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ESTIMATES OF DERIVATIVES AND JUMPS
ACROSS ELEMENT BOUNDARIES FOR
MULTI-ADAPTIVE GALERKIN SOLUTIONS OF ODES

ANDERS LOGG

ABSTRACT. As an important step in the a priori error analysis of the multi-adaptive
Galerkin methods mcG(g) and mdG(q), we prove estimates of derivatives and jumps across
element boundaries for the multi-adaptive discrete solutions. The proof is by induction
and is based on a new representation formula for the solutions.

1. INTRODUCTION

In [3], we proved special interpolation estimates as a preparation for the derivation of
a priori error estimates for the multi-adaptive Galerkin methods mcG(q) and mdG(q),
presented earlier in [1, 2]. As further preparation, we here derive estimates for derivatives,
and jumps in function value and derivatives for the multi-adaptive solutions.

We first derive estimates for the general non-linear problem,

u(t) = f(u(t)vt>a te (07T]>
(1.1) u(0) = up,

where u : [0, 7] — RY is the solution to be computed, ug € RY a given initial condition,
T > 0 a given final time, and f : RY x (0,7] — RY a given function that is Lipschitz-
continuous in v and bounded. We also derive estimates for the linear problem,

a(t) + A)u(t) =0, te(0,T],

(1.2) u(0) = o,

with A(t) a bounded N x N-matrix.

Furthermore, we prove the corresponding estimates for the discrete dual solution P,
corresponding to (1.1) or (1.2). For the non-linear problem (1.1), the discrete dual solution
® is defined as a Galerkin solution of the continuous linearized dual problem

—o(t) = T (mu, U, )p(t) + g(1), ¢ €[0,7T),
o(T) = ¢,
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2 ANDERS LOGG

with given data g : [0,T) — RY and ¢ € RV, where

(1.4) T (7, U, 1) (/ L (smut) + (1 - U (1) t)ds)T

is the transpose of the Jacobian of the right-hand side f, evaluated at an appropriate mean
value of the approximate Galerkin solution U of (1.1) and an interpolant wu of the exact
solution u. We will use the notation

(15) f*(¢a) = JT(/]Tua U7)¢+g7
to write the dual problem (1.3) in the form

—o(t) = f*(6(t), 1), t€[0,T),

O(T) = 1.

We remind the reader that the discrete dual solution ® is a Galerkin approximation, given
by the mcG(q)* or mdG(q)* method defined in [4], of the exact solution ¢ of (1.3), and
refer to [4] for the exact definition.

For the linear problem (1.2), the discrete dual solution ® is defined as a Galerkin solution
of the continuous dual problem

—o(t) + AT()o(t) =g, te[0,T),
o(T) = 4,

or —¢(t) = f*(¢(t),t), with the notation f*(¢,-) = —AT¢ + g.

(1.6)

(1.7)

1.1. Notation. For a detailed description of the multi-adaptive Galerkin methods, we
refer the reader to [1, 2, 6, 4, 5]. In particular, we refer to [1] or [4] for the exact definition
of the methods.

The following notation is used throughout this paper: FEach component U;(t), i =
1,..., N, of the approximate m(c/d)G(q) solution U(t) of (1.1) is a piecewise polyno-
mial on a partition of (0,7] into M; subintervals. Subinterval j for component i is de-
noted by I;; = (t;j_1,t;;], and the length of the subinterval is given by the local time
step k;j = ti; — t; j—1. This is illustrated in Flgure 1. On each subinterval I, Ui|z,; is a
polynomial of degree ¢;; and we refer to (1;;, Ui|1,;) as an element.

Furthermore, we shall assume that the interval (0, T is partitioned into blocks between
certain synchronized time levels 0 = Ty < T7 < ... < Ty = T. We refer to the set of
intervals 7,, between two synchronized time levels T,,_; and T,, as a time slab:

T =AL; :Thoq <tij_1 <ty <T,}.

We denote the length of a time slab by K,, =T, —T,,_;. For a given local interval I,;, we
denote the time slab 7', for which I;; € 7, by 7 (4, j).

