CHALMERS FINITE ELEMENT CENTER

PREPRINT 2004–03

Estimates of derivatives and jumps across element boundaries for multi-adaptive Galerkin solutions of ODEs

Anders Logg

Chalmers Finite Element Center CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg Sweden 2004

CHALMERS FINITE ELEMENT CENTER

Preprint 2004–03

Estimates of derivatives and jumps across element boundaries for multi-adaptive Galerkin solutions of ODEs

Anders Logg

CHALMERS

Chalmers Finite Element Center Chalmers University of Technology SE–412 96 Göteborg Sweden Göteborg, February 2004 Estimates of derivatives and jumps across element boundaries for multi-adaptive Galerkin solutions of ODEs Anders Logg NO 2004–03 ISSN 1404–4382

Chalmers Finite Element Center Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: +46 (0)31 772 1000 Fax: +46 (0)31 772 3595 www.phi.chalmers.se

Printed in Sweden Chalmers University of Technology Göteborg, Sweden 2004

ESTIMATES OF DERIVATIVES AND JUMPS ACROSS ELEMENT BOUNDARIES FOR MULTI-ADAPTIVE GALERKIN SOLUTIONS OF ODES

ANDERS LOGG

ABSTRACT. As an important step in the a priori error analysis of the multi-adaptive Galerkin methods mcG(q) and mdG(q), we prove estimates of derivatives and jumps across element boundaries for the multi-adaptive discrete solutions. The proof is by induction and is based on a new representation formula for the solutions.

1. INTRODUCTION

In [3], we proved special interpolation estimates as a preparation for the derivation of a priori error estimates for the multi-adaptive Galerkin methods mcG(q) and mdG(q), presented earlier in [1, 2]. As further preparation, we here derive estimates for derivatives, and jumps in function value and derivatives for the multi-adaptive solutions.

We first derive estimates for the general non-linear problem,

(1.1)
$$\dot{u}(t) = f(u(t), t), \quad t \in (0, T],$$
$$u(0) = u_0,$$

where $u: [0,T] \to \mathbb{R}^N$ is the solution to be computed, $u_0 \in \mathbb{R}^N$ a given initial condition, T > 0 a given final time, and $f: \mathbb{R}^N \times (0,T] \to \mathbb{R}^N$ a given function that is Lipschitzcontinuous in u and bounded. We also derive estimates for the linear problem,

(1.2)
$$\dot{u}(t) + A(t)u(t) = 0, \quad t \in (0,T],$$
$$u(0) = u_0,$$

with A(t) a bounded $N \times N$ -matrix.

Furthermore, we prove the corresponding estimates for the discrete dual solution Φ , corresponding to (1.1) or (1.2). For the non-linear problem (1.1), the discrete dual solution Φ is defined as a Galerkin solution of the continuous linearized dual problem

(1.3)
$$\begin{aligned} -\dot{\phi}(t) &= J^{\top}(\pi u, U, t)\phi(t) + g(t), \quad t \in [0, T), \\ \phi(T) &= \psi, \end{aligned}$$

Date: February 11, 2004.

Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE, continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates, linear, parabolic.

Anders Logg, Department of Computational Mathematics, Chalmers University of Technology, SE–412 96 Göteborg, Sweden, *email*: logg@math.chalmers.se.

with given data $g: [0,T) \to \mathbb{R}^N$ and $\psi \in \mathbb{R}^N$, where

(1.4)
$$J^{\top}(\pi u, U, t) = \left(\int_0^1 \frac{\partial f}{\partial u}(s\pi u(t) + (1-s)U(t), t)\,ds\right)^{\top}$$

is the transpose of the Jacobian of the right-hand side f, evaluated at an appropriate mean value of the approximate Galerkin solution U of (1.1) and an interpolant πu of the exact solution u. We will use the notation

(1.5)
$$f^*(\phi, \cdot) = J^{\top}(\pi u, U, \cdot)\phi + g$$

to write the dual problem (1.3) in the form

(1.6)
$$\begin{aligned} -\phi(t) &= f^*(\phi(t), t), \quad t \in [0, T), \\ \phi(T) &= \psi. \end{aligned}$$

We remind the reader that the discrete dual solution Φ is a Galerkin approximation, given by the mcG(q)^{*} or mdG(q)^{*} method defined in [4], of the exact solution ϕ of (1.3), and refer to [4] for the exact definition.

For the linear problem (1.2), the discrete dual solution Φ is defined as a Galerkin solution of the continuous dual problem

(1.7)
$$\begin{aligned} -\dot{\phi}(t) + A^{\top}(t)\phi(t) &= g, \quad t \in [0,T), \\ \phi(T) &= \psi, \end{aligned}$$

or $-\dot{\phi}(t) = f^*(\phi(t), t)$, with the notation $f^*(\phi, \cdot) = -A^{\top}\phi + g$.

1.1. Notation. For a detailed description of the multi-adaptive Galerkin methods, we refer the reader to [1, 2, 6, 4, 5]. In particular, we refer to [1] or [4] for the exact definition of the methods.

The following notation is used throughout this paper: Each component $U_i(t)$, $i = 1, \ldots, N$, of the approximate m(c/d)G(q) solution U(t) of (1.1) is a piecewise polynomial on a partition of (0, T] into M_i subintervals. Subinterval j for component i is denoted by $I_{ij} = (t_{i,j-1}, t_{ij}]$, and the length of the subinterval is given by the local time step $k_{ij} = t_{ij} - t_{i,j-1}$. This is illustrated in Figure 1. On each subinterval I_{ij} , $U_i|_{I_{ij}}$ is a polynomial of degree q_{ij} and we refer to $(I_{ij}, U_i|_{I_{ij}})$ as an element.

Furthermore, we shall assume that the interval (0, T] is partitioned into blocks between certain synchronized time levels $0 = T_0 < T_1 < \ldots < T_M = T$. We refer to the set of intervals \mathcal{T}_n between two synchronized time levels T_{n-1} and T_n as a *time slab*:

$$\mathcal{T}_n = \{ I_{ij} : T_{n-1} \le t_{i,j-1} < t_{ij} \le T_n \}.$$

We denote the length of a time slab by $K_n = T_n - T_{n-1}$. For a given local interval I_{ij} , we denote the time slab \mathcal{T} , for which $I_{ij} \in \mathcal{T}$, by $\mathcal{T}(i, j)$.

Since different components use different time steps, a local interval I_{ij} may contain nodal points for other components, that is, some $t_{i'j'} \in (t_{i,j-1}, t_{ij})$. We denote the set of such internal nodes on each local interval I_{ij} by \mathcal{N}_{ij} .

FIGURE 1. Individual partitions of the interval (0, T] for different components. Elements between common synchronized time levels are organized in time slabs. In this example, we have N = 6 and M = 4.

1.2. Outline of the paper. In Section 2, we show that the multi-adaptive Galerkin solutions (including discrete dual solutions) can be expressed as certain interpolants. It is known before [1] that the mcG(q) solution of (1.1) satisfies the relation

(1.8)
$$U_i(t_{ij}) = (u_0)_i + \int_0^{t_{ij}} f_i(U(t), t) \, dt, \quad j = 1, \dots, M_i, \quad i = 1, \dots, N,$$

with a similar relation for the mdG(q) solution, but this does not hold with t_{ij} replaced by an arbitrary $t \in [0, T]$. However, we prove that

(1.9)
$$U(t) = \pi_{\rm cG}^{[q]} \left[u_0 + \int_0^t f(U(s), s) \, ds \right] (t).$$

for all $t \in [0, T]$, with $\pi_{cG}^{[q]}$ a special interpolant. This new way of expressing the multiadaptive Galerkin solutions is a powerful tool and it is used extensively throughout the remainder of the paper.

In Section 3, we prove a chain rule for higher-order derivatives, which we use in Section 4, together with the representations of Section 2, to prove the desired estimates for the non-linear problem (1.1) by induction. Finally, in Section 5, we prove the corresponding estimates for linear problems.

2. A representation formula for the solutions

The proof of estimates for derivatives and jumps of the multi-adaptive Galerkin solutions is based on expressing the solutions as certain interpolants. These representations are obtained as follows. Let U be the mcG(q) or mdG(q) solution of (1.1) and define for i = 1, ..., N,

(2.1)
$$\tilde{U}_i(t) = u_i(0) + \int_0^t f_i(U(s), s) \, ds.$$

Similarly, for Φ the mcG(q)^{*} or mdG(q)^{*} solution of (1.6), we define for i = 1, ..., N,

(2.2)
$$\tilde{\Phi}_i(t) = \psi_i + \int_t^T f_i^*(\Phi(s), s) \, ds$$

We note that $\tilde{U} = f(U, \cdot)$ and $-\tilde{\Phi} = f^*(\Phi, \cdot)$.

It now turns out that U can be expressed as an interpolant of \tilde{U} . Similarly, Φ can be expressed as an interpolant of $\tilde{\Phi}$. We derive these representations in Theorem 2.1 below for the mcG(q) and mcG(q)^{*} methods, and in Theorem 2.2 for the mdG(q) and mdG(q)^{*} methods. We remind the reader about the special interpolants $\pi_{cG}^{[q]}$, $\pi_{cG^*}^{[q]}$, $\pi_{dG}^{[q]}$, and $\pi_{dG^*}^{[q]}$, defined in [3].

Theorem 2.1. The mcG(q) solution U of (1.1) can expressed in the form

(2.3)
$$U = \pi_{\rm cG}^{[q]} \tilde{U}$$

Similarly, the $mcG(q)^*$ solution Φ of (1.6) can be expressed in the form

(2.4)
$$\Phi = \pi_{\mathrm{cG}^*}^{[q]} \tilde{\Phi}_{;}$$

that is, $U_i = \pi_{cG}^{[q_{ij}]} \tilde{U}_i$ and $\Phi_i = \pi_{cG^*}^{[q_{ij}]} \tilde{\Phi}_i$ on each local interval I_{ij} .

Proof. To prove (2.3), we note that if U is the mcG(q) solution of (1.1), then on each local interval I_{ij} , we have

$$\int_{I_{ij}} \dot{U}_i v_m \, dt = \int_{I_{ij}} f_i(U, \cdot) v_m \, dt, \quad m = 0, \dots, q_{ij} - 1,$$

with $v_m(t) = ((t - t_{i,j-1})/k_{ij})^m$. On the other hand, by the definition of \tilde{U} , we have

$$\int_{I_{ij}} \dot{\tilde{U}}_i v_m dt = \int_{I_{ij}} f_i(U, \cdot) v_m dt, \quad m = 0, \dots, q_{ij} - 1.$$

Integrating by parts and subtracting, we obtain

$$-\left[(U_i - \tilde{U}_i) v_m \right]_{t_{i,j-1}}^{t_{ij}} + \int_{I_{ij}} \left(U_i - \tilde{U}_i \right) \dot{v}_m \, dt = 0,$$

and thus, since $U_i(t_{i,j-1}) - \tilde{U}_i(t_{i,j-1}) = U_i(t_{ij}) - \tilde{U}_i(t_{ij}) = 0$,

$$\int_{I_{ij}} \left(U_i - \tilde{U}_i \right) \dot{v}_m \, dt = 0.$$

By the definition of the mcG(q)-interpolant $\pi_{cG}^{[q]}$, it now follows that $U_i = \pi_{cG}^{[q_{ij}]} \tilde{U}_i$ on I_{ij} .

