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ESTIMATES OF DERIVATIVES AND JUMPS

ACROSS ELEMENT BOUNDARIES FOR

MULTI-ADAPTIVE GALERKIN SOLUTIONS OF ODES

ANDERS LOGG

Abstract. As an important step in the a priori error analysis of the multi-adaptive
Galerkin methods mcG(q) and mdG(q), we prove estimates of derivatives and jumps across
element boundaries for the multi-adaptive discrete solutions. The proof is by induction
and is based on a new representation formula for the solutions.

1. Introduction

In [3], we proved special interpolation estimates as a preparation for the derivation of
a priori error estimates for the multi-adaptive Galerkin methods mcG(q) and mdG(q),
presented earlier in [1, 2]. As further preparation, we here derive estimates for derivatives,
and jumps in function value and derivatives for the multi-adaptive solutions.

We first derive estimates for the general non-linear problem,

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial condition,
T > 0 a given final time, and f : R

N × (0, T ] → R
N a given function that is Lipschitz-

continuous in u and bounded. We also derive estimates for the linear problem,

u̇(t) + A(t)u(t) = 0, t ∈ (0, T ],

u(0) = u0,
(1.2)

with A(t) a bounded N ×N -matrix.
Furthermore, we prove the corresponding estimates for the discrete dual solution Φ,

corresponding to (1.1) or (1.2). For the non-linear problem (1.1), the discrete dual solution
Φ is defined as a Galerkin solution of the continuous linearized dual problem

−φ̇(t) = J>(πu, U, t)φ(t) + g(t), t ∈ [0, T ),

φ(T ) = ψ,
(1.3)
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2 ANDERS LOGG

with given data g : [0, T ) → R
N and ψ ∈ R

N , where

(1.4) J>(πu, U, t) =

(
∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t), t) ds

)>

is the transpose of the Jacobian of the right-hand side f , evaluated at an appropriate mean
value of the approximate Galerkin solution U of (1.1) and an interpolant πu of the exact
solution u. We will use the notation

(1.5) f ∗(φ, ·) = J>(πu, U, ·)φ+ g,

to write the dual problem (1.3) in the form

−φ̇(t) = f ∗(φ(t), t), t ∈ [0, T ),

φ(T ) = ψ.
(1.6)

We remind the reader that the discrete dual solution Φ is a Galerkin approximation, given
by the mcG(q)∗ or mdG(q)∗ method defined in [4], of the exact solution φ of (1.3), and
refer to [4] for the exact definition.

For the linear problem (1.2), the discrete dual solution Φ is defined as a Galerkin solution
of the continuous dual problem

−φ̇(t) + A>(t)φ(t) = g, t ∈ [0, T ),

φ(T ) = ψ,
(1.7)

or −φ̇(t) = f ∗(φ(t), t), with the notation f ∗(φ, ·) = −A>φ+ g.

1.1. Notation. For a detailed description of the multi-adaptive Galerkin methods, we
refer the reader to [1, 2, 6, 4, 5]. In particular, we refer to [1] or [4] for the exact definition
of the methods.

The following notation is used throughout this paper: Each component Ui(t), i =
1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is a piecewise polyno-
mial on a partition of (0, T ] into Mi subintervals. Subinterval j for component i is de-
noted by Iij = (ti,j−1, tij], and the length of the subinterval is given by the local time

step kij = tij − ti,j−1. This is illustrated in Figure 1. On each subinterval Iij, Ui|Iij
is a

polynomial of degree qij and we refer to (Iij, Ui|Iij
) as an element.

Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks between
certain synchronized time levels 0 = T0 < T1 < . . . < TM = T . We refer to the set of
intervals Tn between two synchronized time levels Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1. For a given local interval Iij, we
denote the time slab T , for which Iij ∈ T , by T (i, j).

Since different components use different time steps, a local interval Iij may contain nodal
points for other components, that is, some ti′j′ ∈ (ti,j−1, tij). We denote the set of such
internal nodes on each local interval Iij by Nij.
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Figure 1. Individual partitions of the interval (0, T ] for different compo-
nents. Elements between common synchronized time levels are organized in
time slabs. In this example, we have N = 6 and M = 4.

1.2. Outline of the paper. In Section 2, we show that the multi-adaptive Galerkin
solutions (including discrete dual solutions) can be expressed as certain interpolants. It is
known before [1] that the mcG(q) solution of (1.1) satisfies the relation

(1.8) Ui(tij) = (u0)i +

∫ tij

0

fi(U(t), t) dt, j = 1, . . . ,Mi, i = 1, . . . , N,

with a similar relation for the mdG(q) solution, but this does not hold with tij replaced by
an arbitrary t ∈ [0, T ]. However, we prove that

(1.9) U(t) = π
[q]
cG

[

u0 +

∫ ·

0

f(U(s), s) ds

]

(t),

for all t ∈ [0, T ], with π
[q]
cG a special interpolant. This new way of expressing the multi-

adaptive Galerkin solutions is a powerful tool and it is used extensively throughout the
remainder of the paper.

In Section 3, we prove a chain rule for higher-order derivatives, which we use in Section
4, together with the representations of Section 2, to prove the desired estimates for the
non-linear problem (1.1) by induction. Finally, in Section 5, we prove the corresponding
estimates for linear problems.

2. A representation formula for the solutions

The proof of estimates for derivatives and jumps of the multi-adaptive Galerkin solutions
is based on expressing the solutions as certain interpolants. These representations are
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obtained as follows. Let U be the mcG(q) or mdG(q) solution of (1.1) and define for
i = 1, . . . , N ,

(2.1) Ũi(t) = ui(0) +

∫ t

0

fi(U(s), s) ds.

Similarly, for Φ the mcG(q)∗ or mdG(q)∗ solution of (1.6), we define for i = 1, . . . , N ,

(2.2) Φ̃i(t) = ψi +

∫ T

t

f ∗
i (Φ(s), s) ds.

We note that ˙̃U = f(U, ·) and − ˙̃Φ = f ∗(Φ, ·).
It now turns out that U can be expressed as an interpolant of Ũ . Similarly, Φ can be

expressed as an interpolant of Φ̃. We derive these representations in Theorem 2.1 below
for the mcG(q) and mcG(q)∗ methods, and in Theorem 2.2 for the mdG(q) and mdG(q)∗

methods. We remind the reader about the special interpolants π
[q]
cG, π

[q]
cG∗ , π

[q]
dG, and π

[q]
dG∗ ,

defined in [3].

Theorem 2.1. The mcG(q) solution U of (1.1) can expressed in the form

(2.3) U = π
[q]
cGŨ .

Similarly, the mcG(q)∗ solution Φ of (1.6) can be expressed in the form

(2.4) Φ = π
[q]
cG∗Φ̃,

that is, Ui = π
[qij ]
cG Ũi and Φi = π

[qij ]
cG∗ Φ̃i on each local interval Iij.

Proof. To prove (2.3), we note that if U is the mcG(q) solution of (1.1), then on each local
interval Iij, we have

∫

Iij

U̇ivm dt =

∫

Iij

fi(U, ·)vm dt, m = 0, . . . , qij − 1,

with vm(t) = ((t− ti,j−1)/kij)
m. On the other hand, by the definition of Ũ , we have

∫

Iij

˙̃Uivm dt =

∫

Iij

fi(U, ·)vm dt, m = 0, . . . , qij − 1.

Integrating by parts and subtracting, we obtain

−
[

(Ui − Ũi)vm

]tij

ti,j−1

+

∫

Iij

(

Ui − Ũi

)

v̇m dt = 0,

and thus, since Ui(ti,j−1) − Ũi(ti,j−1) = Ui(tij) − Ũi(tij) = 0,
∫

Iij

(

Ui − Ũi

)

v̇m dt = 0.