Since different components use different time steps, a local interval I;; may contain nodal
points for other components, that is, some ¢;;; € (¢;;_1,t;;). We denote the set of such
internal nodes on each local interval I;; by Mj.
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FIGURE 1. Individual partitions of the interval (0,7] for different compo-
nents. Elements between common synchronized time levels are organized in
time slabs. In this example, we have N = 6 and M = 4.

1.2. Outline of the paper. In Section 2, we show that the multi-adaptive Galerkin
solutions (including discrete dual solutions) can be expressed as certain interpolants. It is
known before [1] that the mcG(q) solution of (1.1) satisfies the relation
tij
0
with a similar relation for the mdG(gq) solution, but this does not hold with ¢;; replaced by
an arbitrary ¢ € [0,T]. However, we prove that

(19) 00 =l [+ [ 506, 985] 0,

for all ¢ € [0,T], with 7r£‘é a special interpolant. This new way of expressing the multi-
adaptive Galerkin solutions is a powerful tool and it is used extensively throughout the
remainder of the paper.

In Section 3, we prove a chain rule for higher-order derivatives, which we use in Section
4, together with the representations of Section 2, to prove the desired estimates for the
non-linear problem (1.1) by induction. Finally, in Section 5, we prove the corresponding
estimates for linear problems.

2. A REPRESENTATION FORMULA FOR THE SOLUTIONS

The proof of estimates for derivatives and jumps of the multi-adaptive Galerkin solutions
is based on expressing the solutions as certain interpolants. These representations are
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obtained as follows. Let U be the mcG(g) or mdG(g) solution of (1.1) and define for
i=1,....N,

(2.1) Us(t) = u;(0) + /t fi(U(s

Similarly, for ® the meG(q)* or mdG(q)* solution of (1.6), we define fori =1,..., N,

(2:2) — it / f (@

Wenotethatf]:f( U,-) and P = (@,

It now turns out that U can be expressed as an interpolant of U. Similarly, ® can be
expressed as an interpolant of ®. We derive these representations in Theorem 2.1 below

for the mcG(gq) and mcG(g)* methods, and in Theorem 2.2 for the mdG(q) and mdG(q)*

methods. We remind the reader about the special interpolants WE%};, WE%};*, Wc[lqé, and Wc[lqé*,

defined in [3].

Theorem 2.1. The mcG(q) solution U of (1.1) can expressed in the form
(2.3) U=ndp.

Similarly, the mcG(q)* solution ® of (1.6) can be expressed in the form
(2.4) o =740,

that is, U; = 7r£(gj](7i and ®; = W‘Egjji)i on each local interval I;.

Proof. To prove (2.3), we note that if U is the mcG(q) solution of (1.1), then on each local
interval I;;, we have

i
/Uvmdt /fZ N dt, m=0,...,q; —1,
I

with v, (t) = ((t — t;;_1)/ki;)™. On the other hand, by the definition of U, we have

/Uvmdt /fZ Vo dt, m=0,...,q; — 1.
I;

Integrating by parts and subtracting, we obtain

_ [(UZ- . Ui)vm] Z_ + /1

ij

<U U)vmdt—o

and thUS, since Ui(ti,j—l) — Ui(ti7]’_1) = Uz(tw) — Uz(tm) = 0,
I

By the definition of the meG(g)-interpolant 7r£‘é, it now follows that U; = ﬂ([;qéj]ﬁi on I;;.
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To prove (2.4), we note that with ® the mcG(q)* solution of (1.6), we have

(2.5) +ZZ/ Byiss dt — /(f*((I),-),v)dt,

=1 j5=1

for all continuous test functions v of order ¢ = {¢;;} vanishing at ¢ = 0. On the other
hand, by the definition of ®, it follows that

—/ (I)Uzdt /f v dt.