To prove (2.4), we note that with Φ the mcG(q)^{*} solution of (1.6), we have

(2.5)
$$-(\psi, v(T)) + \sum_{i=1}^{N} \sum_{j=1}^{M_i} \int_{I_{ij}} \Phi_i \dot{v}_i \, dt = \int_0^T (f^*(\Phi, \cdot), v) \, dt,$$

for all continuous test functions v of order $q = \{q_{ij}\}$ vanishing at t = 0. On the other hand, by the definition of $\tilde{\Phi}$, it follows that

$$-\int_{I_{ij}} \dot{\tilde{\Phi}}_i v_i \, dt = \int_{I_{ij}} f_i^*(\Phi, \cdot) v_i \, dt$$

Integrating by parts, we obtain

$$-\left[\tilde{\Phi}_{i}v_{i}\right]_{t_{i,j-1}}^{t_{ij}}+\int_{I_{ij}}\tilde{\Phi}_{i}\dot{v}_{i}\,dt=\int_{I_{ij}}f_{i}^{*}(\Phi,\cdot)v_{i}\,dt,$$

and thus

(2.6)
$$-(\psi, v(T)) + \sum_{i=1}^{N} \sum_{j=1}^{M_i} \int_{I_{ij}} \tilde{\Phi}_i \dot{v}_i \, dt = \int_0^T (f^*(\Phi, \cdot), v) \, dt,$$

since v(0) = 0 and both $\tilde{\Phi}$ and v are continuous. Subtracting (2.5) and (2.6), it now follows that

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} \int_{I_{ij}} (\Phi_i - \tilde{\Phi}_i) \dot{v}_i \, dt = 0,$$

for all test functions v. We now take $\dot{v}_i = 0$ except on I_{ij} , and $\dot{v}_n = 0$ for $n \neq i$, to obtain

$$\int_{I_{ij}} (\Phi_i - \tilde{\Phi}_i) w \, dt = 0 \quad \forall w \in \mathcal{P}^{q_{ij} - 1}(I_{ij}),$$

and so $\Phi_i = P^{[q_{ij}-1]} \tilde{\Phi}_i \equiv \pi_{cG^*}^{[q_{ij}]} \tilde{\Phi}_i$ on I_{ij} .

Theorem 2.2. The mdG(q) solution U of (1.1) can expressed in the form

(2.7)
$$U = \pi_{\mathrm{dG}}^{[q]} \tilde{U}$$

Similarly, the $mdG(q)^*$ solution Φ of (1.6) can be expressed in the form

(2.8)
$$\Phi = \pi_{\mathrm{dG}^*}^{[q]} \tilde{\Phi},$$

that is, $U_i = \pi_{\mathrm{dG}}^{[q_{ij}]} \tilde{U}_i$ and $\Phi_i = \pi_{\mathrm{dG}^*}^{[q_{ij}]} \tilde{\Phi}_i$ on each local interval I_{ij} .

Proof. To prove (2.7), we note that if U is the mdG(q) solution of (1.1), then on each local interval I_{ij} , we have

$$\int_{I_{ij}} \dot{U}_i v_m \, dt = \int_{I_{ij}} f_i(U, \cdot) v_m \, dt, \quad m = 1, \dots, q_{ij},$$

with $v_m(t) = ((t - t_{i,j-1})/k_{ij})^m$. On the other hand, by the definition of \tilde{U} , we have

$$\int_{I_{ij}} \dot{\tilde{U}}_i v_m \, dt = \int_{I_{ij}} f_i(U, \cdot) v_m \, dt, \quad m = 1, \dots, q_{ij}.$$

Integrating by parts and subtracting, we obtain

$$\int_{I_{ij}} \left(U_i - \tilde{U}_i \right) \dot{v}_m \, dt - \left(U_i(t_{ij}) - \tilde{U}(t_{ij}) \right) = 0,$$

and thus, since $U_i(t_{ij}^-) = \tilde{U}_i(t_{ij})$,

$$\int_{I_{ij}} \left(U_i - \tilde{U}_i \right) \dot{v}_m \, dt = 0$$

By the definition of the mdG(q)-interpolant $\pi_{dG}^{[q]}$, it now follows that $U_i = \pi_{dG}^{[q_{ij}]} \tilde{U}_i$ on I_{ij} .

The representation (2.8) of the dual solution follows directly, since the $mdG(q)^*$ method is identical to the mdG(q) method with time reversed.

Remark 2.1. The representations of the multi-adaptive Galerkin solutions as certain interpolants are presented here for the general non-linear problem (1.1), but apply also to the linear problem (1.2).

3. A CHAIN RULE FOR HIGHER-ORDER DERIVATIVES

To estimate higher-order derivatives, we face the problem of taking higher-order derivatives of f(U(t), t) with respect to t. In this section, we derive a generalized version of the chain rule for higher-order derivatives. We also prove a basic estimate for the jump in a composite function.

Lemma 3.1. (Chain rule) Let $v : \mathbb{R}^N \to \mathbb{R}$ be p > 0 times differentiable in all its variables, and let $x : \mathbb{R} \to \mathbb{R}^N$ be p times differentiable, so that

$$(3.1) v \circ x : \mathbb{R} \to \mathbb{R}$$

is p times differentiable. Furthermore, let $D^n v$ denote the nth order tensor defined by

$$D^n v \, w^1 \cdots w^n = \sum_{i_1=1}^N \cdots \sum_{i_n=1}^N \frac{\partial^n v}{\partial x_{i_1} \cdots \partial x_{i_n}} \, w^1_{i_1} \cdots w^n_{i_n},$$

for $w^1, \ldots, w^n \in \mathbb{R}^N$. Then,

(3.2)
$$\frac{d^p(v \circ x)}{dt^p} = \sum_{n=1}^p D^n v(x) \sum_{n_1,\dots,n_n} C_{p,n_1,\dots,n_n} x^{(n_1)} \cdots x^{(n_n)}$$

where for each n the sum \sum_{n_1,\dots,n_n} is taken over $n_1 + \dots + n_n = p$ with $n_i \ge 1$.

Proof. Repeated use of the chain rule and Leibniz rule gives

$$\frac{d^{p}(v \circ x)}{dt^{p}} = \frac{d^{p-1}}{dt^{p-1}} Dv(x) x^{(1)} = \frac{d^{p-2}}{dt^{p-2}} \left[D^{2}v(x) x^{(1)} x^{(1)} + Dv(x) x^{(2)} \right]
= \frac{d^{p-3}}{dt^{p-3}} \left[D^{3}v(x) x^{(1)} x^{(1)} x^{(1)} + D^{2}v(x) x^{(2)} x^{(1)} + \dots + Dv(x) x^{(3)} \right]
= \sum_{n=1}^{p} D^{n}v(x) \sum_{n_{1},\dots,n_{n}} C_{p,n_{1},\dots,n_{n}} x^{(n_{1})} \cdots x^{(n_{n})},$$

where for each n the sum is taken over $n_1 + \ldots + n_n = p$ with $n_i \ge 1$.

To estimate the jump in function value and derivatives for the composite function $v \circ x$, we will need the following lemma.

Lemma 3.2. With $[A] = A^+ - A^-$, $\langle A \rangle = (A^+ + A^-)/2$ and $|A| = \max(|A^+|, |A^-|)$, we have

(3.3)
$$[AB] = [A]\langle B \rangle + \langle A \rangle [B],$$

and

(3.4)
$$|[A_1A_2\cdots A_n]| \le \sum_{i=1}^n |[A_i]| \ \Pi_{j\neq i}|A_i|.$$

Proof. The proof of (3.3) is straightforward:

$$[A]\langle B \rangle + \langle A \rangle [B] = (A^+ - A^-)(B^+ + B^-)/2 + (A^+ + A^-)(B^+ - B^-)/2 = A^+ B^+ - A^- B^- = [AB].$$

It now follows that

$$|[A_1A_2\cdots A_n]| = |[A_1(A_2\cdots A_n)]| = |[A_1]\langle A_2\cdots A_n\rangle + \langle A_1\rangle [A_2\cdots A_n]|$$

$$\leq |[A_1]| \cdot |A_2| \cdots |A_n| + |A_1| \cdot |[A_2\cdots A_n]| \leq \sum_{i=1}^n |[A_i]| \prod_{j\neq i} |A_i|.$$

Using Lemma 3.1 and 3.2, we now prove basic estimates of derivatives and jumps for the composite function $v \circ x$. We will use the following notation: For $n \ge 0$, let $\|D^n v\|_{L_{\infty}(\mathbb{R}, l_{\infty})}$ be defined by

(3.5)
$$||D^n v w^1 \cdots w^n||_{L_{\infty}(\mathbb{R})} \le ||D^n v||_{L_{\infty}(\mathbb{R}, l_{\infty})} ||w^1||_{l_{\infty}} \cdots ||w^n||_{l_{\infty}} \quad \forall w^1, \dots, w^n \in \mathbb{R}^N,$$

with
$$||D^n v||_{L_{\infty}(\mathbb{R}, l_{\infty})} = ||v||_{L_{\infty}(\mathbb{R})}$$
 for $n = 0$, and define

(3.6)
$$\|v\|_{D^{p}(\mathbb{R})} = \max_{n=0,\dots,p} \|D^{n}v\|_{L_{\infty}(\mathbb{R},l_{\infty})}.$$

ANDERS LOGG

Lemma 3.3. Let $v : \mathbb{R}^N \to \mathbb{R}$ be $p \ge 0$ times differentiable in all its variables, let $x : \mathbb{R} \to \mathbb{R}^N$ be p times differentiable, and let $C_x > 0$ be a constant, such that $||x^{(n)}||_{L_{\infty}(\mathbb{R},l_{\infty})} \le C_x^n$, for $n = 1, \ldots, p$. Then, there is a constant C = C(p) > 0, such that

(3.7)
$$\left\|\frac{d^p(v \circ x)}{dt^p}\right\|_{L_{\infty}(\mathbb{R})} \le C \|v\|_{D^p(\mathbb{R})} C_x^p.$$

Proof. We first note that for p = 0, (3.7) follows directly by the definition of $||v||_{D^p(\mathbb{R})}$. For p > 0, we obtain by Lemma 3.1,

$$\left|\frac{d^{p}(v \circ x)}{dt^{p}}\right| \leq C \sum_{n=1}^{p} \sum_{n_{1},\dots,n_{n}} \left|D^{n} v(x) x^{(n_{1})} \cdots x^{(n_{n})}\right| \leq C \|v\|_{D^{p}(\mathbb{R})} C_{x}^{p}.$$

Lemma 3.4. Let $v : \mathbb{R}^N \to \mathbb{R}$ be $p+1 \ge 1$ times differentiable in all its variables, let $x : \mathbb{R} \to \mathbb{R}^N$ be p times differentiable, except possibly at some $t \in \mathbb{R}$, and let $C_x > 0$ be a constant, such that $||x^{(n)}||_{L_{\infty}(\mathbb{R},l_{\infty})} \le C_x^n$ for $n = 1, \ldots, p$. Then, there is a constant C = C(p) > 0, such that

(3.8)
$$\left| \left[\frac{d^p(v \circ x)}{dt^p} \right]_t \right| \le C \|v\|_{D^{p+1}(\mathbb{R})} \sum_{n=0}^p C_x^{p-n} \|[x^{(n)}]_t\|_{l_{\infty}}.$$

Proof. We first note that for p = 0, we have

$$\left| \left[\frac{d^p(v \circ x)}{dt^p} \right]_t \right| = \left| [(v \circ x)]_t \right| = \left| v(x(t^+)) - v(x(t^-)) \right| \le \|Dv\|_{L_{\infty}(\mathbb{R}, l_{\infty})} \|[x]_t\|_{l_{\infty}},$$

and so (3.8) holds for p = 0. For p > 0, we obtain by Lemma 3.1 and Lemma 3.2,

$$\left| \left[\frac{d^{p}(v \circ x)}{dt^{p}} \right]_{t} \right| \leq C \sum_{n=1}^{p} \sum_{n_{1},...,n_{n}} \left| \left[D^{n}v(x) \, x^{(n_{1})} \cdots x^{(n_{n})} \right]_{t} \right|$$
$$\leq C \sum_{n=1}^{p} \sum_{n_{1},...,n_{n}} \| D^{n+1}v \|_{L_{\infty}(\mathbb{R},l_{\infty})} \| [x]_{t} \|_{l_{\infty}} C_{x}^{p} + \| D^{n}v \|_{L_{\infty}(\mathbb{R},l_{\infty})} (\| [x^{(n_{1})}]_{t} \|_{l_{\infty}} C_{x}^{p-n_{1}} + \ldots + \| [x^{(n_{n})}]_{t} \|_{l_{\infty}} C_{x}^{p-n_{n}})$$
$$\leq C \| v \|_{D^{p+1}(\mathbb{R})} \sum_{n=0}^{p} C_{x}^{p-n} \| [x^{(n)}]_{t} \|_{l_{\infty}}.$$

4. Estimates of derivatives and jumps for the non-linear problem

We now derive estimates of derivatives and jumps for the multi-adaptive solutions of the general non-linear problem (1.1). To obtain the estimates for the multi-adaptive solutions U and Φ , we first derive estimates for the functions \tilde{U} and $\tilde{\Phi}$ defined in Section 2. These estimates are then used to derive estimates for U and Φ .