By the definition of the mcG(q)-interpolant π
[q]
cG, it now follows that Ui = π

[qij ]
cG Ũi on Iij.
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To prove (2.4), we note that with Φ the mcG(q)∗ solution of (1.6), we have

(2.5) −(ψ, v(T )) +
N
∑

i=1

Mi
∑

j=1

∫

Iij

Φiv̇i dt =

∫ T

0

(f ∗(Φ, ·), v) dt,

for all continuous test functions v of order q = {qij} vanishing at t = 0. On the other

hand, by the definition of Φ̃, it follows that

−
∫

Iij

˙̃Φivi dt =

∫

Iij

f ∗
i (Φ, ·)vi dt.

Integrating by parts, we obtain

−
[

Φ̃ivi

]tij

ti,j−1

+

∫

Iij

Φ̃iv̇i dt =

∫

Iij

f ∗
i (Φ, ·)vi dt,

and thus

(2.6) −(ψ, v(T )) +
N
∑

i=1

Mi
∑

j=1

∫

Iij

Φ̃iv̇i dt =

∫ T

0

(f ∗(Φ, ·), v) dt,

since v(0) = 0 and both Φ̃ and v are continuous. Subtracting (2.5) and (2.6), it now follows
that

N
∑

i=1

Mi
∑

j=1

∫

Iij

(Φi − Φ̃i)v̇i dt = 0,

for all test functions v. We now take v̇i = 0 except on Iij, and v̇n = 0 for n 6= i, to obtain
∫

Iij

(Φi − Φ̃i)w dt = 0 ∀w ∈ Pqij−1(Iij),

and so Φi = P [qij−1]Φ̃i ≡ π
[qij ]
cG∗ Φ̃i on Iij. �

Theorem 2.2. The mdG(q) solution U of (1.1) can expressed in the form

(2.7) U = π
[q]
dGŨ .

Similarly, the mdG(q)∗ solution Φ of (1.6) can be expressed in the form

(2.8) Φ = π
[q]
dG∗Φ̃,

that is, Ui = π
[qij ]
dG Ũi and Φi = π

[qij ]
dG∗Φ̃i on each local interval Iij.

Proof. To prove (2.7), we note that if U is the mdG(q) solution of (1.1), then on each local
interval Iij, we have

∫

Iij

U̇ivm dt =

∫

Iij

fi(U, ·)vm dt, m = 1, . . . , qij,
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with vm(t) = ((t− ti,j−1)/kij)
m. On the other hand, by the definition of Ũ , we have

∫

Iij

˙̃Uivm dt =

∫

Iij

fi(U, ·)vm dt, m = 1, . . . , qij.

Integrating by parts and subtracting, we obtain
∫

Iij

(

Ui − Ũi

)

v̇m dt−
(

Ui(t
−
ij) − Ũ(tij)

)

= 0,

and thus, since Ui(t
−
ij) = Ũi(tij),

∫

Iij

(

Ui − Ũi

)

v̇m dt = 0.

By the definition of the mdG(q)-interpolant π
[q]
dG, it now follows that Ui = π

[qij ]
dG Ũi on Iij.

The representation (2.8) of the dual solution follows directly, since the mdG(q)∗ method
is identical to the mdG(q) method with time reversed. �

Remark 2.1. The representations of the multi-adaptive Galerkin solutions as certain in-

terpolants are presented here for the general non-linear problem (1.1), but apply also to the

linear problem (1.2).

3. A chain rule for higher-order derivatives

To estimate higher-order derivatives, we face the problem of taking higher-order deriva-
tives of f(U(t), t) with respect to t. In this section, we derive a generalized version of the
chain rule for higher-order derivatives. We also prove a basic estimate for the jump in a
composite function.

Lemma 3.1. (Chain rule) Let v : R
N → R be p > 0 times differentiable in all its variables,

and let x : R → R
N be p times differentiable, so that

(3.1) v ◦ x : R → R

is p times differentiable. Furthermore, let Dnv denote the nth order tensor defined by

Dnv w1 · · ·wn =
N
∑

i1=1

· · ·
N
∑

in=1

∂nv

∂xi1 · · ·∂xin

w1
i1
· · ·wn

in
,

for w1, . . . , wn ∈ R
N . Then,

(3.2)
dp(v ◦ x)
dtp

=

p
∑

n=1

Dnv(x)
∑

n1,...,nn

Cp,n1,...,nn
x(n1) · · ·x(nn),

where for each n the sum
∑

n1,...,nn
is taken over n1 + . . .+ nn = p with ni ≥ 1.
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Proof. Repeated use of the chain rule and Leibniz rule gives

dp(v ◦ x)
dtp

=
dp−1

dtp−1
Dv(x)x(1) =

dp−2

dtp−2

[

D2v(x)x(1)x(1) +Dv(x)x(2)
]

=
dp−3

dtp−3

[

D3v(x)x(1)x(1)x(1) +D2v(x)x(2)x(1) + . . .+Dv(x)x(3)
]

=

p
∑

n=1

Dnv(x)
∑

n1,...,nn

Cp,n1,...,nn
x(n1) · · ·x(nn),

where for each n the sum is taken over n1 + . . .+ nn = p with ni ≥ 1. �

To estimate the jump in function value and derivatives for the composite function v ◦ x,
we will need the following lemma.

Lemma 3.2. With [A] = A+ − A−, 〈A〉 = (A+ + A−)/2 and |A| = max(|A+|, |A−|), we

have

(3.3) [AB] = [A]〈B〉 + 〈A〉[B],

and

(3.4) |[A1A2 · · ·An]| ≤
n
∑

i=1

|[Ai]| Πj 6=i|Ai|.

Proof. The proof of (3.3) is straightforward:

[A]〈B〉 + 〈A〉[B] = (A+ − A−)(B+ +B−)/2 + (A+ + A−)(B+ − B−)/2

= A+B+ − A−B− = [AB].

It now follows that

|[A1A2 · · ·An]| = |[A1(A2 · · ·An) ]| = | [A1]〈A2 · · ·An 〉 + 〈A1〉[A2 · · ·An] |

≤ |[A1]| · |A2| · · · |An| + |A1| · |[A2 · · ·An]| ≤
n
∑

i=1

|[Ai]| Πj 6=i|Ai|.

�

Using Lemma 3.1 and 3.2, we now prove basic estimates of derivatives and jumps for the
composite function v ◦ x. We will use the following notation: For n ≥ 0, let ‖Dnv‖L∞(R,l∞)

be defined by

(3.5) ‖Dnv w1 · · ·wn‖L∞(R) ≤ ‖Dnv‖L∞(R,l∞)‖w1‖l∞ · · · ‖wn‖l∞ ∀w1, . . . , wn ∈ R
N ,

with ‖Dnv‖L∞(R,l∞) = ‖v‖L∞(R) for n = 0, and define

(3.6) ‖v‖Dp(R) = max
n=0,...,p

‖Dnv‖L∞(R,l∞).
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Lemma 3.3. Let v : R
N → R be p ≥ 0 times differentiable in all its variables, let x : R →

R
N be p times differentiable, and let Cx > 0 be a constant, such that ‖x(n)‖L∞(R,l∞) ≤ Cn

x ,

for n = 1, . . . , p. Then, there is a constant C = C(p) > 0, such that

(3.7)

∥

∥

∥

∥

dp(v ◦ x)
dtp

∥

∥

∥

∥

L∞(R)

≤ C‖v‖Dp(R)C
p
x.

Proof. We first note that for p = 0, (3.7) follows directly by the definition of ‖v‖Dp(R). For
p > 0, we obtain by Lemma 3.1,

∣

∣

∣

∣

dp(v ◦ x)
dtp

∣

∣

∣

∣

≤ C

p
∑

n=1

∑

n1,...,nn

∣

∣Dn v(x)x(n1) · · ·x(nn)
∣

∣ ≤ C‖v‖Dp(R)C
p
x.

