1 1
_ %/ (s = )R (21 4 es) ds,
-1

where C'is the constant defined in (4.2). Evaluating the derivatives of h, we obtain

dm—l i m
P = S (T e = LT )Gl )

m—1

= S (Mt - e
j=0
m—1 m—l )

B ( j )@(q“—mﬂ)(xf)—v<q“-m+ﬂ><x;>+0<e>>G§m‘1‘”<x,->
j=0
m—1

_ <mj— 1) [’U(q_(m_l_j))]xl Ggm_l_j) (]}, ) + 0(6)7

o

j=

where G (z,t) denotes 22G(x,t). Consequently,

otp
g+1 m—1 1 '
I = > Camgh? [0 0] / (s = DTG @,y + es) ds + O(e)
m=1 j=0 -1
qg+1 m—1 ' 1
— cqmjkq [U(q—(m—l—j))]xl Ggm_l_])(x,xl)/ (32 o 1)q+l dS + O(E)
m=1 j=0 -1

cqungq_m) (x,21) [U(m)}wl + O(e).

Il
]

o

3

Letting € — 0, we obtain

a [b a
mo(z) —v(z) = %/ ) ()G (, t) dt + Z CamkGY™ (2, 21) [v(m)]m :

m=0
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for x € [a,b]\{z1}. By continuity this holds also when = = z;. From Lemma 2.1, we know
that Ggq_m) (z,2)) = k=G, ,_,.(z,7,) where Gy, ,, is bounded. Hence,

1

q b q
mo(z) —v(z) = % v V()G (x, ) dt + Z Camk T TGy (2, 1) [v(m)}x
kd b q
= V)G a1 dt+ Y Co(, 21)k™ [00™]

zy’

m=0
where Cy,,(z, 1) is bounded on [a, b] X [a, b] independent of k. The second result, (4.7), is
proved similarly. U

We now extend this to a representation of derivatives of the interpolation error, corre-
sponding to Theorem 2.3.

Theorem 4.2. (Peano kernel theorem for piecewise smooth functions II) If 7 is linear
and bounded on V', and is exact on Pi([a,b]) C V, then there is a constant C > 0,
depending only on the definition of the interpolant (and not on k), and functions G,
[a,b] X [a,b] = R, p=0,...,q, such that for v piecewise CI' on [a,b] with discontinuities
ata < x < a9 < ...<x, <b, we have

kati-pq b
(48) (7)) =oP(a) = / oD (DG, (2, 1) dt—l—ZZCqmp P[],
) a j=1 m=0

forp=0,...,q, with |Gy(x,t)| < C for all z,t € [a,b] X [a,b], and |Cyjmp(z)| < C for all
x € [a,b] \ {z1,...,2n}.

Proof. For p = 0, the result follows from Theorem 4.1 with Gy = G and Cyjno = Cyjm.
For p =1,...,q, we differentiate (4.6) with respect to x, to obtain

k[ 11y & (
(70) @) o (@) = o / V(1) Gl 1) dt+;;00q§m o], |
From Lemma 2.1, we know that %G(z,t) = kPG, (2, t), where G, , is bounded on

la,b] X [a,b]. Furthermore, from the proof of Theorem 4.1, we know that

dar dr o o™

ﬁqum(x) o ComGta- (T, 25) = Cqmk" " e o

c®) (z) =

aim G(x,xj),

and so, by Lemma 2.1,

o) (z) = Cquq_mk_(q_m+p)Gt,x,q—m,p(37’ 2j) = Cojmp(2)k",

qim

where each Cj, is bounded on [a, b]\{z1,...,2,}. O
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4.2. Interpolation estimates. The following corollary, corresponding to Corollary 3.1,
is a simple consequence of Theorem 4.2.

Corollary 4.1. If 7 is linear and bounded on V', and is exact on P?([a,b]) C V, then there
is a constant C = C(q) > 0, such that for all v piecewise CI™ on [a, b] with discontinuities
ata<x <...<z, <b,

Y

(4.9) |(70)® — 0@ < CR P 4+ ¢SS k| [p)]

7j=1 m=0

Zj

forp=0,....r+1,r=0,...,q.

Proof. See proof of Corollary 3.1. U

We also obtain the following estimate for derivatives of the interpolant, corresponding
to Corollary 3.2.

Corollary 4.2. If 7 is linear and bounded on V', and is exact on P([a,b]) C V, then there
is a constant C'= C(q) > 0 and a constant C' = C’'(q,n) > 0, such that for all v piecewise

CI*L on [a,b] with discontinuities at a < z; < ... <z, <b,
n p—1 p—1
(4.10) ()P < Clo® | +CY Y KT [U(m)h.’ < (HU(”)H +) km_pHU(m)H) ,
j=1 m=0 ’ m=0
forp=20,...,q.

Proof. 1t is clear that (4.10) holds when p = 0, since 7 is bounded. As in the proof of
Corollary 3.2, we add and subtract v® for 0 < p < ¢, to obtain

1) @] < ()@ = o®)]| + o]

Since 7 is exact on P?([a, b)), it is exact on PP~!([a, b]) C PI([a, b]) for p < q. It follows by
Corollary 4.1 that

n p—1
[(70)®|| < CEE-DH=p||pe=D+0) 4 CZ Z Emp

j=1 m=0

™1,

(m) (p)
[w], [+ 10]

n p—1

Clo® | +C> > K

7j=1 m=0

p—1 p—1
< CloP||+2Cn Yy kPt < ¢ (WH +> km"’iiv(’”)ii) :

m=0

IA

m=0
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5. TWO SPECIAL INTERPOLANTS