4.1. Assumptions. We make the following basic assumptions: Given a time slab \mathcal{T} , assume that for each pair of local intervals I_{ij} and I_{mn} within the time slab, we have

(A1)
$$q_{ij} = q_{mn} = \bar{q}$$

and

(A2)
$$k_{ij} > \alpha \ k_{mn},$$

for some $\bar{q} \ge 0$ and some $\alpha \in (0, 1)$. We also assume that the problem (1.1) is autonomous,

(A3)
$$\frac{\partial f_i}{\partial t} = 0, \quad i = 1, \dots, N.$$

Note that dual problem is in general non-autonomous. Furthermore, assume that

(A4)
$$||f_i||_{D^{\bar{q}+1}(\mathcal{T})} < \infty, \quad i = 1, \dots, N,$$

and take $||f||_{\mathcal{T}} \ge \max_{i=1,...,N} ||f_i||_{D^{\bar{q}+1}(\mathcal{T})}$, such that

(4.5)
$$\|d^p/dt^p(\partial f/\partial u)^{\top}(x(t))\|_{l_{\infty}} \le \|f\|_{\mathcal{T}}C_x^p,$$

for $p = 0, \ldots, \overline{q}$, and

(4.6)
$$\| [d^p/dt^p(\partial f/\partial u)^{\top}(x(t))]_t \|_{l_{\infty}} \le \| f \|_{\mathcal{T}} \sum_{n=0}^p C_x^{p-n} \| [x^{(n)}]_t \|_{l_{\infty}}$$

for $p = 0, \ldots, \bar{q} - 1$, with the notation of Lemma 3.3 and Lemma 3.4. Note that assumption (A4) implies that each f_i is bounded by $||f||_{\mathcal{T}}$. We further assume that there is a constant $c_k > 0$, such that

(A5)
$$k_{ij} \|f\|_{\mathcal{T}} \le c_k$$

for each local interval I_{ij} . We summarize the list of assumptions as follows:

- (A1) the local orders q_{ij} are equal within each time slab;
- (A2) the local time steps k_{ij} are semi-uniform within each time slab;
- (A3) f is autonomous;
- (A4) f and its derivatives are bounded;
- (A5) the local time steps k_{ij} are small.

4.2. Estimates for U. To simplify the estimates, we introduce the following notation: For given p > 0, let $C_{U,p} \ge ||f||_{\mathcal{T}}$ be a constant, such that

(4.8)
$$||U^{(n)}||_{L_{\infty}(\mathcal{T},l_{\infty})} \le C^{n}_{U,p}, \quad n = 1, \dots, p.$$

For p = 0, we define $C_{U,0} = ||f||_{\mathcal{T}}$. Temporarily, we will assume that there is a constant $c'_k > 0$, such that for each p,

(A5')
$$k_{ij}C_{U,p} \le c'_k.$$

This assumption will be removed below in Theorem 4.1. In the following lemma, we use assumptions (A1), (A3), and (A4) to derive estimates for \tilde{U} in terms of $C_{U,p}$ and $||f||_{\tau}$.

Lemma 4.1. (Derivative and jump estimates for \tilde{U}) Let U be the mcG(q) or mdG(q) solution of (1.1) and define \tilde{U} as in (2.1). If assumptions (A1), (A3), and (A4) hold, then there is a constant $C = C(\bar{q}) > 0$, such that

(4.10)
$$\|\tilde{U}^{(p)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \leq CC^{p}_{U, p-1}, \quad p = 1, \dots, \bar{q} + 1,$$

and

(4.11)
$$\|[\tilde{U}^{(p)}]_{t_{i,j-1}}\|_{l_{\infty}} \leq C \sum_{n=0}^{p-1} C_{U,p-1}^{p-n} \|[U^{(n)}]_{t_{i,j-1}}\|_{l_{\infty}}, \quad p = 1, \dots, \bar{q}+1,$$

for each local interval I_{ij} , where $t_{i,j-1}$ is an internal node of the time slab \mathcal{T} .

Proof. By definition, $\tilde{U}_i^{(p)} = \frac{d^{p-1}}{dt^{p-1}} f_i(U)$, and so the results follow directly by Lemma 3.3 and Lemma 3.4, noting that $||f||_{\mathcal{T}} \leq C_{U,p-1}$.

By Lemma 4.1, we now obtain the following estimate for the size of the jump in function value and derivatives for U.

Lemma 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q) solution of (1.1). If assumptions (A1)–(A5) and (A5') hold, then there is a constant $C = C(\bar{q}, c_k, c'_k, \alpha) > 0$, such that

(4.12)
$$||[U^{(p)}]_{t_{i,j-1}}||_{l_{\infty}} \leq Ck_{ij}^{r+1-p}C_{U,r}^{r+1}, \quad p = 0, \dots, r+1, \quad r = 0, \dots, \bar{q},$$

for each local interval I_{ij} , where $t_{i,j-1}$ is an internal node of the time slab \mathcal{T} .

Proof. The proof is by induction. We first note that at $t = t_{i,j-1}$, we have

$$[U_i^{(p)}]_t = \left(U_i^{(p)}(t^+) - \tilde{U}_i^{(p)}(t^+) \right) + \left(\tilde{U}_i^{(p)}(t^+) - \tilde{U}_i^{(p)}(t^-) \right) + \left(\tilde{U}_i^{(p)}(t^-) - U_i^{(p)}(t^-) \right)$$

$$\equiv e_+ + e_0 + e_-.$$

By Theorem 2.1 (or Theorem 2.2), U is an interpolant of \tilde{U} and so, by Theorem 5.2 in [3], we have

$$|e_{+}| \leq Ck_{ij}^{r+1-p} \|\tilde{U}_{i}^{(r+1)}\|_{L_{\infty}(I_{ij})} + C\sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{r} k_{ij}^{m-p} |[\tilde{U}_{i}^{(m)}]_{x}|$$

for $p = 0, \ldots, r + 1$ and $r = 0, \ldots, \bar{q}$. Note that the second sum starts at m = 1 rather than at m = 0, since \tilde{U} is continuous. Similarly, we have

$$|e_{-}| \leq Ck_{i,j-1}^{r+1-p} \|\tilde{U}_{i}^{(r+1)}\|_{L_{\infty}(I_{i,j-1})} + C\sum_{x \in \mathcal{N}_{i,j-1}} \sum_{m=1}^{r} k_{i,j-1}^{m-p} |[\tilde{U}_{i}^{(m)}]_{x}|.$$

To estimate e_0 , we note that $e_0 = 0$ for p = 0, since \tilde{U} is continuous. For $p = 1, \ldots, \bar{q} + 1$, Lemma 4.1 gives

$$|e_0| = |[\tilde{U}_i^{(p)}]_t| \le C \sum_{n=0}^{p-1} C_{U,p-1}^{p-n} ||[U^{(n)}]_t||_{l_{\infty}}.$$

Using assumption (A2), and the estimates for e_+ , e_0 , and e_- , we obtain for r = 0 and p = 0,

$$|[U_i]_t| \le Ck_{ij} \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{ij})} + 0 + Ck_{i,j-1} \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{i,j-1})} \le C(1+\alpha^{-1})k_{ij}C_{U,0} = Ck_{ij}C_{U,0}.$$

It now follows by assumption (A5), that for r = 0 and p = 1,

 $|[\dot{U}_i]_t| \leq C \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{ij})} + CC_{U,0}\|[U]_t\|_{l_{\infty}} + C \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{i,j-1})} \leq C(1 + k_{ij}C_{U,0})C_{U,0} \leq CC_{U,0}.$ Thus, (4.12) holds for r = 0. Assume now that (4.12) holds for $r = \bar{r} - 1 \geq 0$. Then, by Lemma 4.1 and assumption (A5'), it follows that

$$\begin{aligned} |e_{+}| &\leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1} + C\sum_{x\in\mathcal{N}_{ij}}\sum_{m=1}^{\bar{r}}k_{ij}^{m-p}\sum_{n=0}^{m-1}C_{U,m-1}^{m-n}||[U^{n}]_{x}||_{l_{\infty}} \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1} + C\sum_{ij}k_{ij}^{m-p}C_{U,m-1}^{m-n}k_{ij}^{(\bar{r}-1)+1-n}C_{U,\bar{r}-1}^{(\bar{r}-1)+1} \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}\left(1+\sum_{ij}(k_{ij}C_{U,\bar{r}-1})^{m-1-n}\right) \leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}. \end{aligned}$$

Similarly, we obtain the estimate $|e_{-}| \leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}$. Finally, we use Lemma 4.1 and assumption (A5'), to obtain the estimate

$$\begin{aligned} |e_0| &\leq C \sum_{n=0}^{p-1} C_{U,p-1}^{p-n} \| [U^n]_t \|_{l_{\infty}} \leq C \sum_{n=0}^{p-1} C_{U,p-1}^{p-n} k_{ij}^{(\bar{r}-1)+1-n} C_{U,\bar{r}-1}^{(\bar{r}-1)+1} \\ &= C k_{ij}^{\bar{r}+1-p} C_{U,\bar{r}}^{\bar{r}+1} \sum_{n=0}^{p-1} (k_{ij} C_{U,\bar{r}})^{p-1-n} \leq C k_{ij}^{\bar{r}+1-p} C_{U,\bar{r}}^{\bar{r}+1}. \end{aligned}$$

Summing up, we thus obtain $|[U_i^{(p)}]_t| \le |e_+| + |e_0| + |e_-| \le Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}$, and so (4.12) follows by induction.

By Lemma 4.1 and Lemma 4.2, we now obtain the following estimate for derivatives of the solution U.