�

Lemma 3.4. Let v : R
N → R be p + 1 ≥ 1 times differentiable in all its variables, let

x : R → R
N be p times differentiable, except possibly at some t ∈ R, and let Cx > 0

be a constant, such that ‖x(n)‖L∞(R,l∞) ≤ Cn
x for n = 1, . . . , p. Then, there is a constant

C = C(p) > 0, such that

(3.8)

∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

≤ C‖v‖Dp+1(R)

p
∑

n=0

Cp−n
x ‖[x(n)]t‖l∞.

Proof. We first note that for p = 0, we have
∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

= |[(v ◦ x)]t| =
∣

∣v(x(t+)) − v(x(t−))
∣

∣ ≤ ‖Dv‖L∞(R,l∞) ‖[x]t‖l∞,

and so (3.8) holds for p = 0. For p > 0, we obtain by Lemma 3.1 and Lemma 3.2,
∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

≤ C

p
∑

n=1

∑

n1,...,nn

∣

∣

[

Dnv(x) x(n1) · · ·x(nn)
]

t

∣

∣

≤ C

p
∑

n=1

∑

n1,...,nn

‖Dn+1v‖L∞(R,l∞)‖[x]t‖l∞C
p
x+

+ ‖Dnv‖L∞(R,l∞)(‖[x(n1)]t‖l∞C
p−n1

x + . . .+ ‖[x(nn)]t‖l∞C
p−nn

x )

≤ C‖v‖Dp+1(R)

p
∑

n=0

Cp−n
x ‖[x(n)]t‖l∞.

�

4. Estimates of derivatives and jumps for the non-linear problem

We now derive estimates of derivatives and jumps for the multi-adaptive solutions of the
general non-linear problem (1.1). To obtain the estimates for the multi-adaptive solutions
U and Φ, we first derive estimates for the functions Ũ and Φ̃ defined in Section 2. These
estimates are then used to derive estimates for U and Φ.
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4.1. Assumptions. We make the following basic assumptions: Given a time slab T , as-
sume that for each pair of local intervals Iij and Imn within the time slab, we have

(A1) qij = qmn = q̄,

and

(A2) kij > α kmn,

for some q̄ ≥ 0 and some α ∈ (0, 1). We also assume that the problem (1.1) is autonomous,

(A3)
∂fi

∂t
= 0, i = 1, . . . , N.

Note that dual problem is in general non-autonomous. Furthermore, assume that

(A4) ‖fi‖Dq̄+1(T ) <∞, i = 1, . . . , N,

and take ‖f‖T ≥ maxi=1,...,N ‖fi‖Dq̄+1(T ), such that

(4.5) ‖dp/dtp(∂f/∂u)>(x(t))‖l∞ ≤ ‖f‖T Cp
x,

for p = 0, . . . , q̄, and

(4.6) ‖[dp/dtp(∂f/∂u)>(x(t))]t‖l∞ ≤ ‖f‖T
p
∑

n=0

Cp−n
x ‖[x(n)]t‖l∞,

for p = 0, . . . , q̄−1, with the notation of Lemma 3.3 and Lemma 3.4. Note that assumption
(A4) implies that each fi is bounded by ‖f‖T . We further assume that there is a constant
ck > 0, such that

(A5) kij‖f‖T ≤ ck,

for each local interval Iij. We summarize the list of assumptions as follows:

(A1) the local orders qij are equal within each time slab;
(A2) the local time steps kij are semi-uniform within each time slab;
(A3) f is autonomous;
(A4) f and its derivatives are bounded;
(A5) the local time steps kij are small.

4.2. Estimates for U . To simplify the estimates, we introduce the following notation:
For given p > 0, let CU,p ≥ ‖f‖T be a constant, such that

(4.8) ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p, n = 1, . . . , p.

For p = 0, we define CU,0 = ‖f‖T . Temporarily, we will assume that there is a constant
c′k > 0, such that for each p,

(A5′) kijCU,p ≤ c′k.

This assumption will be removed below in Theorem 4.1. In the following lemma, we use
assumptions (A1), (A3), and (A4) to derive estimates for Ũ in terms of CU,p and ‖f‖T .
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Lemma 4.1. (Derivative and jump estimates for Ũ) Let U be the mcG(q) or mdG(q)
solution of (1.1) and define Ũ as in (2.1). If assumptions (A1), (A3), and (A4) hold, then

there is a constant C = C(q̄) > 0, such that

(4.10) ‖Ũ (p)‖L∞(T ,l∞) ≤ CCp
U,p−1, p = 1, . . . , q̄ + 1,

and

(4.11) ‖[Ũ (p)]ti,j−1
‖l∞ ≤ C

p−1
∑

n=0

Cp−n
U,p−1‖[U (n)]ti,j−1

‖l∞, p = 1, . . . , q̄ + 1,

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .

Proof. By definition, Ũ
(p)
i = dp−1

dtp−1 fi(U), and so the results follow directly by Lemma 3.3
and Lemma 3.4, noting that ‖f‖T ≤ CU,p−1. �

By Lemma 4.1, we now obtain the following estimate for the size of the jump in function
value and derivatives for U .

Lemma 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q) solution of (1.1).
If assumptions (A1)–(A5) and (A5′) hold, then there is a constant C = C(q̄, ck, c

′
k, α) > 0,

such that

(4.12) ‖[U (p)]ti,j−1
‖l∞ ≤ Ckr+1−p

ij Cr+1
U,r , p = 0, . . . , r + 1, r = 0, . . . , q̄,

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .

Proof. The proof is by induction. We first note that at t = ti,j−1, we have

[U
(p)
i ]t =

(

U
(p)
i (t+) − Ũ

(p)
i (t+)

)

+
(

Ũ
(p)
i (t+) − Ũ

(p)
i (t−)

)

+
(

Ũ
(p)
i (t−) − U

(p)
i (t−)

)

≡ e+ + e0 + e−.

By Theorem 2.1 (or Theorem 2.2), U is an interpolant of Ũ and so, by Theorem 5.2 in [3],
we have

|e+| ≤ Ckr+1−p
ij ‖Ũ (r+1)

i ‖L∞(Iij) + C
∑

x∈Nij

r
∑

m=1

km−p
ij |[Ũ (m)

i ]x|,

for p = 0, . . . , r + 1 and r = 0, . . . , q̄. Note that the second sum starts at m = 1 rather
than at m = 0, since Ũ is continuous. Similarly, we have

|e−| ≤ Ckr+1−p
i,j−1 ‖Ũ (r+1)

i ‖L∞(Ii,j−1) + C
∑

x∈Ni,j−1

r
∑

m=1

km−p
i,j−1|[Ũ (m)

i ]x|.

To estimate e0, we note that e0 = 0 for p = 0, since Ũ is continuous. For p = 1, . . . , q̄ + 1,
Lemma 4.1 gives

|e0| = |[Ũ (p)
i ]t| ≤ C

p−1
∑

n=0

Cp−n
U,p−1‖[U (n)]t‖l∞.
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Using assumption (A2), and the estimates for e+, e0, and e−, we obtain for r = 0 and
p = 0,

|[Ui]t| ≤ Ckij‖ ˙̃Ui‖L∞(Iij) + 0 + Cki,j−1‖ ˙̃Ui‖L∞(Ii,j−1) ≤ C(1 + α−1)kijCU,0 = CkijCU,0.

It now follows by assumption (A5), that for r = 0 and p = 1,

|[U̇i]t| ≤ C‖ ˙̃Ui‖L∞(Iij) + CCU,0‖[U ]t‖l∞ + C‖ ˙̃Ui‖L∞(Ii,j−1) ≤ C(1 + kijCU,0)CU,0 ≤ CCU,0.