In this section, we use the results of Sections 2-4 to prove interpolation estimates for
two special interpolants.
For the mcG(gq) method, we define the following interpolant:

md  V — P([a,b)),
q]

(5.1) mitv(a) = v(a) and mHv(b) = v(b),

b
/ (v— m%v)w dr =0 Yw € P ?*([a,b]),

where V' denotes the set of functions that are piecewise C?*! and bounded on [a,b]. In

other words, 7r£'év is the polynomial of degree ¢ that interpolates v at the end-points of

the interval [a, b] and additionally satisfies ¢ — 1 projection conditions. This is illustrated

in Figure 3. We also define the dual interpolant Wi‘é};* as the standard Ls-projection onto

P ([a, b]).
For the mdG(q) method, we define the following interpolant:

wd V= Pi([a,b]),

(5.2) v (b) = v(b),

b
/ (v— ﬁ([jqc];v)w dr =0 Yw e P ([a,b]),

that is, 7T([iq(];1) is the polynomial of degree ¢ that interpolates v at the right end-point of

the interval [a, b] and additionally satisfies ¢ projection conditions. This is illustrated in

Figure 4. The dual interpolant wg‘é* is defined similarly, with the only difference that we

use the left end-point x = a for interpolation.

= L L L L L L L L L = L L L L L L L L
0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

FIGURE 3. The interpolant 7@%2} (dashed) of the function v(z) = z sin(7x)
(solid) on [0, 1] for ¢ =1 (left) and ¢ = 3 (right).
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= L L L L L L L L L = L L L L L L L L
0 0.1 0.2 03 0.4 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 0.6 0.7 0.8 0.9 1

FIGURE 4. The interpolant Wéqév (dashed) of the function v(z) = = sin(7z)
(solid) on [0,1] for ¢ = 0 (left) and g = 3 (right).

It is clear that both 7r£‘é and W(ch]; are linear and so, by Lemma 3.1, we only have to show
that 7% and 7%, are exact on P4([a, b)).

Lemma 5.1. The two interpolants WE%}; and 7T[q] are exact on Pi([a,b]), that is,

(5.3) 7y =v Vo e Pi(a,b]),
and
(5.4) 7y =v Voe PY[a,b).

Proof. To prove (5.3), take v € P([a,b]) and note that p = W‘ch}_;v —v € P([a,b]). Since
p(a) = p(b) = 0, p has at most g — 2 zeros within (a, b) and so we can take w € P472([a, b])

with pw > 0 on [a,b]. By definition, fab pwdx = 0, and so we conclude that p = 0.

To prove (5.4), take p = ﬂéqév —v € Pi([a,b]). Then, p(b) = 0 and so p has at most
q — 1 zeros within (a,b). Take now w € P4 *([a,b]) with pw > 0 on [a,b]. By definition,
f: pw dt = 0, and so again we conclude that p = 0. 0

The desired interpolation estimates now follow Corollaries 3.1, 3.2, 4.1, and 4.2.

Theorem 5.1. (Estimates for 7r£‘é and Wc[lqé) For any q > 1, there is a constant C' = C(q) >
0, such that for all v € C"**([a,b]),

(5.5) ()@ — o) < CR Pl
forp=0,...,r+1,r=0,...,q, and
(5.6) ()| < Cllo®],

forp=0,...,q. Furthermore, for any q > 0, there is a constant C' = C(q) > 0, such that
for allv € C"*([a, b)),

(5.7) (7l ) ®) — @ < CR 1P|+,
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forp=0,....,r+1,r=0,...,q, and
(5.8) [(7ih0) @] < O],

forp=20,...,q.

Theorem 5.2. (Estimates for 7r£‘é and Wéqé IT) For any ¢ > 1 and any n > 0, there is a

constant C = C(q) > 0, such that for all v piecewise C™' on [a,b] with discontinuities at
a<x<...<xp,<b,

(5.9) |(mG0)® — o] < CR Pt D 40 Y 7 Tk

7j=1 m=0

")

Y

Zj

forp=0,...;,r+1,r=0,...,q, and

n p—1

(m )P < Clo® |+ 0> km

7j=1 m=0

(5.10)

0™,

forp=0,...,q. Furthermore, for any q > 0 and anyn > 0, there is a constant C' = C(q) >

Y

0, such that for all v piecewise C" on [a, b] with discontinuities at a < x; < ... < x, < b,
[q] r4+1— r+1 & - m— m
G11) () — oW < ORI 4 0SS R[] |
7j=1 m=0

forp=0,....,r+1,r=0,...,q, and

n p—1

(5.12) (o) | < Clle® |+ 57 3 k| [o™],

7j=1 m=0

Y

forp=20,...,q.

Note that the corresponding estimates hold for the dual versions of the two interpolants,

7r£‘é* and Wc[lq(};*, the only difference being that » < ¢ —1 for W([;(é*.

Finally, we note the following properties of the two interpolants, which is of importance
for the a priori error analysis.

Lemma 5.2. For any v € C([a,b]) and any q > 1, we have
b
d
(5.13) / (v =) wdr =0 v € P ([a, ).
Proof. For any w € P?!([a,b]), we integrate by parts to get

b d b b
/ (%(U - WE%};U)) wdr = [(U - W‘E%};U)w} - / (v— WE%};U) w'dr =0,

a

by the definition of W‘E’g. O
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Lemma 5.3. For any v € C([a,b]) and any q¢ > 0, we have

(5.14) [v(a) — 7% (a)|w(a) + / (%(v — o) wdr =0 Yw e PI([a,b)).

Proof. Integrate by parts as in the proof of Lemma 5.2 and use the definition of wgqé. O
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