Theorem 4.1. (Derivative estimates for U) Let U be the mcG(q) or mdG(q) solution of (1.1). If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.13)
$$\|U^{(p)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \le C \|f\|_{\mathcal{T}}^{p}, \quad p = 1, \dots, \bar{q}.$$

Proof. By Theorem 2.1 (or Theorem 2.2), U is an interpolant of \tilde{U} and so, by Theorem 5.2 in [3], we have

$$\|U_i^{(p)}\|_{L_{\infty}(I_{ij})} = \|(\pi \tilde{U}_i)^{(p)}\|_{L_{\infty}(I_{ij})} \le C' \|\tilde{U}_i^{(p)}\|_{L_{\infty}(I_{ij})} + C' \sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{p-1} k_{ij}^{m-p} |[\tilde{U}_i^{(m)}]_x|,$$

for some constant $C' = C'(\bar{q})$. For p = 1, we thus obtain the estimate

$$\|\dot{U}_i\|_{L_{\infty}(I_{ij})} \le C' \|\tilde{U}_i\|_{L_{\infty}(I_{ij})} = C' \|f_i(U)\|_{L_{\infty}(I_{ij})} \le C' \|f\|_{\mathcal{T}},$$

by assumption (A4), and so (4.13) holds for p = 1.

For $p = 2, ..., \bar{q}$, assuming that (A5') holds for $C_{U,p-1}$, we use Lemma 4.1, Lemma 4.2 (with r = p - 1), and assumption (A2), to obtain

$$\begin{aligned} \|U_{i}^{(p)}\|_{L_{\infty}(I_{ij})} &\leq CC_{U,p-1}^{p} + C \sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{p-1} k_{ij}^{m-p} \sum_{n=0}^{m-1} C_{U,m-1}^{m-n} \|[U^{(n)}]_{x}\|_{l_{\infty}} \\ &\leq CC_{U,p-1}^{p} + C \sum_{ij} k_{ij}^{m-p} C_{U,m-1}^{m-n} k_{ij}^{(p-1)+1-n} C_{U,p-1}^{(p-1)+1} \\ &\leq CC_{U,p-1}^{p} \left(1 + \sum_{ij} (k_{ij} C_{U,m-1})^{m-n}\right) \leq CC_{U,p-1}^{p}, \end{aligned}$$

where $C = C(\bar{q}, c_k, c'_k, \alpha)$. This holds for all components *i* and all local intervals I_{ij} within the time slab \mathcal{T} , and so

$$||U^{(p)}||_{L_{\infty}(\mathcal{T},l_{\infty})} \le CC^{p}_{U,p-1}, \quad p = 1, \dots, \bar{q},$$

where by definition $C_{U,p-1}$ is a constant, such that $||U^{(n)}||_{L_{\infty}(\mathcal{T},l_{\infty})} \leq C_{U,p-1}^{n}$ for $n = 1, \ldots, p-1$. Starting at p = 1, we now define $C_{U,1} = C_1 ||f||_{\mathcal{T}}$ with $C_1 = C' = C'(\bar{q})$. It then follows that (A5') holds for $C_{U,1}$ with $c'_k = C'c_k$, and thus

$$\|U^{(2)}\|_{L_{\infty}(\mathcal{T},l_{\infty})} \le CC^{2}_{U,2-1} = CC^{2}_{U,1} \equiv C_{2}\|f\|^{2}_{\mathcal{T}},$$

where $C_2 = C_2(\bar{q}, c_k, \alpha)$. We may thus define $C_{U,2} = \max(C_1 ||f||_{\mathcal{T}}, \sqrt{C_2} ||f||_{\mathcal{T}})$. Continuing, we note that (A5') holds for $C_{U,2}$, and thus

$$||U^{(3)}||_{L_{\infty}(\mathcal{T},l_{\infty})} \le CC^{3}_{U,3-1} = CC^{3}_{U,2} \equiv C_{3}||f||^{3}_{\mathcal{T}},$$

where $C_3 = C_3(\bar{q}, c_k, \alpha)$. In this way, we obtain a sequence of constants $C_1, \ldots, C_{\bar{q}}$, depending only on \bar{q} , c_k , and α , such that $\|U^{(p)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \leq C_p \|f\|_{\mathcal{T}}^p$ for $p = 1, \ldots, \bar{q}$, and so (4.13) follows if we take $C = \max_{i=1,\ldots,\bar{q}} C_i$.

Having now removed the additional assumption (A5'), we obtain the following version of Lemma 4.2.

Theorem 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q) solution of (1.1). If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.14)
$$\| [U^{(p)}]_{t_{i,j-1}} \|_{l_{\infty}} \le C k_{ij}^{\bar{q}+1-p} \| f \|_{\mathcal{T}}^{\bar{q}+1}, \quad p = 0, \dots, \bar{q}$$

for each local interval I_{ij} , where $t_{i,j-1}$ is an internal node of the time slab \mathcal{T} .

4.3. Estimates for Φ . To obtain estimates corresponding to those of Theorem 4.1 and Theorem 4.2 for the discrete dual solution Φ , we need to consider the fact that $f^* = f^*(\phi, \cdot) = J^{\top}\phi$ is linear and non-autonomous. To simplify the estimates, we introduce the following notation: For given $p \ge 0$, let $C_{\Phi,p} \ge ||f||_{\mathcal{T}}$ be a constant, such that

(4.15)
$$\|\Phi^{(n)}\|_{L_{\infty}(\mathcal{T},l_{\infty})} \le C^{n}_{\Phi,p} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad n = 0, \dots, p.$$

Temporarily, we will assume that for each p there is a constant $c''_k > 0$, such that

$$(A5'') k_{ij}C_{\Phi,p} \le c_k''$$

This assumption will be removed below in Theorem 4.3. Now, to obtain estimates for Φ , we first need to derive estimates of derivatives and jumps for J.

Lemma 4.3. Let U be the mcG(q) or mdG(q) solution of (1.1), and let πu be an interpolant, of order \bar{q} , of the exact solution u of (1.1). If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.17)
$$\left\| \frac{d^p J^{\top}(\pi u, U)}{dt^p} \right\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \le C \|f\|_{\mathcal{T}}^{p+1}, \quad p = 0, \dots, \bar{q},$$

and

(4.18)
$$\left\| \left[\frac{d^p J^{\top}(\pi u, U)}{dt^p} \right]_{t_{i,j-1}} \right\|_{l_{\infty}} \le C k_{ij}^{\bar{q}+1-p} \|f\|_{\mathcal{T}}^{\bar{q}+2}, \quad p = 0, \dots, \bar{q}-1,$$

for each local interval I_{ij} , where $t_{i,j-1}$ is an internal node of the time slab \mathcal{T} .

Proof. Since f is autonomous by assumption (A3), we have

$$J(\pi u(t), U(t)) = \int_0^1 \frac{\partial f}{\partial u} (s\pi u(t) + (1-s)U(t)) \, ds = \int_0^1 \frac{\partial f}{\partial u} (x_s(t)) \, ds,$$

with $x_s(t) = s\pi u(t) + (1-s)U(t)$. Noting that $||u^{(n)}(t)||_{l_{\infty}} \leq C||f||_{\mathcal{T}}^n$ by (1.1), it follows by Theorem 4.1 and an interpolation estimate, that $||x_s^{(n)}(t)||_{l_{\infty}} \leq C||f||_{\mathcal{T}}^n$, and so (4.17) follows by assumption (A4).

At $t = t_{i,j-1}$, we obtain, by Theorem 4.2 and an interpolation estimate,

$$\begin{split} |[x_{si}^{(n)}]_{t}| &\leq s |[(\pi u_{i})^{(n)}]_{t}| + (1-s) |[U_{i}^{(n)}]_{t}| \leq |[(\pi u_{i})^{(n)}]_{t}| + |[U_{i}^{(n)}]_{t}| \\ &\leq |(\pi u_{i})^{(n)}(t^{+}) - u_{i}^{(n)}(t)| + |u_{i}^{(n)}(t) - (\pi u_{i})^{(n)}(t^{-}))| + Ck_{ij}^{\bar{q}+1-n} ||f||_{\mathcal{T}}^{\bar{q}+1} \\ &\leq Ck_{ij}^{\bar{q}+1-n} ||u_{i}^{(\bar{q}+1)}||_{L_{\infty}(I_{ij})} + Ck_{i,j-1}^{\bar{q}+1-n} ||u_{i}^{(\bar{q}+1)}||_{L_{\infty}(I_{i,j-1})} + Ck_{ij}^{\bar{q}+1-n} ||f||_{\mathcal{T}}^{\bar{q}+1} \\ &\leq Ck_{ij}^{\bar{q}+1-n} ||f||_{\mathcal{T}}^{\bar{q}+1}, \end{split}$$

where we have also used assumption (A2). With similar estimates for other components which are discontinuous at $t = t_{i,j-1}$, the estimate (4.18) now follows by assumptions (A4) and (A5).

Using these estimates for J^{\top} , we now derive estimates for $\tilde{\Phi}$, corresponding to the estimates for \tilde{U} in Lemma 4.1.

Lemma 4.4. (Derivative and jump estimates for $\tilde{\Phi}$) Let Φ be the mcG(q)^{*} or mdG(q)^{*} solution of (1.3) with g = 0, and define $\tilde{\Phi}$ as in (2.2). If assumptions (A1)–(A5) and (A5") hold, then there is a constant $C = C(\bar{q}, c_k, c_k'', \alpha) > 0$, such that

(4.19)
$$\|\tilde{\Phi}^{(p)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \le CC^{p}_{\Phi, p-1} \|\Phi\|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 1, \dots, \bar{q} + 1,$$

and (4.20)

$$\|[\tilde{\Phi}^{(p)}]_{t_{ij}}\|_{l_{\infty}} \le Ck_{ij}^{\bar{q}+2-p} \|f\|_{\mathcal{T}}^{\bar{q}+2} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{n=0}^{p-1} \|f\|_{\mathcal{T}}^{p-n}\|[\Phi^{(n)}]_{t_{ij}}\|_{l_{\infty}}, \quad p=1,\ldots,\bar{q},$$

for each local interval I_{ij} , where t_{ij} is an internal node of the time slab \mathcal{T} .

Proof. By definition, $\dot{\Phi} = -f^*(\Phi, \cdot) = -J(\pi u, U)^\top \Phi$. It follows that

$$\tilde{\Phi}^{(p)} = -\frac{d^{p-1}}{dt^{p-1}} J^{\top} \Phi = -\sum_{n=0}^{p-1} \binom{p-1}{n} \left(\frac{d^{p-1-n}}{dt^{p-1-n}} J^{\top}\right) \Phi^{(n)},$$

and so, by Lemma 4.3,

$$\|\tilde{\Phi}^{(p)}(t)\|_{l_{\infty}} \le C \sum_{n=0}^{p-1} \|f\|_{\mathcal{T}}^{p-n} C^{n}_{\Phi,p-1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \le C C^{p}_{\Phi,p-1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})},$$

for $0 \le p-1 \le \bar{q}$. To estimate the jump at $t = t_{ij}$, we use Lemma 3.2, Lemma 4.3, and assumption (A5''), to obtain

$$\begin{split} \|[\tilde{\Phi}^{(p)}]_{t}\|_{l_{\infty}} &\leq C \sum_{n=0}^{p-1} \left\| \left[\left(\frac{d^{p-1-n}}{dt^{p-1-n}} J^{\top} \right) \Phi^{(n)} \right]_{t} \right\|_{l_{\infty}} \\ &\leq C \sum_{n=0}^{p-1} \left(k_{ij}^{\bar{q}+1-(p-1-n)} \|f\|_{T}^{\bar{q}+2} C_{\Phi,p-1}^{n} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + \|f\|_{T}^{p-n} \|[\Phi^{(n)}]_{t}\|_{l_{\infty}} \right) \\ &\leq C k_{ij}^{\bar{q}+2-p} \|f\|_{T}^{\bar{q}+2} \sum_{n=0}^{p-1} k_{ij}^{n} C_{\Phi,p-1}^{n} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C \sum_{n=0}^{p-1} \|f\|_{T}^{p-n} \|[\Phi^{(n)}]_{t}\|_{l_{\infty}} \\ &\leq C k_{ij}^{\bar{q}+2-p} \|f\|_{T}^{\bar{q}+2} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C \sum_{n=0}^{p-1} \|f\|_{T}^{p-n} \|[\Phi^{(n)}]_{t}\|_{l_{\infty}}, \\ &\leq C k_{ij}^{\bar{q}+2-p} \|f\|_{T}^{\bar{q}+2} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C \sum_{n=0}^{p-1} \|f\|_{T}^{p-n} \|[\Phi^{(n)}]_{t}\|_{l_{\infty}}, \end{split}$$

for $0 \le p - 1 \le \bar{q} - 1$.