Thus, (4.12) holds for r = 0. Assume now that (4.12) holds for r = r̄ − 1 ≥ 0. Then, by
Lemma 4.1 and assumption (A5′), it follows that

|e+| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

x∈Nij

r̄
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
U,m−1‖[Un]x‖l∞

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

km−p
ij Cm−n

U,m−1k
(r̄−1)+1−n

ij C
(r̄−1)+1
U,r̄−1

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

(

1 +
∑

(kijCU,r̄−1)
m−1−n

)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ .

Similarly, we obtain the estimate |e−| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ . Finally, we use Lemma 4.1 and
assumption (A5′), to obtain the estimate

|e0| ≤ C

p−1
∑

n=0

Cp−n
U,p−1‖[Un]t‖l∞ ≤ C

p−1
∑

n=0

Cp−n
U,p−1k

(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

= Ckr̄+1−p
ij C r̄+1

U,r̄

p−1
∑

n=0

(kijCU,r̄)
p−1−n ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ .

Summing up, we thus obtain |[U (p)
i ]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ , and so (4.12)

follows by induction. �

By Lemma 4.1 and Lemma 4.2, we now obtain the following estimate for derivatives of
the solution U .

Theorem 4.1. (Derivative estimates for U) Let U be the mcG(q) or mdG(q) solution of

(1.1). If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0, such

that

(4.13) ‖U (p)‖L∞(T ,l∞) ≤ C‖f‖p
T , p = 1, . . . , q̄.

Proof. By Theorem 2.1 (or Theorem 2.2), U is an interpolant of Ũ and so, by Theorem 5.2
in [3], we have

‖U (p)
i ‖L∞(Iij) = ‖(πŨi)

(p)‖L∞(Iij) ≤ C ′‖Ũ (p)
i ‖L∞(Iij) + C ′

∑

x∈Nij

p−1
∑

m=1

km−p
ij |[Ũ (m)

i ]x|,

for some constant C ′ = C ′(q̄). For p = 1, we thus obtain the estimate

‖U̇i‖L∞(Iij) ≤ C ′‖ ˙̃Ui‖L∞(Iij) = C ′‖fi(U)‖L∞(Iij) ≤ C ′‖f‖T ,
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by assumption (A4), and so (4.13) holds for p = 1.
For p = 2, . . . , q̄, assuming that (A5′) holds for CU,p−1, we use Lemma 4.1, Lemma 4.2

(with r = p− 1), and assumption (A2), to obtain

‖U (p)
i ‖L∞(Iij) ≤ CCp

U,p−1 + C
∑

x∈Nij

p−1
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
U,m−1‖[U (n)]x‖l∞

≤ CCp
U,p−1 + C

∑

km−p
ij Cm−n

U,m−1k
(p−1)+1−n

ij C
(p−1)+1
U,p−1

≤ CCp
U,p−1

(

1 +
∑

(kijCU,m−1)
m−n

)

≤ CCp
U,p−1,

where C = C(q̄, ck, c
′
k, α). This holds for all components i and all local intervals Iij within

the time slab T , and so

‖U (p)‖L∞(T ,l∞) ≤ CCp
U,p−1, p = 1, . . . , q̄,

where by definition CU,p−1 is a constant, such that ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p−1 for n =

1, . . . , p − 1. Starting at p = 1, we now define CU,1 = C1‖f‖T with C1 = C ′ = C ′(q̄).
It then follows that (A5′) holds for CU,1 with c′k = C ′ck, and thus

‖U (2)‖L∞(T ,l∞) ≤ CC2
U,2−1 = CC2

U,1 ≡ C2‖f‖2
T ,

where C2 = C2(q̄, ck, α). We may thus define CU,2 = max(C1‖f‖T ,
√
C2‖f‖T ). Continuing,

we note that (A5′) holds for CU,2, and thus

‖U (3)‖L∞(T ,l∞) ≤ CC3
U,3−1 = CC3

U,2 ≡ C3‖f‖3
T ,

where C3 = C3(q̄, ck, α). In this way, we obtain a sequence of constants C1, . . . , Cq̄, de-
pending only on q̄, ck, and α, such that ‖U (p)‖L∞(T ,l∞) ≤ Cp‖f‖p

T for p = 1, . . . , q̄, and so
(4.13) follows if we take C = maxi=1,...,q̄ Ci. �

Having now removed the additional assumption (A5′), we obtain the following version
of Lemma 4.2.

Theorem 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q) solution of (1.1).
If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(4.14) ‖[U (p)]ti,j−1
‖l∞ ≤ Ckq̄+1−p

ij ‖f‖q̄+1
T , p = 0, . . . , q̄,

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .

4.3. Estimates for Φ. To obtain estimates corresponding to those of Theorem 4.1 and
Theorem 4.2 for the discrete dual solution Φ, we need to consider the fact that f ∗ =
f ∗(φ, ·) = J>φ is linear and non-autonomous. To simplify the estimates, we introduce the
following notation: For given p ≥ 0, let CΦ,p ≥ ‖f‖T be a constant, such that

(4.15) ‖Φ(n)‖L∞(T ,l∞) ≤ Cn
Φ,p‖Φ‖L∞(T ,l∞), n = 0, . . . , p.

Temporarily, we will assume that for each p there is a constant c′′k > 0, such that

(A5′′) kijCΦ,p ≤ c′′k.
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This assumption will be removed below in Theorem 4.3. Now, to obtain estimates for Φ,
we first need to derive estimates of derivatives and jumps for J .

Lemma 4.3. Let U be the mcG(q) or mdG(q) solution of (1.1), and let πu be an inter-

polant, of order q̄, of the exact solution u of (1.1). If assumptions (A1)–(A5) hold, then

there is a constant C = C(q̄, ck, α) > 0, such that

(4.17)

∥

∥

∥

∥

dpJ>(πu, U)

dtp

∥

∥

∥

∥

L∞(T ,l∞)

≤ C‖f‖p+1
T , p = 0, . . . , q̄,

and

(4.18)

∥

∥

∥

∥

∥

[

dpJ>(πu, U)

dtp

]

ti,j−1

∥

∥

∥

∥

∥

l∞

≤ Ckq̄+1−p
ij ‖f‖q̄+2

T , p = 0, . . . , q̄ − 1,

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .

Proof. Since f is autonomous by assumption (A3), we have

J(πu(t), U(t)) =

∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t)) ds =

∫ 1

0

∂f

∂u
(xs(t)) ds,

with xs(t) = sπu(t) + (1 − s)U(t). Noting that ‖u(n)(t)‖l∞ ≤ C‖f‖n
T by (1.1), it follows

by Theorem 4.1 and an interpolation estimate, that ‖x(n)
s (t)‖l∞ ≤ C‖f‖n

T , and so (4.17)
follows by assumption (A4).

At t = ti,j−1, we obtain, by Theorem 4.2 and an interpolation estimate,

|[x(n)
si ]t| ≤ s |[(πui)

(n)]t| + (1 − s) |[U (n)
i ]t| ≤ |[(πui)

(n)]t| + |[U (n)
i ]t|

≤ |(πui)
(n)(t+) − u

(n)
i (t)| + |u(n)

i (t) − (πui)
(n)(t−))| + Ckq̄+1−n

ij ‖f‖q̄+1
T

≤ Ckq̄+1−n
ij ‖u(q̄+1)

i ‖L∞(Iij) + Ckq̄+1−n
i,j−1 ‖u(q̄+1)

i ‖L∞(Ii,j−1) + Ckq̄+1−n
ij ‖f‖q̄+1

T

≤ Ckq̄+1−n
ij ‖f‖q̄+1

T ,

where we have also used assumption (A2). With similar estimates for other components
which are discontinuous at t = ti,j−1, the estimate (4.18) now follows by assumptions (A4)
and (A5). �

Using these estimates for J>, we now derive estimates for Φ̃, corresponding to the
estimates for Ũ in Lemma 4.1.