Integrating by parts, we obtain

- tij
_ [@ivl} n / b, 0, dt = / FH(®, Yo, dt,
tij—1 I
and thus
M; T
(2.6) +ZZ/ &0, dt = /(f*(@,.),v)dt,
=1 j5=1 Ii; 0

since v(0) = 0 and both ® and v are continuous. Subtracting (2.5) and (2.6), it now follows
that

’L

ZZ/ (B; — ®;)0; dt = 0,

i=1 j=1

for all test functions v. We now take ©; = 0 except on I;;, and ©,, = 0 for n # ¢, to obtain

Iij
and so &; = Plaii—1p, = ﬂ([:qéi]ci)i on I;;. O
Theorem 2.2. The mdG(q) solution U of (1.1) can expressed in the form
(2.7) U=rdU.
Similarly, the mdG(q)* solution ® of (1.6) can be expressed in the form
(2.8) o = 1d,
that s, U; = ﬂé(]éj]ﬁi and ®; = wgqgﬂ i)Z on each local interval I;;.

Proof. To prove (2.7), we note that if U is the mdG(q) solution of (1.1), then on each local

interval I;;, we have
/ Usvy, dt = / [iU, Yo dt, m=1,...,qj,
I;;
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with vy, (t) = ((t — ti;_1)/ki;)™. On the other hand, by the definition of U, we have

/ U’Umdt / fz 'Umdt mzl,,qw
I;

Integrating by parts and subtracting, we obtain
Iij

and thus, since Uj(t;;) = ﬁi(tij)>

/I__ <UZ-—UZ-> i dt = 0.

)

By the definition of the mdG(q)-interpolant ﬂéqé, it now follows that U; = quéj U; on L.
The representation (2.8) of the dual solution follows directly, since the mdG(g)* method
is identical to the mdG(q) method with time reversed. O

Remark 2.1. The representations of the multi-adaptive Galerkin solutions as certain in-
terpolants are presented here for the general non-linear problem (1.1), but apply also to the
linear problem (1.2).

3. A CHAIN RULE FOR HIGHER-ORDER DERIVATIVES

To estimate higher-order derivatives, we face the problem of taking higher-order deriva-
tives of f(U(t),t) with respect to t. In this section, we derive a generalized version of the
chain rule for higher-order derivatives. We also prove a basic estimate for the jump in a
composite function.

Lemma 3.1. (Chain rule) Let v : RY — R be p > 0 times differentiable in all its variables,
and let x : R — RY be p times differentiable, so that

(3.1) voxr:R—R

1s p times differentiable. Furthermore, let D"v denote the nth order tensor defined by

N N n
Dnvwl"‘wnZE E wzllw:”’
. ale. . n

_ Zn

forwt,...,w™ € RN. Then,

(3.2) U o) Z D™y(z) Z C ,nl,...,nnx(nl) ()

N1 yeeyNn,

where for each n the sum 18 taken over ny + ...+ n, =p withn; > 1.

N1yeeeyNp
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Proof. Repeated use of the chain rule and Leibniz rule gives

d*(vox) ! P ey @) @
T = dtp_le(x) = T [D*v(z)zM ™M) + Do(x)z'?]
ar=3
= [D?’v(a:)x(l)x(l)x(l) + D*(z)a@zW 4+ .+ Dv(x)m(?’)]
P
= YD) Y Cppp @™ ),
n=1 ML yeeny Nn
where for each n the sum is taken over n; + ...+ n, = p with n; > 1. O

To estimate the jump in function value and derivatives for the composite function v oz,
we will need the following lemma.

Lemma 3.2. With [A] = AT — A=, (A) = (AT + A7)/2 and |A| = max(|AT],|A7]), we

have

(3.3) [AB] = [A|(B) + (A)[B],

and

(3.4) [[A1As- - Ay]| < Z |[Adl] L] Aql.

Proof. The proof of (3.3) is straightforward:
[A[(B) + (A)[B] = (A" —-A")(B"+B7)/2+(A"+A")(B"—B")/2
ATBT — A"B~ = [AB].
It now follows that

[Aids - Al = [[A(Ae- A) 1| = [[AN(As - A ) + (A)[ Az~ A,])

< ([AL Al - J AR+ A ([Az - Ad) < YA Tzl Ayl
i=1

O

Using Lemma 3.1 and 3.2, we now prove basic estimates of derivatives and jumps for the
composite function vox. We will use the following notation: For n > 0, let ||D™v||.__ (=)
be defined by

(3.5)  D"w' - w" @ S ID"0| @il i - 0" i V', w™ € RY,
with || D™ 1 (k1) = [|v]|Lo®) for n =0, and define