Our next task is to estimate the jump in the discrete dual solution Φ itself, corresponding to Lemma 4.2.

Lemma 4.5. (Jump estimates for Φ) Let Φ be the mcG(q)^{*} or mdG(q)^{*} solution of (1.3) with g = 0. If assumptions (A1)–(A5) and (A5") hold, then there is a constant C = $C(\bar{q}, c_k, c_k'', \alpha) > 0$, such that

(4.21)
$$\| [\Phi^{(p)}]_{t_{ij}} \|_{l_{\infty}} \le C k_{ij}^{r+1-p} C_{\Phi,r}^{r+1} \| \Phi \|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 0, \dots, r+1,$$

with $r = 0, \ldots, \bar{q} - 1$ for the mcG(q) method and $r = 0, \ldots, \bar{q}$ for the mdG(q) method, for each local interval I_{ij} , where t_{ij} is an internal node of the time slab \mathcal{T} .

ESTIMATES OF DERIVATIVES AND JUMPS

Proof. The proof is by induction. We first note that at $t = t_{ij}$, we have

$$[\Phi_i^{(p)}]_t = \left(\Phi_i^{(p)}(t^+) - \tilde{\Phi}_i^{(p)}(t^+) \right) + \left(\tilde{\Phi}_i^{(p)}(t^+) - \tilde{\Phi}_i^{(p)}(t^-) \right) + \left(\tilde{\Phi}_i^{(p)}(t^-) - \Phi_i^{(p)}(t^-) \right)$$

$$\equiv e_+ + e_0 + e_-.$$

By Theorem 2.1 (or Theorem 2.2), Φ is an interpolant of $\tilde{\Phi}$; if Φ is the mcG(q)^{*} solution, then Φ_i is the $\pi_{cG^*}^{[q_{ij}]}$ -interpolant of $\tilde{\Phi}_i$ on I_{ij} , and if Φ is the mdG(q)^{*} solution, then Φ_i is the $\pi_{dG^*}^{[q_{ij}]}$ -interpolant of $\tilde{\Phi}_i$. It follows that

$$|e_{-}| \leq Ck_{ij}^{r+1-p} \|\tilde{\Phi}_{i}^{(r+1)}\|_{L_{\infty}(I_{ij})} + C \sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{r} k_{ij}^{m-p} |[\tilde{\Phi}_{i}^{(m)}]_{x}|, \quad p = 0, \dots, r+1,$$

where $r = 0, ..., \bar{q} - 1$ for the mcG(q)^{*} solution and $r = 0, ..., \bar{q}$ for the mdG(q)^{*} solution. Similarly, we have

$$|e_{+}| \leq Ck_{i,j+1}^{r+1-p} \|\tilde{\Phi}_{i}^{(r+1)}\|_{L_{\infty}(I_{i,j+1})} + C \sum_{x \in \mathcal{N}_{i,j+1}} \sum_{m=1}^{r} k_{i,j+1}^{m-p} |[\tilde{\Phi}_{i}^{(m)}]_{x}|, \quad p = 0, \dots, r+1.$$

To estimate e_0 , we note that $e_0 = 0$ for p = 0, since $\tilde{\Phi}$ is continuous. For $p = 1, \ldots, \bar{q}$, Lemma 4.4 gives

$$(4.22) |e_0| = |[\tilde{\Phi}_i^{(p)}]_t| \le Ck_{ij}^{\bar{q}+2-p} ||f||_{\mathcal{T}}^{\bar{q}+2} ||\Phi||_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{n=0}^{p-1} ||f||_{\mathcal{T}}^{p-n} ||[\Phi^{(n)}]_t||_{l_{\infty}}.$$

Using assumption (A2), and the estimates for e_+ , e_0 , and e_- , we obtain for r = 0 and p = 0,

$$\begin{split} |[\Phi_i]_t| &\leq Ck_{i,j+1} \|\dot{\tilde{\Phi}}_i\|_{L_{\infty}(I_{i,j+1})} + 0 + Ck_{ij} \|\dot{\tilde{\Phi}}_i\|_{L_{\infty}(I_{ij})} \leq C(\alpha^{-1} + 1)k_{ij}C_{\Phi,0} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &= Ck_{ij}C_{\Phi,0} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}. \end{split}$$

For r = 0 and p = 1, it follows by (4.22), noting that $k_{ij}^{\bar{q}+2-1} ||f||_{\mathcal{T}}^{\bar{q}+2} \leq C ||f||_{\mathcal{T}} = CC_{\Phi,0}$, and assumption (A2), that $|e_0| \leq CC_{\Phi,0} ||\Phi||_{L_{\infty}(\mathcal{T},l_{\infty})} + C ||f||_{\mathcal{T}} ||[\Phi]_t||_{l_{\infty}} \leq CC_{\Phi,0} ||\Phi||_{L_{\infty}(\mathcal{T},l_{\infty})}$, and so,

$$|[\dot{\Phi}_i]_t| \le C \|\dot{\check{\Phi}}_i\|_{L_{\infty}(I_{i,j+1})} + CC_{\Phi,0} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C \|\dot{\check{\Phi}}_i\|_{L_{\infty}(I_{ij})} \le CC_{\Phi,0} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}.$$

Thus, (4.21) holds for r = 0. Assume now that (4.21) holds for $r = \bar{r} - 1 \ge 0$. Then, by Lemma 4.4 and assumption (A5), it follows that

$$\begin{split} |e_{-}| &\leq Ck_{ij}^{\bar{r}+1-p}C_{\Phi,\bar{r}}^{\bar{r}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &+ C\sum_{x\in\mathcal{N}_{ij}}\sum_{m=1}^{r}k_{ij}^{m-p}\left(k_{ij}^{\bar{q}+2-m}\|f\|_{\mathcal{T}}^{\bar{q}+2}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + \sum_{n=0}^{m-1}\|f\|_{\mathcal{T}}^{m-n}\|[\Phi^{(n)}]_{t}\|_{l_{\infty}}\right) \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{\Phi,\bar{r}}^{\bar{r}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &+ C\sum_{n=0}\left(k_{ij}^{\bar{q}+2-p}\|f\|_{\mathcal{T}}^{\bar{q}+2}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + \sum_{n=0}^{m-1}\|f\|_{\mathcal{T}}^{m-n}k_{ij}^{m-p+(\bar{r}-1)+1-n}C_{\Phi,\bar{r}-1}^{(\bar{r}-1)+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}\right) \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{\Phi,\bar{r}}^{\bar{r}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &+ C\sum_{n=0}^{m-1}\left(k_{ij}^{\bar{q}+2-p}\|f\|_{\mathcal{T}}^{\bar{q}+2} + \sum_{n=0}^{m-1}\|f\|_{\mathcal{T}}^{m-n}k_{ij}^{m-p+(\bar{r}-1)+1-n}C_{\Phi,\bar{r}-1}^{\bar{r}+1}\right)\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{\Phi,\bar{r}}^{\bar{r}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}. \end{split}$$

Similarly, we obtain the estimate

$$|e_+| \le Ck_{ij}^{\bar{r}+1-p}C_{\Phi,\bar{r}}^{\bar{r}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}.$$

Again using the assumption that (4.21) holds for $r = \bar{r} - 1$, we obtain

$$\begin{aligned} |e_{0}| &\leq Ck_{ij}^{\bar{q}+2-p} \|f\|_{\mathcal{T}}^{\bar{q}+2} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{n=0}^{p-1} \|f\|_{\mathcal{T}}^{p-n} k_{ij}^{(\bar{r}-1)+1-n} C_{\Phi,\bar{r}-1}^{(\bar{r}-1)+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq Ck_{ij}^{\bar{r}+1-p} C_{\Phi,\bar{r}-1}^{\bar{r}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \left(1 + \sum_{n=0}^{p-1} (k_{ij} \|f\|_{\mathcal{T}})^{p-1-n}\right) \\ &\leq Ck_{ij}^{\bar{r}+1-p} C_{\Phi,\bar{r}-1}^{\bar{r}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \leq Ck_{ij}^{\bar{r}+1-p} C_{\Phi,\bar{r}}^{\bar{r}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}. \end{aligned}$$

We thus have $|[\Phi_i^{(p)}]_t| \le |e_+| + |e_0| + |e_-| \le Ck_{ij}^{\bar{r}+1-p}C_{\Phi,\bar{r}}^{\bar{r}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}$, and so (4.21) follows by induction.

Next, we prove an estimate for the derivatives of the discrete dual solution Φ , corresponding to Theorem 4.1.

Theorem 4.3. (Derivative estimates for Φ) Let Φ be the mcG(q)^{*} or mdG(q)^{*} solution of (1.3) with g = 0. If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.23)
$$\|\Phi^{(p)}\|_{L_{\infty}(\mathcal{T},\infty)} \le C \|f\|_{\mathcal{T}}^{p} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, \bar{q}.$$

Proof. By Theorem 2.1 (or Theorem 2.2), Φ is an interpolant of $\tilde{\Phi}$, and so, by Theorem 5.2 in [3], we have

$$\|\Phi_i^{(p)}\|_{L_{\infty}(I_{ij})} = \|(\pi\tilde{\Phi}_i)^{(p)}\|_{L_{\infty}(I_{ij})} \le C' \|\tilde{\Phi}_i^{(p)}\|_{L_{\infty}(I_{ij})} + C' \sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{p-1} k_{ij}^{m-p} |[\tilde{\Phi}_i^{(m)}]_x|,$$

for some constant $C' = C'(\bar{q}) > 0$. For p = 1, we thus obtain the estimate

$$\|\dot{\Phi}_i\|_{L_{\infty}(I_{ij})} \le C' \|\tilde{\Phi}_i\|_{L_{\infty}(I_{ij})} = C' \|f_i^*(\Phi)\|_{L_{\infty}(I_{ij})} = C' \|J^{\top}\Phi\|_{L_{\infty}(I_{ij})} \le C' \|f\|_{\mathcal{T}} \|\Phi\|_{L_{\infty}(\mathcal{T}, l_{\infty})},$$

by assumption (A4), and so (4.23) holds for $p = 1$.