Lemma 4.4. (Derivative and jump estimates for Φ̃) Let Φ be the mcG(q)∗ or mdG(q)∗

solution of (1.3) with g = 0, and define Φ̃ as in (2.2). If assumptions (A1)–(A5) and

(A5′′) hold, then there is a constant C = C(q̄, ck, c
′′
k, α) > 0, such that

(4.19) ‖Φ̃(p)‖L∞(T ,l∞) ≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞), p = 1, . . . , q̄ + 1,
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and

(4.20)

‖[Φ̃(p)]tij‖l∞ ≤ Ckq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) + C

p−1
∑

n=0

‖f‖p−n
T ‖[Φ(n)]tij‖l∞, p = 1, . . . , q̄,

for each local interval Iij, where tij is an internal node of the time slab T .

Proof. By definition, ˙̃Φ = −f ∗(Φ, ·) = −J(πu, U)>Φ. It follows that

Φ̃(p) = − dp−1

dtp−1
J>Φ = −

p−1
∑

n=0

(

p− 1

n

)(

dp−1−n

dtp−1−n
J>

)

Φ(n),

and so, by Lemma 4.3,

‖Φ̃(p)(t)‖l∞ ≤ C

p−1
∑

n=0

‖f‖p−n
T Cn

Φ,p−1‖Φ‖L∞(T ,l∞) ≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞),

for 0 ≤ p− 1 ≤ q̄. To estimate the jump at t = tij, we use Lemma 3.2, Lemma 4.3, and
assumption (A5′′), to obtain

‖[Φ̃(p)]t‖l∞ ≤ C

p−1
∑

n=0

∥

∥

∥

∥

[(

dp−1−n

dtp−1−n
J>

)

Φ(n)

]

t

∥

∥

∥

∥

l∞

≤ C

p−1
∑

n=0

(

k
q̄+1−(p−1−n)
ij ‖f‖q̄+2

T Cn
Φ,p−1‖Φ‖L∞(T ,l∞) + ‖f‖p−n

T ‖[Φ(n)]t‖l∞

)

≤ Ckq̄+2−p
ij ‖f‖q̄+2

T

p−1
∑

n=0

kn
ijC

n
Φ,p−1‖Φ‖L∞(T ,l∞) + C

p−1
∑

n=0

‖f‖p−n
T ‖[Φ(n)]t‖l∞

≤ Ckq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) + C

p−1
∑

n=0

‖f‖p−n
T ‖[Φ(n)]t‖l∞,

for 0 ≤ p− 1 ≤ q̄ − 1. �

Our next task is to estimate the jump in the discrete dual solution Φ itself, corresponding
to Lemma 4.2.

Lemma 4.5. (Jump estimates for Φ) Let Φ be the mcG(q)∗ or mdG(q)∗ solution of (1.3)
with g = 0. If assumptions (A1)–(A5) and (A5′′) hold, then there is a constant C =
C(q̄, ck, c

′′
k, α) > 0, such that

(4.21) ‖[Φ(p)]tij‖l∞ ≤ Ckr+1−p
ij Cr+1

Φ,r ‖Φ‖L∞(T ,l∞), p = 0, . . . , r + 1,

with r = 0, . . . , q̄ − 1 for the mcG(q) method and r = 0, . . . , q̄ for the mdG(q) method, for

each local interval Iij, where tij is an internal node of the time slab T .
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Proof. The proof is by induction. We first note that at t = tij, we have

[Φ
(p)
i ]t =

(

Φ
(p)
i (t+) − Φ̃

(p)
i (t+)

)

+
(

Φ̃
(p)
i (t+) − Φ̃

(p)
i (t−)

)

+
(

Φ̃
(p)
i (t−) − Φ

(p)
i (t−)

)

≡ e+ + e0 + e−.

By Theorem 2.1 (or Theorem 2.2), Φ is an interpolant of Φ̃; if Φ is the mcG(q)∗ solution,

then Φi is the π
[qij ]
cG∗ -interpolant of Φ̃i on Iij, and if Φ is the mdG(q)∗ solution, then Φi is

the π
[qij ]
dG∗-interpolant of Φ̃i. It follows that

|e−| ≤ Ckr+1−p
ij ‖Φ̃(r+1)

i ‖L∞(Iij) + C
∑

x∈Nij

r
∑

m=1

km−p
ij |[Φ̃(m)

i ]x|, p = 0, . . . , r + 1,

where r = 0, . . . , q̄ − 1 for the mcG(q)∗ solution and r = 0, . . . , q̄ for the mdG(q)∗solution.
Similarly, we have

|e+| ≤ Ckr+1−p
i,j+1 ‖Φ̃(r+1)

i ‖L∞(Ii,j+1) + C
∑

x∈Ni,j+1

r
∑

m=1

km−p
i,j+1|[Φ̃(m)

i ]x|, p = 0, . . . , r + 1.

To estimate e0, we note that e0 = 0 for p = 0, since Φ̃ is continuous. For p = 1, . . . , q̄,
Lemma 4.4 gives

(4.22) |e0| = |[Φ̃(p)
i ]t| ≤ Ckq̄+2−p

ij ‖f‖q̄+2
T ‖Φ‖L∞(T ,l∞) + C

p−1
∑

n=0

‖f‖p−n
T ‖|[Φ(n)]t|‖l∞.

Using assumption (A2), and the estimates for e+, e0, and e−, we obtain for r = 0 and
p = 0,

|[Φi]t| ≤ Cki,j+1‖ ˙̃Φi‖L∞(Ii,j+1) + 0 + Ckij‖ ˙̃Φi‖L∞(Iij) ≤ C(α−1 + 1)kijCΦ,0‖Φ‖L∞(T ,l∞)

= CkijCΦ,0‖Φ‖L∞(T ,l∞).

For r = 0 and p = 1, it follows by (4.22), noting that k q̄+2−1
ij ‖f‖q̄+2

T ≤ C‖f‖T = CCΦ,0, and
assumption (A2), that |e0| ≤ CCΦ,0‖Φ‖L∞(T ,l∞) + C‖f‖T ‖[Φ]t‖l∞ ≤ CCΦ,0‖Φ‖L∞(T ,l∞),
and so,

|[Φ̇i]t| ≤ C‖ ˙̃Φi‖L∞(Ii,j+1) + CCΦ,0‖Φ‖L∞(T ,l∞) + C‖ ˙̃Φi‖L∞(Iij) ≤ CCΦ,0‖Φ‖L∞(T ,l∞).
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Thus, (4.21) holds for r = 0. Assume now that (4.21) holds for r = r̄ − 1 ≥ 0. Then, by
Lemma 4.4 and assumption (A5), it follows that

|e−| ≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞)

+ C
∑

x∈Nij

r
∑

m=1

km−p
ij

(

kq̄+2−m
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) +
m−1
∑

n=0

‖f‖m−n
T ‖[Φ(n)]t‖l∞

)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞)

+ C
∑

(

kq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) +
∑

‖f‖m−n
T k

m−p+(r̄−1)+1−n

ij C
(r̄−1)+1
Φ,r̄−1 ‖Φ‖L∞(T ,l∞)

)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞)

+ C
∑

(

kq̄+2−p
ij ‖f‖q̄+2

T +
∑

kr̄+1−p+m−1−n
ij ‖f‖m−1−n

T C r̄+1
Φ,r̄−1

)

‖Φ‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞).

Similarly, we obtain the estimate

|e+| ≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞).

Again using the assumption that (4.21) holds for r = r̄ − 1, we obtain

|e0| ≤ Ckq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) + C

p−1
∑

n=0

‖f‖p−n
T k

(r̄−1)+1−n

ij C
(r̄−1)+1
Φ,r̄−1 ‖Φ‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄−1‖Φ‖L∞(T ,l∞)

(

1 +

p−1
∑

n=0

(kij‖f‖T )p−1−n

)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄−1‖Φ‖L∞(T ,l∞) ≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞).