(3.6) lollpr@y = max [|D"0]| o min)-

.....
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Lemma 3.3. Let v : RV — R be p > 0 times differentiable in all its variables, let x : R —
RY be p times differentiable, and let C, > 0 be a constant, such that ”x(n)HLw(RJw) <Cr,
form=1,...,p. Then, there is a constant C = C(p) > 0, such that

dP(vox)

(3.7) —

S O”UHDP(R)Cg.
Loo (R)

Proof. We first note that for p = 0, (3.7) follows directly by the definition of ||v|| prr). For
p > 0, we obtain by Lemma 3.1,

p

— §CZ , |D v(x)z™) .. gl )‘ < Cl|v|| pr@)CYE.

O

Lemma 3.4. Let v : RY — R be p+ 1 > 1 times differentiable in all its variables, let
z : R — RY be p times differentiable, except possibly at some t € R, and let Cy > 0
be a constant, such that ||z &) < C" forn = 1,...,p. Then, there is a constant

C =C(p) >0, such that

w )

p
< Cllvllprrie Y C2 ™ 1™
n=0

Proof. We first note that for p = 0, we have
‘ {dp (vo x)}
t

o =l(wo )]l = o(=(t")) — v(@(t))| < 1Dv] @i Nl

and so (3.8) holds for p = 0. For p > 0, we obtain by Lemma 3.1 and Lemma 3.2,

H%USCXP: Z |[Dmu(w) ) - ] |

p

< Clollprae > 212l -

n=0

4. ESTIMATES OF DERIVATIVES AND JUMPS FOR THE NON-LINEAR PROBLEM

We now derive estimates of derivatives and jumps for the multi-adaptive solutions of the
general non-linear problem (1.1). To obtain the estimates for the multi-adaptive solutions
U and @, we first derive estimates for the functions U and @ defined in Section 2. These
estimates are then used to derive estimates for U and ®.
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4.1. Assumptions. We make the following basic assumptions: Given a time slab 7, as-
sume that for each pair of local intervals /;; and I,,,, within the time slab, we have

(A1) %ij = qmn = G,

and

(A2) kij > o kyp,

for some ¢ > 0 and some a € (0,1). We also assume that the problem (1.1) is autonomous,
(A3) %ﬁi:o, i=1,...,N.

Note that dual problem is in general non-autonomous. Furthermore, assume that

(A4) | fillpari(ry < o0, i=1,...,N,

and take || f|lzr > max;—1,_ | fil| pa+1(7), such that

.....

(4.5) la? /dt?(0f /o) " (z(#)) e < I fII7CE,
forp=0,...,q, and

(4.6) @7 /dt"(@f /9u) T (2 ()]illie < £l Y C2 ™ 12l

forp=0,...,g—1, with the notation of Lemma 3.3 and Lemma 3.4. Note that assumption
(A4) implies that each f; is bounded by || f||7. We further assume that there is a constant
¢ > 0, such that

(A5) kil fllr < e,

for each local interval /;;. We summarize the list of assumptions as follows:
(A1) the local orders ¢;; are equal within each time slab;
(A2) the local time steps k;; are semi-uniform within each time slab;
(A3) f is autonomous;

(A4) f and its derivatives are bounded;
(A5) the local time steps k;; are small.

4.2. Estimates for U. To simplify the estimates, we introduce the following notation:
For given p > 0, let Cy,, > || f||7 be a constant, such that

(4.8) Uiy € CFp n=1,...,p.

For p = 0, we define Cyo = || f|lz- Temporarily, we will assume that there is a constant
¢, > 0, such that for each p,

(A5/) kz’jCU,p S C;g.

This assumption will be removed below in Theorem 4.1. In the following lemma, we use
assumptions (Al), (A3), and (A4) to derive estimates for U in terms of Cy;, and || f||7.
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Lemma 4.1. (Derivative and jump estimates for U) Let U be the mcG(q) or mdG(q)
solution of (1.1) and define U as in (2.1). If assumptions (A1), (A3), and (A4) hold, then
there is a constant C' = C(q) > 0, such that

(4.10) 10|z SCCE L1, p=1,...,0+1,

and
p—1

(4.11) TP, e <CYCE MU, ey, p=1,...,0+ 1,
n=0

for each local interval I;;, where t; ;_1 is an internal node of the time slab 7T .