For $p = 2, \ldots, \bar{q}$, assuming that (A5") holds for $C_{\Phi,p-1}$, we use Lemma 4.4, Lemma 4.5 (with r = p - 1) and assumption (A2), to obtain

$$\begin{split} \|\Phi_{i}^{(p)}\|_{L_{\infty}(I_{ij})} &\leq CC_{\Phi,p-1}^{p} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &+ C\sum_{x\in\mathcal{N}_{ij}}\sum_{m=1}^{p-1}k_{ij}^{m-p}\left(k_{ij}^{\bar{q}+2-m}\|f\|_{\mathcal{T}}^{\bar{q}+2}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + \sum_{n=0}^{m-1}\|f\|_{\mathcal{T}}^{m-n}\|[\Phi^{(n)}]_{x}\|_{l_{\infty}}\right) \\ &\leq CC_{\Phi,p-1}^{p}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{ij}k_{ij}^{m-p}\|f\|_{\mathcal{T}}^{m-n}k_{ij}^{(p-1)+1-n}C_{\Phi,p-1}^{(p-1)+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq CC_{\Phi,p-1}^{p}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + CC_{\Phi,p-1}^{p}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}\sum_{ij}(k_{ij}\|f\|_{\mathcal{T}})^{m-n} \\ &\leq CC_{\Phi,p-1}^{p}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \end{split}$$

where we have used the fact that $k_{ij}^{m-p}k_{ij}^{\bar{q}+2-m} ||f||_{\mathcal{T}}^{\bar{q}+2} = ||f||_{\mathcal{T}}^p (k_{ij}||f||_{\mathcal{T}})^{\bar{q}+2-p} \leq CC_{\Phi,p-1}^p$, and where $C = C(\bar{q}, c_k, c''_k, \alpha)$. Continuing now in the same way as in the proof of Theorem 4.1, we obtain

$$\|\Phi^{(p)}\|_{L_{\infty}(\mathcal{T},l_{\infty})} \le C \|f\|_{\mathcal{T}}^{p} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 1, \dots, \bar{q},$$

for $C = C(\bar{q}, c_k, \alpha)$, which (trivially) holds also when p = 0.

Having now removed the additional assumption (A5''), we obtain the following version of Lemma 4.5.

Theorem 4.4. (Jump estimates for Φ) Let Φ be the mcG(q)^{*} or mdG(q)^{*} solution of (1.3) with g = 0. If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.24)
$$\|[\Phi^{(p)}]_{t_{ij}}\|_{l_{\infty}} \leq Ck_{ij}^{\bar{q}-p}\|f\|_{\mathcal{T}}^{\bar{q}}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, \bar{q}-1,$$

for the $mcG(q)^*$ solution, and

(4.25)
$$\|[\Phi^{(p)}]_{t_{ij}}\|_{l_{\infty}} \le Ck_{ij}^{\bar{q}+1-p} \|f\|_{\mathcal{T}}^{\bar{q}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, \bar{q},$$

for the $mdG(q)^*$ solution. This holds for each local interval I_{ij} , where t_{ij} is an internal node of the time slab \mathcal{T} .

4.4. A special interpolation estimate. In the derivation of a priori error estimates, we face the problem of estimating the interpolation error $\pi \varphi_i - \varphi_i$ on a local interval I_{ij} , where φ_i is defined by

(4.26)
$$\varphi_i = (J^{\top}(\pi u, u)\Phi)_i = \sum_{l=1}^N J_{li}(\pi u, u)\Phi_l, \quad i = 1, \dots, N.$$

We note that φ_i may be discontinuous within I_{ij} , if other components have nodes within I_{ij} , see Figure 2, since then some Φ_l (or some J_{li}) may be discontinuous within I_{ij} . To

FIGURE 2. If some other component $l \neq i$ has a node within I_{ij} , then Φ_l may be discontinuous within I_{ij} , causing φ_i to be discontinuous within I_{ij} .

estimate the interpolation error, we thus need to estimate derivatives and jumps of φ_i , which requires estimates for both J_{li} and Φ_l .

In Lemma 4.3 we have already proved an estimate for J^{\top} when f is linearized around πu and U, rather than around πu and u as in (4.26). Replacing U by u, we obtain the following estimate for J^{\top} .

Lemma 4.6. Let πu be an interpolant, of order \bar{q} , of the exact solution u of (1.1). If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.27)
$$\left\|\frac{d^p J^+(\pi u, u)}{dt^p}\right\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \le C \|f\|_{\mathcal{T}}^{p+1}, \quad p = 0, \dots, \bar{q},$$

and

(4.28)
$$\left\| \left[\frac{d^p J^{\top}(\pi u, u)}{dt^p} \right]_{t_{i,j-1}} \right\|_{l_{\infty}} \le C k_{ij}^{\bar{q}+1-p} \|f\|_{\mathcal{T}}^{\bar{q}+2}, \quad p = 0, \dots, \bar{q}-1,$$

for each local interval I_{ij} , where $t_{i,j-1}$ is an internal node of the time slab \mathcal{T} .

Proof. See proof of Lemma 4.3.

From Lemma 4.6 and the estimates for Φ derived in the previous section, we now obtain the following estimates for φ .

Lemma 4.7. (Estimates for φ) Let φ be defined as in (4.26). If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.29)
$$\|\varphi_i^{(p)}\|_{L_{\infty}(I_{ij})} \le C \|f\|_{\mathcal{T}}^{p+1} \|\Phi\|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 0, \dots, q_{ij},$$

and

(4.30)
$$|[\varphi_i^{(p)}]_x| \le Ck_{ij}^{r_{ij}-p} ||f||_{\mathcal{T}}^{r_{ij}+1} ||\Phi||_{L_{\infty}(\mathcal{T},l_{\infty})} \quad \forall x \in \mathcal{N}_{ij}, \quad p = 0, \dots, q_{ij} - 1,$$

with $r_{ij} = q_{ij}$ for the mcG(q) method and $r_{ij} = q_{ij} + 1$ for the mdG(q) method. This holds for each local interval I_{ij} within the time slab \mathcal{T} .

Proof. Differentiating, we have $\varphi_i^{(p)} = \sum_{n=0}^p {p \choose n} \frac{d^{p-n} J^{\top}(\pi u, u)}{dt^{p-n}} \Phi^{(n)}$, and so, by Theorem 4.3 and Lemma 4.6, we obtain

$$\begin{aligned} \|\varphi_i^{(p)}\|_{L_{\infty}(I_{ij})} &\leq C \sum_{n=0}^p \|f\|_{\mathcal{T}}^{(p-n)+1} \|f\|_{\mathcal{T}}^n \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} = C \sum_{n=0}^p \|f\|_{\mathcal{T}}^{p+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &= C \|f\|_{\mathcal{T}}^{p+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}. \end{aligned}$$

To estimate the jump in $\varphi_i^{(p)}$, we use Lemma 3.2, Theorem 4.3, Theorem 4.4, and Lemma 4.6, to obtain

$$\begin{split} |[\varphi_{i}^{(p)}]_{x}| &= \left| \left[\sum_{n=0}^{p} {\binom{p}{n}} \frac{d^{p-n} J^{\top}}{dt^{p-n}} \Phi^{(n)} \right]_{x} \right| \leq C \sum_{n=0}^{p} \left| \left[\frac{d^{p-n} J^{\top}}{dt^{p-n}} \Phi^{(n)} \right]_{x} \right| \\ &\leq C \sum_{n=0}^{p} (k_{ij}^{q_{ij}+1-(p-n)} \|f\|_{T}^{q_{ij}+2} \|f\|_{T}^{n} + \|f\|_{T}^{(p-n)+1} k_{ij}^{q_{ij}-n} \|f\|_{T}^{q_{ij}}) \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq C k_{ij}^{q_{ij}-p} \|f\|_{T}^{q_{ij}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \sum_{n=0}^{p} (k_{ij} \|f\|_{T})^{n+1} + (k_{ij} \|f\|_{T})^{p-n} \\ &\leq C k_{ij}^{q_{ij}-p} \|f\|_{T}^{q_{ij}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \end{split}$$

for the mcG(q) method. For the mdG(q) method, we obtain one extra power of $k_{ij} || f ||_{\mathcal{T}}$.

Using the interpolation estimates of [3], together with Lemma 4.7, we now obtain the following important interpolation estimates for φ .

Lemma 4.8. (Interpolation estimates for φ) Let φ be defined as in (4.26). If assumptions (A1)–(A5) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(4.31)
$$\|\pi_{cG}^{[q_{ij}-2]}\varphi_i - \varphi_i\|_{L_{\infty}(I_{ij})} \le Ck_{ij}^{q_{ij}-1} \|f\|_{\mathcal{T}}^{q_{ij}} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad q_{ij} = \bar{q} \ge 2,$$

and

(4.32)
$$\|\pi_{\mathrm{dG}}^{[q_{ij}-1]}\varphi_i - \varphi_i\|_{L_{\infty}(I_{ij})} \le Ck_{ij}^{q_{ij}} \|f\|_{\mathcal{T}}^{q_{ij}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad q_{ij} = \bar{q} \ge 1,$$

for each local interval I_{ij} within the time slab \mathcal{T} .

ANDERS LOGG

Proof. To prove (4.31), we use Theorem 5.2 in [3], with $r = q_{ij} - 2$ and p = 0, together with Lemma 4.7, to obtain

$$\begin{aligned} \|\pi_{cG}^{[q_{ij}-2]}\varphi_{i}-\varphi_{i}\|_{L_{\infty}(I_{ij})} &\leq Ck_{ij}^{(q_{ij}-2)+1}\|\varphi_{i}^{((q_{ij}-2)+1)}\|_{L_{\infty}(I_{ij})} + C\sum_{x\in\mathcal{N}_{ij}}\sum_{m=0}^{q_{ij}-2}k_{ij}^{m} \ |[\varphi_{i}^{(m)}]_{x} \ |\\ &\leq Ck_{ij}^{q_{ij}-1}\|f\|_{T}^{q_{ij}}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{x\in\mathcal{N}_{ij}}\sum_{m=0}^{q_{ij}-2}k_{ij}^{m}k_{ij}^{q_{ij}-m}\|f\|_{T}^{q_{ij}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &= Ck_{ij}^{q_{ij}-1}\|f\|_{T}^{q_{ij}}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} + Ck_{ij}^{q_{ij}}\|f\|_{T}^{q_{ij}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \leq Ck_{ij}^{q_{ij}-1}\|f\|_{T}^{q_{ij}}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}. \end{aligned}$$

The estimate for $\pi_{dG}^{[q_{ij}-1]}\varphi_i - \varphi_i$ is obtained similarly.

5. Estimates of derivatives and jumps for linear problems

We now derive estimates for derivatives and jumps for the multi-adaptive solutions of the linear problem (1.2). Assuming that the problem is linear, but non-autonomous, the estimates are obtained in a slightly different way compared to the estimates of the previous section.

5.1. Assumptions. We make the following basic assumptions: Given a time slab \mathcal{T} , assume that for each pair of local intervals I_{ij} and I_{mn} within the time slab, we have

(B1)
$$q_{ij} = q_{mn} = \bar{q}$$

and

(B2)
$$k_{ij} > \alpha \ k_{mn}$$

for some $\bar{q} \geq 0$ and some $\alpha \in (0,1)$. Furthermore, assume that A has $\bar{q} - 1$ continuous derivatives and let $C_A > 0$ be constant, such that

(B3)
$$\max\left(\|A^{(p)}\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \|A^{\top(p)}\|_{L_{\infty}(\mathcal{T},l_{\infty})}\right) \le C_{A}^{p+1}, \quad p = 0, \dots, \bar{q},$$

for all time slabs \mathcal{T} . We further assume that there is a constant $c_k > 0$, such that

(B4)
$$k_{ij}C_A \le c_k.$$

We summarize the list of assumptions as follows:

- (B1) the local orders q_{ij} are equal within each time slab;
- (B2) the local time steps k_{ij} are semi-uniform within each time slab;
- (B3) A and its derivatives are bounded;
- (B4) the local time steps k_{ij} are small.