We thus have |[Φ(p)
i ]t| ≤ |e+|+ |e0|+ |e−| ≤ Ckr̄+1−p

ij C r̄+1
Φ,r̄ ‖Φ‖L∞(T ,l∞), and so (4.21) follows

by induction. �

Next, we prove an estimate for the derivatives of the discrete dual solution Φ, corre-
sponding to Theorem 4.1.

Theorem 4.3. (Derivative estimates for Φ) Let Φ be the mcG(q)∗ or mdG(q)∗ solution of

(1.3) with g = 0. If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) >
0, such that

(4.23) ‖Φ(p)‖L∞(T ,∞) ≤ C‖f‖p
T ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄.

Proof. By Theorem 2.1 (or Theorem 2.2), Φ is an interpolant of Φ̃, and so, by Theorem
5.2 in [3], we have

‖Φ(p)
i ‖L∞(Iij) = ‖(πΦ̃i)

(p)‖L∞(Iij) ≤ C ′‖Φ̃(p)
i ‖L∞(Iij) + C ′

∑

x∈Nij

p−1
∑

m=1

km−p
ij |[Φ̃(m)

i ]x|,
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for some constant C ′ = C ′(q̄) > 0. For p = 1, we thus obtain the estimate

‖Φ̇i‖L∞(Iij) ≤ C ′‖ ˙̃Φi‖L∞(Iij) = C ′‖f ∗
i (Φ)‖L∞(Iij) = C ′‖J>Φ‖L∞(Iij) ≤ C ′‖f‖T ‖Φ‖L∞(T ,l∞),

by assumption (A4), and so (4.23) holds for p = 1.
For p = 2, . . . , q̄, assuming that (A5′′) holds for CΦ,p−1, we use Lemma 4.4, Lemma 4.5

(with r = p− 1) and assumption (A2), to obtain

‖Φ(p)
i ‖L∞(Iij) ≤ CCp

Φ,p−1‖Φ‖L∞(T ,l∞)

+ C
∑

x∈Nij

p−1
∑

m=1

km−p
ij

(

kq̄+2−m
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) +
m−1
∑

n=0

‖f‖m−n
T ‖[Φ(n)]x‖l∞

)

≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞) + C

∑

km−p
ij ‖f‖m−n

T k
(p−1)+1−n

ij C
(p−1)+1
Φ,p−1 ‖Φ‖L∞(T ,l∞)

≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞) + CCp

Φ,p−1‖Φ‖L∞(T ,l∞)

∑

(kij‖f‖T )m−n

≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞),

where we have used the fact that km−p
ij kq̄+2−m

ij ‖f‖q̄+2
T = ‖f‖p

T (kij‖f‖T )q̄+2−p ≤ CCp
Φ,p−1,

and where C = C(q̄, ck, c
′′
k, α). Continuing now in the same way as in the proof of

Theorem 4.1, we obtain

‖Φ(p)‖L∞(T ,l∞) ≤ C‖f‖p
T ‖Φ‖L∞(T ,l∞), p = 1, . . . , q̄,

for C = C(q̄, ck, α), which (trivially) holds also when p = 0. �

Having now removed the additional assumption (A5′′), we obtain the following version
of Lemma 4.5.

Theorem 4.4. (Jump estimates for Φ) Let Φ be the mcG(q)∗ or mdG(q)∗ solution of (1.3)
with g = 0. If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0,
such that

(4.24) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄−p
ij ‖f‖q̄

T ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄ − 1,

for the mcG(q)∗ solution, and

(4.25) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄+1−p
ij ‖f‖q̄+1

T ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄,

for the mdG(q)∗ solution. This holds for each local interval Iij, where tij is an internal

node of the time slab T .

4.4. A special interpolation estimate. In the derivation of a priori error estimates, we
face the problem of estimating the interpolation error πϕi−ϕi on a local interval Iij, where
ϕi is defined by

(4.26) ϕi = (J>(πu, u)Φ)i =

N
∑

l=1

Jli(πu, u)Φl, i = 1, . . . , N.

We note that ϕi may be discontinuous within Iij, if other components have nodes within
Iij, see Figure 2, since then some Φl (or some Jli) may be discontinuous within Iij. To
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PSfrag replacements

Iijti,j−1 tij

Φi(t)

Φl(t)

Figure 2. If some other component l 6= i has a node within Iij, then Φl

may be discontinuous within Iij, causing ϕi to be discontinuous within Iij.

estimate the interpolation error, we thus need to estimate derivatives and jumps of ϕi,
which requires estimates for both Jli and Φl.

In Lemma 4.3 we have already proved an estimate for J> when f is linearized around
πu and U , rather than around πu and u as in (4.26). Replacing U by u, we obtain the
following estimate for J>.

Lemma 4.6. Let πu be an interpolant, of order q̄, of the exact solution u of (1.1). If

assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(4.27)

∥

∥

∥

∥

dpJ>(πu, u)

dtp

∥

∥

∥

∥

L∞(T ,l∞)

≤ C‖f‖p+1
T , p = 0, . . . , q̄,

and

(4.28)

∥

∥

∥

∥

∥

[

dpJ>(πu, u)

dtp

]

ti,j−1

∥

∥

∥

∥

∥

l∞

≤ Ckq̄+1−p
ij ‖f‖q̄+2

T , p = 0, . . . , q̄ − 1,

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .

Proof. See proof of Lemma 4.3. �

From Lemma 4.6 and the estimates for Φ derived in the previous section, we now obtain
the following estimates for ϕ.

Lemma 4.7. (Estimates for ϕ) Let ϕ be defined as in (4.26). If assumptions (A1)–(A5)
hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(4.29) ‖ϕ(p)
i ‖L∞(Iij) ≤ C‖f‖p+1

T ‖Φ‖L∞(T ,l∞), p = 0, . . . , qij,
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and

(4.30) |[ϕ(p)
i ]x| ≤ Ck

rij−p

ij ‖f‖rij+1
T ‖Φ‖L∞(T ,l∞) ∀x ∈ Nij, p = 0, . . . , qij − 1,

with rij = qij for the mcG(q) method and rij = qij + 1 for the mdG(q) method. This holds

for each local interval Iij within the time slab T .

Proof. Differentiating, we have ϕ
(p)
i =

∑p

n=0

(

p

n

)

dp−nJ>(πu,u)
dtp−n Φ(n), and so, by Theorem 4.3

and Lemma 4.6, we obtain

‖ϕ(p)
i ‖L∞(Iij) ≤ C

p
∑

n=0

‖f‖(p−n)+1
T ‖f‖n

T ‖Φ‖L∞(T ,l∞) = C

p
∑

n=0

‖f‖p+1
T ‖Φ‖L∞(T ,l∞)

= C‖f‖p+1
T ‖Φ‖L∞(T ,l∞).

To estimate the jump in ϕ
(p)
i , we use Lemma 3.2, Theorem 4.3, Theorem 4.4, and Lemma

4.6, to obtain

|[ϕ(p)
i ]x| =

∣

∣

∣

∣

∣

[

p
∑

n=0

(

p

n

)

dp−nJ>

dtp−n
Φ(n)

]

x

∣

∣

∣

∣

∣

≤ C

p
∑

n=0

∣

∣

∣

∣

[

dp−nJ>

dtp−n
Φ(n)

]

x

∣

∣

∣

∣

≤ C

p
∑

n=0

(k
qij+1−(p−n)
ij ‖f‖qij+2

T ‖f‖n
T + ‖f‖(p−n)+1

T k
qij−n

ij ‖f‖qij

T )‖Φ‖L∞(T ,l∞)

≤ Ck
qij−p

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞)

p
∑

n=0

(kij‖f‖T )n+1 + (kij‖f‖T )p−n

≤ Ck
qij−p

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞),

for the mcG(q) method. For the mdG(q) method, we obtain one extra power of kij‖f‖T .
�

Using the interpolation estimates of [3], together with Lemma 4.7, we now obtain the
following important interpolation estimates for ϕ.