Proof. By definition, Ui(p ) = g;__ll fi(U), and so the results follow directly by Lemma 3.3

and Lemma 3.4, noting that || f|r < Cyp-1. O

By Lemma 4.1, we now obtain the following estimate for the size of the jump in function
value and derivatives for U.

Lemma 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q) solution of (1.1).
If assumptions (A1)—(Ab) and (A5') hold, then there is a constant C' = C(q, ¢k, ¢, ) > 0,
such that

(4.12) |[U®)], < CEFPCRY, p=0,...r+1, r=0,...,7

ii—1 ||loo

for each local interval I;;, where t; ;_1 is an internal node of the time slab 7T .

Proof. The proof is by induction. We first note that at ¢t = ¢; ;_1, we have

[Ui(p)]t _ <Ui(p) (tt) — Ui(P) (t+)) + <(ji(l>) (tt) — Ui(P) (t_)) + (ﬁi(l’) t) - Ui(P) (t_))
= ey tete_.
By Theorem 2.1 (or Theorem 2.2), U is an interpolant of U and so, by Theorem 5.2 in [3],
we have
les] < CRPNO D by +C Y Z kKPPIOM],
zeN;; m=1

forp=0,...,r+1and r = 0,...,q. Note that the second sum starts at m = 1 rather
than at m = 0, since U is continuous. Similarly, we have

le-| < ORI N0 ey +C Y Zkfﬁ’i i

zEN; j—1 m=1

To estimate eg, we note that eg = 0 for p = 0, since U is continuous. For p=1,....,q+1,
Lemma 4.1 gives
p—1
leol = [T < €Y G Ui

n=0
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Using assumption (A2), and the estimates for e, ey, and e_, we obtain for » = 0 and
p=0,

U] < Chil|Uill ociriy) + 0 + Chij 1 |Uill oo

%,7—1

) S C(l + Oé_l)]{?ijCU’o = C]{ZijCUp.
It now follows by assumption (A5), that for r =0 and p = 1,
U] < CNUill w1,y + CCONUTtNhoe + CNUill iz ,—1) < C(1 + kijCrip) Co < CCly.

Thus, (4.12) holds for » = 0. Assume now that (4.12) holds for » = 7 — 1 > 0. Then, by
Lemma 4.1 and assumption (A5'), it follows that

7 m—1
e S CETPCR +C Y Y TR Cp U el
z€N;; m=1 n=0

< CRrCp v 0N ke kG el

v

< Ck;rept! (1 + Z(k:ijOU,,;_l)m—l—”) < CkLPept

Similarly, we obtain the estimate |e_| < C’k::fl_p C{z;l. Finally, we use Lemma 4.1 and
assumption (A5'), to obtain the estimate

p—1 p—1

_n n —n 3. (F—=1)4+1—n ~(F—1)+1

leol < O CE UM, < CY O kGO
n=0 n=0

p—1
Cki 1 PCH Y (ki Cug)? ™ < Ok PO
n=0
Summing up, we thus obtain |[[U®),] < |es| + leo] + |e—| < CkIPCyt!, and so (4.12)
follows by induction. O

By Lemma 4.1 and Lemma 4.2, we now obtain the following estimate for derivatives of
the solution U.

Theorem 4.1. (Derivative estimates for U) Let U be the mcG(q) or mdG(q) solution of
(1.1). If assumptions (A1)—(Ab) hold, then there is a constant C = C(q,cg, ) > 0, such
that

(4.13) U iz i) < CUf I, =1,
Proof. By Theorem 2.1 (or Theorem 2.2), U is an interpolant of U and so, by Theorem 5.2
in [3], we have

p—1
U 2oty = 10 PN 1ty < CNOP iy + €3 S KEIOM™ 1,

z€N;; m=1

for some constant C' = C’(g). For p = 1, we thus obtain the estimate

Uil o) < CNUill ety = CN iUl Looiryy < Cl 7
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by assumption (A4), and so (4.13) holds for p = 1.
For p = 2,...,q, assuming that (A5") holds for Cy,_1, we use Lemma 4.1, Lemma 4.2
(with r = p — 1), and assumption (A2), to obtain