5.2. Estimates for U and Φ . To simplify the estimates, we introduce the following notation: For given p > 0, let $C_{U,p} \ge C_A$ be a constant, such that

(5.5)
$$\|U^{(n)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \le C^{n}_{U, p} \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad n = 0, \dots, p,$$

For p = 0, we define $C_{U,0} = C_A$. Temporarily, we will assume that there is a constant $c'_k > 0$, such that for each p,

(B4')
$$k_{ij}C_{U,p} \le c'_k.$$

This assumption will be removed below in Theorem 5.1. We similarly define the constant $C_{\Phi,p}$, with $k_{ij}C_{\Phi,p} \leq c'_k$. In the following lemma, we use assumptions (B1) and (B3) to derive estimates for \tilde{U} and $\tilde{\Phi}$.

Lemma 5.1. (Estimates for \tilde{U} and $\tilde{\Phi}$) Let U be the mcG(q) or mdG(q) solution of (1.2) and define \tilde{U} as in (2.1). If assumptions (B1) and (B3) hold, then there is a constant $C = C(\bar{q}) > 0$, such that

(5.7)
$$\|\tilde{U}^{(p)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \leq CC^{p}_{U, p-1} \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 1, \dots, \bar{q} + 1,$$

and

(5.8)
$$\|[\tilde{U}^{(p)}]_{t_{i,j-1}}\|_{l_{\infty}} \le C \sum_{n=0}^{p-1} C_A^{p-n} \|[U^{(n)}]_{t_{i,j-1}}\|_{l_{\infty}}, \quad p = 1, \dots, \bar{q}$$

Similarly, for Φ the mcG(q)^{*} or mdG(q)^{*} solution of (1.7) with g = 0, and with $\tilde{\Phi}$ defined as in (2.2), we obtain

(5.9)
$$\|\tilde{\Phi}^{(p)}\|_{L_{\infty}(\mathcal{T},l_{\infty})} \le CC^{p}_{\Phi,p-1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 1, \dots, \bar{q}+1,$$

and

(5.10)
$$\| [\tilde{\Phi}^{(p)}]_{t_{ij}} \|_{l_{\infty}} \leq C \sum_{n=0}^{p-1} C_A^{p-n} \| [\Phi^{(n)}]_{t_{ij}} \|_{l_{\infty}}, \quad p = 1, \dots, \bar{q}.$$

Proof. By (2.1), it follows that $\dot{\tilde{U}} = -AU$, and so $\tilde{U}^{(p)} = \sum_{n=0}^{p-1} {p-1 \choose n} A^{(p-1-n)} U^{(n)}$. It now follows by assumptions (B1) and (B3), that

$$\|\tilde{U}^{(p)}\|_{L_{\infty}(\mathcal{T},l_{\infty})} \leq C \sum_{n=0}^{p-1} C_{A}^{p-n} C_{U,p-1}^{n} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} \leq C C_{U,p-1}^{p} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})}.$$

Similarly, we obtain $\|[\tilde{U}^{(p)}]_{t_{i,j-1}}\|_{l_{\infty}} \leq C \sum_{n=0}^{p-1} C_A^{p-n} \|[U^{(n)}]_{t_{i,j-1}}\|_{l_{\infty}}$. The corresponding estimates for $\tilde{\Phi}$ follow similarly.

By Lemma 5.1, we now obtain the following estimate for the size of the jump in function value and derivatives for U and Φ .

Lemma 5.2. (Jump estimates for U and Φ) Let U be the mcG(q) or mdG(q) solution of (1.2), and let Φ be the corresponding mcG(q)^{*} or mdG(q)^{*} solution of (1.7) with g = 0. If assumptions (B1)–(B4) and (B4') hold, then there is a constant $C = C(\bar{q}, c_k, c'_k, \alpha) > 0$, such that

(5.11)
$$\|[U^{(p)}]_{t_{i,j-1}}\|_{l_{\infty}} \leq Ck_{ij}^{r+1-p}C_{U,r}^{r+1}\|U\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, r+1, \quad r = 0, \dots, \bar{q},$$

and

(5.12)
$$\| [\Phi^{(p)}]_{t_{ij}} \|_{l_{\infty}} \le C k_{ij}^{r+1-p} C_{\Phi,r}^{r+1} \| \Phi \|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 0, \dots, r+1,$$

with $r = 0, ..., \bar{q} - 1$ for the mcG(q)^{*} solution and $r = 0, ..., \bar{q}$ for the mdG(q)^{*} solution, for each local interval I_{ij} , where $t_{i,j-1}$ and t_{ij} , respectively, are internal nodes of the time slab \mathcal{T} .

Proof. The proof is by induction and follows those of Lemma 4.2 and Lemma 4.5. We first note that at $t = t_{i,j-1}$, we have

$$[U_i^{(p)}]_t = \left(U_i^{(p)}(t^+) - \tilde{U}_i^{(p)}(t^+) \right) + \left(\tilde{U}_i^{(p)}(t^+) - \tilde{U}_i^{(p)}(t^-) \right) + \left(\tilde{U}_i^{(p)}(t^-) - U_i^{(p)}(t^-) \right)$$

= $e_+ + e_0 + e_-.$

Now, U is an interpolant of \tilde{U} and so, by Theorem 5.2 in [3], it follows that

$$|e_{+}| \leq Ck_{ij}^{r+1-p} \|\tilde{U}_{i}^{(r+1)}\|_{L_{\infty}(I_{ij})} + C\sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{r} k_{ij}^{m-p} |[\tilde{U}_{i}^{(m)}]_{x}|$$

for $p = 0, \ldots, r + 1$ and $r = 0, \ldots, \bar{q}$. Note that the second sum starts at m = 1 rather than at m = 0, since \tilde{U} is continuous. Similarly, we have

$$|e_{-}| \leq Ck_{i,j-1}^{r+1-p} \|\tilde{U}_{i}^{(r+1)}\|_{L_{\infty}(I_{i,j-1})} + C\sum_{x \in \mathcal{N}_{i,j-1}} \sum_{m=1}^{r} k_{i,j-1}^{m-p} |[\tilde{U}_{i}^{(m)}]_{x}|.$$

To estimate e_0 , we note that $e_0 = 0$ for p = 0, since \tilde{U} is continuous. For $p = 1, \ldots, \bar{q}$, Lemma 5.1 gives

$$|e_0| = |[\tilde{U}_i^{(p)}]_t| \le C \sum_{n=0}^{p-1} C_A^{p-n} ||[U^{(n)}]_t||_{l_{\infty}}.$$

Using assumption (B2), and the estimates for e_+ , e_0 , and e_- , we obtain for r = 0 and p = 0,

$$\begin{split} |[U_i]| &\leq Ck_{ij} \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{ij})} + 0 + Ck_{i,j-1} \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{i,j-1})} \leq C(1 + \alpha^{-1})k_{ij}C_{U,0} \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \\ &= Ck_{ij}C_{U,0} \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})}. \end{split}$$

It now follows by assumption (B4), that for r = 0 and p = 1,

$$\begin{split} |[\dot{U}_i]_t| &\leq C \|\tilde{U}_i\|_{L_{\infty}(I_{ij})} + CC_A \|[U]_t\|_{l_{\infty}} + C \|\tilde{U}_i\|_{L_{\infty}(I_{i,j-1})} \leq C(1 + k_{ij}C_{U,0})C_{U,0} \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \\ &\leq CC_{U,0} \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})}. \end{split}$$

Thus, (5.11) holds for r = 0. Assume now that (5.11) holds for $r = \bar{r} - 1 \ge 0$. Then, by Lemma 5.1 and assumption (B4'), it follows that

$$\begin{aligned} |e_{+}| &\leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{x\in\mathcal{N}_{ij}}\sum_{m=1}^{\bar{r}}k_{ij}^{m-p}\sum_{n=0}^{m-1}C_{A}^{m-n}\|[U^{(n)}]_{t}\|_{l_{\infty}} \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}\|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C\sum_{ij}k_{ij}^{m-p}C_{A}^{m-n}k_{ij}^{(\bar{r}-1)+1-n}C_{U,\bar{r}-1}^{(\bar{r}-1)+1}\|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}\left(1+\sum_{ij}(k_{ij}C_{U,\bar{r}})^{m-1-n}\right)\|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} \leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}\|U\|_{L_{\infty}(\mathcal{T},l_{\infty})}.\end{aligned}$$

Similarly, we obtain the estimate $|e_{-}| \leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1}||U||_{L_{\infty}(\mathcal{T},l_{\infty})}$. Finally, we use Lemma 5.1 and (B4'), to obtain the estimate

$$\begin{aligned} |e_{0}| &= |[\tilde{U}_{i}^{(p)}]_{t}| \leq C \sum_{n=0}^{p-1} C_{A}^{p-n} ||[U^{(n)}]_{t}||_{l_{\infty}} \leq C \sum_{n=0}^{p-1} C_{A}^{p-n} k_{ij}^{(\bar{r}-1)+1-n} C_{U,\bar{r}-1}^{(\bar{r}-1)+1} ||U||_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq C k_{ij}^{\bar{r}+1-p} C_{U,\bar{r}}^{\bar{r}+1} \sum_{n=0}^{p-1} (k_{ij} C_{U,\bar{r}-1})^{p-1-n} ||U||_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq C k_{ij}^{\bar{r}+1-p} C_{U,\bar{r}}^{\bar{r}+1} ||U||_{L_{\infty}(\mathcal{T},l_{\infty})}. \end{aligned}$$

Summing up, we thus obtain $|[U_i^{(p)}]_t| \leq |e_+| + |e_0| + |e_-| \leq Ck_{ij}^{\bar{r}+1-p}C_{U,\bar{r}}^{\bar{r}+1} ||U||_{L_{\infty}(\mathcal{T},l_{\infty})}$, and so (5.11) follows by induction. The estimates for Φ follow similarly.

Theorem 5.1. (Derivative estimates for U and Φ) Let U be the mcG(q) or mdG(q) solution of (1.2), and let Φ be the corresponding mcG(q)^{*} or mdG(q)^{*} solution of (1.7) with g = 0. If assumptions (B1)–(B4) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(5.13)
$$\|U^{(p)}\|_{L_{\infty}(\mathcal{T}, l_{\infty})} \le CC_A^p \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 0, \dots, \bar{q},$$

and

(5.14)
$$\|\Phi^{(p)}\|_{L_{\infty}(\mathcal{T},l_{\infty})} \le CC_A^p \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, \bar{q}.$$

Proof. Since U is an interpolant of \tilde{U} , it follows by Theorem 5.2 in [3], that

$$\|U_i^{(p)}\|_{L_{\infty}(I_{ij})} = \|(\pi \tilde{U}_i)^{(p)}\|_{L_{\infty}(I_{ij})} \le C' \|\tilde{U}_i^{(p)}\|_{L_{\infty}(I_{ij})} + C' \sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{p-1} k_{ij}^{m-p} |[\tilde{U}_i^{(m)}]_x|,$$

for some constant $C' = C'(\bar{q})$. For p = 1, we thus obtain the estimate

$$\|\dot{U}_i\|_{L_{\infty}(I_{ij})} \le C' \|\dot{\tilde{U}}_i\|_{L_{\infty}(I_{ij})} = C' \|(AU)_i\|_{L_{\infty}(I_{ij})} \le C' C_A \|U\|_{L_{\infty}(\mathcal{T}, l_{\infty})},$$

and so (5.13) holds for p = 1.