Lemma 4.8. (Interpolation estimates for ϕ) Let ϕ be defined as in (4.26). If assumptions

(A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(4.31) ‖π[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(4.32) ‖π[qij−1]
dG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .
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Proof. To prove (4.31), we use Theorem 5.2 in [3], with r = qij − 2 and p = 0, together
with Lemma 4.7, to obtain

‖π[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

(qij−2)+1
ij ‖ϕ((qij−2)+1)

i ‖L∞(Iij) + C
∑

x∈Nij

qij−2
∑

m=0

km
ij |[ϕ(m)

i ]x |

≤ Ck
qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞) + C
∑

x∈Nij

qij−2
∑

m=0

km
ij k

qij−m

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞)

= Ck
qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞) + Ck
qij

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞) ≤ Ck

qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞).

The estimate for π
[qij−1]
dG ϕi − ϕi is obtained similarly. �

5. Estimates of derivatives and jumps for linear problems

We now derive estimates for derivatives and jumps for the multi-adaptive solutions of
the linear problem (1.2). Assuming that the problem is linear, but non-autonomous, the
estimates are obtained in a slightly different way compared to the estimates of the previous
section.

5.1. Assumptions. We make the following basic assumptions: Given a time slab T , as-
sume that for each pair of local intervals Iij and Imn within the time slab, we have

(B1) qij = qmn = q̄,

and

(B2) kij > α kmn,

for some q̄ ≥ 0 and some α ∈ (0, 1). Furthermore, assume that A has q̄ − 1 continuous
derivatives and let CA > 0 be constant, such that

(B3) max
(

‖A(p)‖L∞(T ,l∞), ‖A>(p)‖L∞(T ,l∞)

)

≤ Cp+1
A , p = 0, . . . , q̄,

for all time slabs T . We further assume that there is a constant ck > 0, such that

(B4) kijCA ≤ ck.

We summarize the list of assumptions as follows:

(B1) the local orders qij are equal within each time slab;
(B2) the local time steps kij are semi-uniform within each time slab;
(B3) A and its derivatives are bounded;
(B4) the local time steps kij are small.
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5.2. Estimates for U and Φ. To simplify the estimates, we introduce the following
notation: For given p > 0, let CU,p ≥ CA be a constant, such that

(5.5) ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p‖U‖L∞(T ,l∞), n = 0, . . . , p,

For p = 0, we define CU,0 = CA. Temporarily, we will assume that there is a constant
c′k > 0, such that for each p,

(B4′) kijCU,p ≤ c′k.

This assumption will be removed below in Theorem 5.1. We similarly define the constant
CΦ,p, with kijCΦ,p ≤ c′k. In the following lemma, we use assumptions (B1) and (B3) to

derive estimates for Ũ and Φ̃.

Lemma 5.1. (Estimates for Ũ and Φ̃) Let U be the mcG(q) or mdG(q) solution of (1.2)

and define Ũ as in (2.1). If assumptions (B1) and (B3) hold, then there is a constant

C = C(q̄) > 0, such that

(5.7) ‖Ũ (p)‖L∞(T ,l∞) ≤ CCp
U,p−1‖U‖L∞(T ,l∞), p = 1, . . . , q̄ + 1,

and

(5.8) ‖[Ũ (p)]ti,j−1
‖l∞ ≤ C

p−1
∑

n=0

Cp−n
A ‖[U (n)]ti,j−1

‖l∞, p = 1, . . . , q̄.

Similarly, for Φ the mcG(q)∗ or mdG(q)∗ solution of (1.7) with g = 0, and with Φ̃ defined

as in (2.2), we obtain

(5.9) ‖Φ̃(p)‖L∞(T ,l∞) ≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞), p = 1, . . . , q̄ + 1,

and

(5.10) ‖[Φ̃(p)]tij‖l∞ ≤ C

p−1
∑

n=0

Cp−n
A ‖[Φ(n)]tij‖l∞, p = 1, . . . , q̄.

Proof. By (2.1), it follows that ˙̃U = −AU , and so Ũ (p) =
∑p−1

n=0

(

p−1
n

)

A(p−1−n)U (n). It now
follows by assumptions (B1) and (B3), that

‖Ũ (p)‖L∞(T ,l∞) ≤ C

p−1
∑

n=0

Cp−n
A Cn

U,p−1‖U‖L∞(T ,l∞) ≤ CCp
U,p−1‖U‖L∞(T ,l∞).

Similarly, we obtain ‖[Ũ (p)]ti,j−1
‖l∞ ≤ C

∑p−1
n=0 C

p−n
A ‖[U (n)]ti,j−1

‖l∞. The corresponding

estimates for Φ̃ follow similarly. �

By Lemma 5.1, we now obtain the following estimate for the size of the jump in function
value and derivatives for U and Φ.
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Lemma 5.2. (Jump estimates for U and Φ) Let U be the mcG(q) or mdG(q) solution of

(1.2), and let Φ be the corresponding mcG(q)∗ or mdG(q)∗ solution of (1.7) with g = 0. If

assumptions (B1)–(B4) and (B4′) hold, then there is a constant C = C(q̄, ck, c
′
k, α) > 0,

such that

(5.11) ‖[U (p)]ti,j−1
‖l∞ ≤ Ckr+1−p

ij Cr+1
U,r ‖U‖L∞(T ,l∞), p = 0, . . . , r + 1, r = 0, . . . , q̄,

and

(5.12) ‖[Φ(p)]tij‖l∞ ≤ Ckr+1−p
ij Cr+1

Φ,r ‖Φ‖L∞(T ,l∞), p = 0, . . . , r + 1,

with r = 0, . . . , q̄ − 1 for the mcG(q)∗ solution and r = 0, . . . , q̄ for the mdG(q)∗ solution,

for each local interval Iij, where ti,j−1 and tij, respectively, are internal nodes of the time

slab T .

Proof. The proof is by induction and follows those of Lemma 4.2 and Lemma 4.5. We first
note that at t = ti,j−1, we have

[U
(p)
i ]t =

(

U
(p)
i (t+) − Ũ

(p)
i (t+)

)

+
(

Ũ
(p)
i (t+) − Ũ

(p)
i (t−)

)

+
(

Ũ
(p)
i (t−) − U

(p)
i (t−)

)

= e+ + e0 + e−.

Now, U is an interpolant of Ũ and so, by Theorem 5.2 in [3], it follows that

|e+| ≤ Ckr+1−p
ij ‖Ũ (r+1)

i ‖L∞(Iij) + C
∑

x∈Nij

r
∑

m=1

km−p
ij |[Ũ (m)

i ]x|,

for p = 0, . . . , r + 1 and r = 0, . . . , q̄. Note that the second sum starts at m = 1 rather
than at m = 0, since Ũ is continuous. Similarly, we have

|e−| ≤ Ckr+1−p
i,j−1 ‖Ũ (r+1)

i ‖L∞(Ii,j−1) + C
∑

x∈Ni,j−1

r
∑

m=1

km−p
i,j−1|[Ũ (m)

i ]x|.

To estimate e0, we note that e0 = 0 for p = 0, since Ũ is continuous. For p = 1, . . . , q̄,
Lemma 5.1 gives

|e0| = |[Ũ (p)
i ]t| ≤ C

p−1
∑

n=0

Cp−n
A ‖[U (n)]t‖l∞.

Using assumption (B2), and the estimates for e+, e0, and e−, we obtain for r = 0 and
p = 0,

|[Ui]| ≤ Ckij‖ ˙̃Ui‖L∞(Iij) + 0 + Cki,j−1‖ ˙̃Ui‖L∞(Ii,j−1) ≤ C(1 + α−1)kijCU,0‖U‖L∞(T ,l∞)

= CkijCU,0‖U‖L∞(T ,l∞).

It now follows by assumption (B4), that for r = 0 and p = 1,

|[U̇i]t| ≤ C‖ ˙̃Ui‖L∞(Iij) + CCA‖[U ]t‖l∞ + C‖ ˙̃Ui‖L∞(Ii,j−1) ≤ C(1 + kijCU,0)CU,0‖U‖L∞(T ,l∞)

≤ CCU,0‖U‖L∞(T ,l∞).
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Thus, (5.11) holds for r = 0. Assume now that (5.11) holds for r = r̄ − 1 ≥ 0. Then, by
Lemma 5.1 and assumption (B4′), it follows that

|e+| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞) + C
∑

x∈Nij

r̄
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
A ‖[U (n)]t‖l∞

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞) + C
∑

km−p
ij Cm−n

A k
(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1 ‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

(

1 +
∑

(kijCU,r̄)
m−1−n

)

‖U‖L∞(T ,l∞) ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞).

Similarly, we obtain the estimate |e−| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞). Finally, we use Lemma
5.1 and (B4′), to obtain the estimate

|e0| = |[Ũ (p)
i ]t| ≤ C

p−1
∑

n=0

Cp−n
A ‖[U (n)]t‖l∞ ≤ C

p−1
∑

n=0

Cp−n
A k

(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1 ‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

p−1
∑

n=0

(kijCU,r̄−1)
p−1−n‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞).

Summing up, we thus obtain |[U (p)
i ]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ ‖U‖L∞(T ,l∞), and

so (5.11) follows by induction. The estimates for Φ follow similarly. �

Theorem 5.1. (Derivative estimates for U and Φ) Let U be the mcG(q) or mdG(q) solution

of (1.2), and let Φ be the corresponding mcG(q)∗ or mdG(q)∗ solution of (1.7) with g = 0.
If assumptions (B1)–(B4) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(5.13) ‖U (p)‖L∞(T ,l∞) ≤ CCp
A‖U‖L∞(T ,l∞), p = 0, . . . , q̄,

and

(5.14) ‖Φ(p)‖L∞(T ,l∞) ≤ CCp
A‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄.

Proof. Since U is an interpolant of Ũ , it follows by Theorem 5.2 in [3], that

‖U (p)
i ‖L∞(Iij) = ‖(πŨi)

(p)‖L∞(Iij) ≤ C ′‖Ũ (p)
i ‖L∞(Iij) + C ′

∑

x∈Nij

p−1
∑

m=1

km−p
ij |[Ũ (m)

i ]x|,

for some constant C ′ = C ′(q̄). For p = 1, we thus obtain the estimate

‖U̇i‖L∞(Iij) ≤ C ′‖ ˙̃Ui‖L∞(Iij) = C ′‖(AU)i‖L∞(Iij) ≤ C ′CA‖U‖L∞(T ,l∞),

and so (5.13) holds for p = 1.
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For p = 2, . . . , q̄, assuming that (B4′) holds for CU,p−1, we use Lemma 5.1, Lemma 5.2
(with r = p− 1) and assumption (B2), to obtain

‖U (p)
i ‖L∞(Iij) ≤ CCp

U,p−1‖U‖L∞(T ,l∞) + C
∑

x∈Nij

p−1
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
A ‖[U (n)]x‖l∞

≤ CCp
U,p−1‖U‖L∞(T ,l∞) + C

∑

km−p
ij Cm−n

A k
(p−1)+1−n
ij C

(p−1)+1
U,p−1 ‖U‖L∞(T ,l∞)

≤ CCp
U,p−1‖U‖L∞(T ,l∞)

(

1 +
∑

(kijCA)m−n
)

≤ CCp
U,p−1‖U‖L∞(T ,l∞),

where C = C(q̄, ck, c
′
k, α). It now follows in the same way as in the proof of Theorem 4.1,

that
‖U (p)‖L∞(T ,l∞) ≤ CCp

A‖U‖L∞(T ,l∞), p = 1, . . . , q̄,

for C = C(q̄, ck, α), which (trivially) holds also when p = 0. The estimate for Φ follows
similarly. �

Having now removed the additional assumption (B4′), we obtain the following version
of Lemma 5.2.

Theorem 5.2. (Jump estimates for U and Φ) Let U be the mcG(q) or mdG(q) solution

of (1.2), and let Φ be the corresponding mcG(q)∗ or mdG(q)∗ solution of (1.7) with g = 0.
If assumptions (B1)–(B4) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(5.15) ‖[U (p)]ti,j−1
‖l∞ ≤ Ckq̄+1−p

ij C q̄+1
A ‖U‖L∞(T ,l∞), p = 0, . . . , q̄.

Furthermore, we have

(5.16) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄−p
ij C q̄

A‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄,

for the mcG(q)∗ solution and

(5.17) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄+1−p
ij C q̄+1

A ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄,

for the mdG(q)∗ solution. This holds for each local interval Iij, where ti,j−1 and tij, respec-

tively, are internal nodes of the time slab T .

5.3. A special interpolation estimate. As for the general non-linear problem, we need
to estimate the interpolation error πϕi −ϕi on a local interval Iij, where ϕi is now defined
by

(5.18) ϕi = (A>Φ)i =

N
∑

l=1

AliΦl, i = 1, . . . , N.

As noted above, ϕi may be discontinuous within Iij, if Iij contains nodes for other compo-
nents. We first prove the following estimates for ϕ.

Lemma 5.3. (Estimates for ϕ) Let ϕ be defined as in (5.18). If assumptions (B1)–(B4)
hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(5.19) ‖ϕ(p)
i ‖L∞(Iij) ≤ CCp+1

A ‖Φ‖L∞(T ,l∞), p = 0, . . . , qij,
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and

(5.20) |[ϕ(p)
i ]x| ≤ Ck

rij−p

ij C
rij+1
A ‖Φ‖L∞(T ,l∞) ∀x ∈ Nij, p = 0, . . . , qij − 1,

with rij = qij for the mcG(q) method and rij = qij + 1 for the mdG(q) method. This holds

for each local interval Iij within the time slab T .

Proof. Differentiating ϕi, we have ϕ
(p)
i = dp

dtp
(A>Φ)i =

∑p

n=0

(

p

n

)

(A>(p−n)
Φ(n))i and so, by

Theorem 5.1, we obtain

‖ϕ(p)
i ‖L∞(Iij) ≤ C

p
∑

n=0

C
(p−n)+1
A Cn

A‖Φ‖L∞(T ,l∞) = CCp+1
A ‖Φ‖L∞(T ,l∞).

To estimate the jump in ϕ
(p)
i , we use Theorem 5.2, to obtain

|[ϕ(p)
i ]x| ≤ C

p
∑

n=0

|(A>(p−n)
[Φ(n)]x)i| ≤ C

p
∑

n=0

C
(p−n)+1
A ‖[Φ(n)]x‖l∞

≤ C

p
∑

n=0

C
(p−n)+1
A kq̄−n

ij C q̄
A‖Φ‖L∞(T ,l∞)

≤ Ckq̄−p
ij C q̄+1

A

p
∑

n=0

(kijCA)p−n‖Φ‖L∞(T ,l∞) ≤ Ckq̄−p
ij C q̄+1

A ‖Φ‖L∞(T ,l∞),

for the mcG(q) method. For the mdG(q) method, we obtain one extra power of kijCA.
�

Using Lemma 5.3 and the interpolation estimates from [3], we now obtain the following
interpolation estimates for ϕ.

Lemma 5.4. (Interpolation estimates for ϕ) Let ϕ be defined as in (5.18). If assumptions

(B1)–(B4) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(5.21) ‖π[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij−1
ij C

qij

A ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(5.22) ‖π[qij−1]
dG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij

ij C
qij+1
A ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .

Proof. See proof of Lemma 4.8. �
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