For $p = 2, ..., \bar{q}$, assuming that (B4') holds for $C_{U,p-1}$, we use Lemma 5.1, Lemma 5.2 (with r = p - 1) and assumption (B2), to obtain

$$\begin{aligned} \|U_{i}^{(p)}\|_{L_{\infty}(I_{ij})} &\leq CC_{U,p-1}^{p} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C \sum_{x \in \mathcal{N}_{ij}} \sum_{m=1}^{p-1} k_{ij}^{m-p} \sum_{n=0}^{m-1} C_{A}^{m-n} \|[U^{(n)}]_{x}\|_{l_{\infty}} \\ &\leq CC_{U,p-1}^{p} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} + C \sum_{ij} k_{ij}^{m-p} C_{A}^{m-n} k_{ij}^{(p-1)+1-n} C_{U,p-1}^{(p-1)+1} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq CC_{U,p-1}^{p} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})} \left(1 + \sum_{ij} (k_{ij}C_{A})^{m-n}\right) \leq CC_{U,p-1}^{p} \|U\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \end{aligned}$$

where $C = C(\bar{q}, c_k, c'_k, \alpha)$. It now follows in the same way as in the proof of Theorem 4.1, that

$$||U^{(p)}||_{L_{\infty}(\mathcal{T},l_{\infty})} \le CC^{p}_{A}||U||_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 1, \dots, \bar{q},$$

for $C = C(\bar{q}, c_k, \alpha)$, which (trivially) holds also when p = 0. The estimate for Φ follows similarly.

Having now removed the additional assumption (B4'), we obtain the following version of Lemma 5.2.

Theorem 5.2. (Jump estimates for U and Φ) Let U be the mcG(q) or mdG(q) solution of (1.2), and let Φ be the corresponding mcG(q)^{*} or mdG(q)^{*} solution of (1.7) with g = 0. If assumptions (B1)–(B4) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(5.15)
$$\| [U^{(p)}]_{t_{i,j-1}} \|_{l_{\infty}} \le C k_{ij}^{\bar{q}+1-p} C_A^{\bar{q}+1} \| U \|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 0, \dots, \bar{q}.$$

Furthermore, we have

(5.16)
$$\|[\Phi^{(p)}]_{t_{ij}}\|_{l_{\infty}} \le Ck_{ij}^{\bar{q}-p}C_A^{\bar{q}}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, \bar{q},$$

for the $mcG(q)^*$ solution and

(5.17)
$$\|[\Phi^{(p)}]_{t_{ij}}\|_{l_{\infty}} \le Ck_{ij}^{\bar{q}+1-p}C_A^{\bar{q}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad p = 0, \dots, \bar{q},$$

for the $mdG(q)^*$ solution. This holds for each local interval I_{ij} , where $t_{i,j-1}$ and t_{ij} , respectively, are internal nodes of the time slab \mathcal{T} .

5.3. A special interpolation estimate. As for the general non-linear problem, we need to estimate the interpolation error $\pi \varphi_i - \varphi_i$ on a local interval I_{ij} , where φ_i is now defined by

(5.18)
$$\varphi_i = (A^{\top} \Phi)_i = \sum_{l=1}^N A_{li} \Phi_l, \quad i = 1, \dots, N.$$

As noted above, φ_i may be discontinuous within I_{ij} , if I_{ij} contains nodes for other components. We first prove the following estimates for φ .

Lemma 5.3. (Estimates for φ) Let φ be defined as in (5.18). If assumptions (B1)–(B4) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(5.19)
$$\|\varphi_i^{(p)}\|_{L_{\infty}(I_{ij})} \le CC_A^{p+1} \|\Phi\|_{L_{\infty}(\mathcal{T}, l_{\infty})}, \quad p = 0, \dots, q_{ij},$$

and

(5.20)
$$|[\varphi_i^{(p)}]_x| \le Ck_{ij}^{r_{ij}-p}C_A^{r_{ij}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \quad \forall x \in \mathcal{N}_{ij}, \quad p = 0, \dots, q_{ij}-1$$

with $r_{ij} = q_{ij}$ for the mcG(q) method and $r_{ij} = q_{ij} + 1$ for the mdG(q) method. This holds for each local interval I_{ij} within the time slab \mathcal{T} .

Proof. Differentiating φ_i , we have $\varphi_i^{(p)} = \frac{d^p}{dt^p} (A^{\top} \Phi)_i = \sum_{n=0}^p {p \choose n} (A^{\top (p-n)} \Phi^{(n)})_i$ and so, by Theorem 5.1, we obtain

$$\|\varphi_i^{(p)}\|_{L_{\infty}(I_{ij})} \le C \sum_{n=0}^p C_A^{(p-n)+1} C_A^n \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} = C C_A^{p+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}.$$

To estimate the jump in $\varphi_i^{(p)}$, we use Theorem 5.2, to obtain

$$\begin{split} |[\varphi_i^{(p)}]_x| &\leq C \sum_{n=0}^p |(A^{\top (p-n)}[\Phi^{(n)}]_x)_i| \leq C \sum_{n=0}^p C_A^{(p-n)+1} \|[\Phi^{(n)}]_x\|_{l_{\infty}} \\ &\leq C \sum_{n=0}^p C_A^{(p-n)+1} k_{ij}^{\bar{q}-n} C_A^{\bar{q}} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \\ &\leq C k_{ij}^{\bar{q}-p} C_A^{\bar{q}+1} \sum_{n=0}^p (k_{ij} C_A)^{p-n} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})} \leq C k_{ij}^{\bar{q}-p} C_A^{\bar{q}+1} \|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \end{split}$$

for the mcG(q) method. For the mdG(q) method, we obtain one extra power of $k_{ij}C_A$.

Using Lemma 5.3 and the interpolation estimates from [3], we now obtain the following interpolation estimates for φ .

Lemma 5.4. (Interpolation estimates for φ) Let φ be defined as in (5.18). If assumptions (B1)–(B4) hold, then there is a constant $C = C(\bar{q}, c_k, \alpha) > 0$, such that

(5.21)
$$\|\pi_{cG}^{[q_{ij}-2]}\varphi_{i}-\varphi_{i}\|_{L_{\infty}(I_{ij})} \leq Ck_{ij}^{q_{ij}-1}C_{A}^{q_{ij}}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad q_{ij}=\bar{q}\geq 2,$$

and

(5.22)
$$\|\pi_{\mathrm{dG}}^{[q_{ij}-1]}\varphi_{i}-\varphi_{i}\|_{L_{\infty}(I_{ij})} \leq Ck_{ij}^{q_{ij}}C_{A}^{q_{ij}+1}\|\Phi\|_{L_{\infty}(\mathcal{T},l_{\infty})}, \quad q_{ij}=\bar{q}\geq 1,$$

for each local interval I_{ij} within the time slab T.

Proof. See proof of Lemma 4.8.

L				
L				
L				
L	_	_	_	

ANDERS LOGG

References

- A. LOGG, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24 (2003), pp. 1879– 1902.
- [2] —, Multi-adaptive Galerkin methods for ODEs II: Implementation and applications, SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.
- [3] —, Interpolation estimates for piecewise smooth functions in one dimension, Tech. Rep. 2004–02, Chalmers Finite Element Center Preprint Series, 2004.
- [4] —, Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Tech. Rep. 2004–04, Chalmers Finite Element Center Preprint Series, 2004.
- [5] <u>—, Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates</u>, Tech. Rep. 2004–05, Chalmers Finite Element Center Preprint Series, 2004.
- [6] —, Multi-adaptive time-integration, Applied Numerical Mathematics, 48 (2004), pp. 339–354.

Chalmers Finite Element Center Preprints

2003 - 01	A hybrid method for elastic waves
	L.Beilina
2003-02	Application of the local nonobtuse tetrahedral refinement techniques near
	Fichera-like corners
2002 02	Liberinia, Sikorotov and W. Krizek
2003-03	nusche s'method for coupling non-matching meshes in fluid-structure vioration
	Peter Hansho and Joakim Hermansson
2003-04	Crouzeix-Raviart and Raviart-Thomas elements for acoustic fluid-structure
	interaction
	Joakim Hermansson
2003 - 05	Smoothing properties and approximation of time derivatives in multistep back-
	ward difference methods for linear parabolic equations
	Yubin Yan
2003–06	Postprocessing the finite element method for semilinear parabolic problems
	Yubin Yan
2003 - 07	The finite element method for a linear stochastic parabolic partial differential
	equation driven by additive noise
0000 00	Yubin Yan
2003–08	A finite element method for a nonlinear stochastic parabolic equation
2003 00	IuDin Ian
2003-03	A finite element method for the simulation of strong and weak discontinuities in elasticity
	Anita Hansbo and Peter Hansbo
2003-10	Generalized Green's functions and the effective domain of influence
	Donald Estep, Michael Holst, and Mats G. Larson
2003 - 11	Adaptive finite element/difference method for inverse elastic scattering waves
	L.Beilina
2003 - 12	A Lagrange multiplier method for the finite element solution of elliptic domain
	decomposition problems using non-matching meshes
	Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli
2003 - 13	A reduced P ¹ -discontinuous Galerkin method
0000 14	R. Becker, E. Burman, P. Hansbo, and M. G. Larson
2003-14	Nitsche's method combined with space-time finite elements for ALE fluid-
	Peter Hansho, Joakim Hermansson, and Thomas Svedberg
2003-15	Stabilized Crouzeir-Raviart element for the Darcy-Stokes problem
	Erik Burman and Peter Hansbo
2003–16	Edge stabilization for the generalized Stokes problem: a continuous interior
	penalty method
	Erik Burman and Peter Hansbo
2003 - 17	A conservative flux for the continuous Galerkin method based on discontinuous
	enrichment
	Mats G. Larson and A. Jonas Niklasson

2003 - 18	CAD-to- CAE integration through automated model simplification and adaptive modelling
	K.Y. Lee, M.A. Price, C.G. Armstrong, M.G. Larson, and K. Samuelsson
2003 - 19	Multi-adaptive time integration
	Anders Logg
2003–20	Adaptive computational methods for parabolic problems
	Kenneth Eriksson, Claes Johnson, and Anders Logg
2003 - 21	The FEniCS project
	T. Dupont, J. Hoffman, C. Johnson, R. Kirby, M. Larson, A. Logg, and R. Scott
2003 - 22	Adaptive finite element methods for LES: Computation of the mean drag coef-
	ficient in a turbulent flow around a surface mounted cube using adaptive mesh
	refinement
	Johan Hoffman
2003 - 23	Adaptive DNS/LES: a new agenda in CFD
	Johan Hoffman and Claes Johnson
2003 - 24	Multiscale convergence and reiterated homogenization of parabolic problem
	Anders Holmbom, Nils Svanstedt, and Niklas Wellander
2003 - 25	On the relationship between some weak compactnesses with different numbers
	of scales
	Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander
2003 - 26	A posteriori error estimation in computational inverse scattering
	Larisa Beilina and Claes Johnson
2004 - 01	Computability and adaptivity in CFD
	Johan Hoffman och Claes Johnson
2004 - 02	Interpolation estimates for piecewise smooth functions in one dimension
	Anders Logg
2004 - 03	Estimates of derivatives and jumps across element boundaries for multi-
	adaptive Galerkin solutions of ODEs
	Anders Logg

These preprints can be obtained from

www.phi.chalmers.se/preprints