10 et < CClYpy +C Y Zk‘ ZC%’HH Nalli

zeN;; m=1
<CCH, ,+CY kyrey ke T
<cch, (1 + Z(kijCU,m—l>m_n> < CCppy

where C' = C(q, ¢, ¢}, ). This holds for all components ¢ and all local intervals ;; within
the time slab 7", and so

||U(p) HLOO(T,ZOO) S 0057p_17 P = 17 cee 7(17

where by definition Cyp_y is a constant, such that [|[U™ ||, (7. < Cp,_q for n =
1,...,p—1. Starting at p = 1, we now define Cy; = C||f]|r with C; = C" = C'(g).
It then follows that (A5") holds for Cy; with ¢f, = C’¢y,, and thus

[0 7ty < CCF 5y = CCRy = Call 15

where Cy = C5(q, cx, &). We may thus define Cp o = max(Ch|| f|7, VC2|| f|l7). Continuing,
we note that (A5') holds for Cy o, and thus

[0 Nz iy < CC5 1 = CC, = Cill I,

where C5 = C5(q, cx, ). In this way, we obtain a sequence of constants Ci,...,Cy, de-
pending only on g, ¢k, and a, such that [|[UP||;_ 7.y < Gyl f|I5 for p=1,...,q, and so
(4.13) follows if we take C' = max;—y,._ 4 Ci. O

Having now removed the additional assumption (A5’), we obtain the following version
of Lemma 4.2.

Theorem 4.2. (Jump estimates for U) Let U be the meG(q) or mdG(q) solution of (1.1).
If assumptions (A1)—(Ab) hold, then there is a constant C = C(q, cg, ) > 0, such that

(4.14) [leag® < CKPIAIEY, p=0...q,

for each local interval I;;, where t; ;_1 is an internal node of the time slab 7T .

.....

1] lHloo —

4.3. Estimates for ®. To obtain estimates corresponding to those of Theorem 4.1 and
Theorem 4.2 for the discrete dual solution ®, we need to consider the fact that f* =
f*(¢,+) = JT ¢ is linear and non-autonomous. To simplify the estimates, we introduce the
following notation: For given p > 0, let Cs, > || f||7 be a constant, such that

(4.15) 127 te) < Copll @l (T i)y 7 =0,n,p.
Temporarily, we will assume that for each p there is a constant ¢} > 0, such that
(A5”) kz’jC@,p S CZ.
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This assumption will be removed below in Theorem 4.3. Now, to obtain estimates for ®,
we first need to derive estimates of derivatives and jumps for J.

Lemma 4.3. Let U be the mcG(q) or mdG(q) solution of (1.1), and let wu be an inter-
polant, of order q, of the ezxact solution w of (1.1). If assumptions (A1)—(A5) hold, then
there is a constant C' = C(q, ¢k, ) > 0, such that

dPJ T (mu, U _
(117) | D) <ClflEt. p=0....q
Loo(T,lo)
and
&I (ru, U !
(4.18) ‘ {%} < CHPPIFIS?, p—0,...q— 1,
tij—1 17

for each local interval I;;, where t; ;_1 is an internal node of the time slab 7T .

Proof. Since f is autonomous by assumption (A3), we have

tof

J(ru(t), U(t)) = /O g—i(swu(t)%—(l—s)U(t))dS— (1)) ds,

0

with ,(t) = smu(t) + (1 — s)U(t). Noting that [[u™ )|, < C|If||% by (1.1), it follows
by Theorem 4.1 and an interpolation estimate, that ng") Ol < CllfII%, and so (4.17)
follows by assumption (A4).

At t =t, ;_1, we obtain, by Theorem 4.2 and an interpolation estimate,

31l < s [[(ru) ™l + (1= ) [UST] < [[rus) @)+ 1[0
< [(mug) ™ () = u™ @) + [l () = (wu) W ¢+ CRE A1
< CRE M 1™ ey + CRI ™ V) + CRE 1S
< CEL A8,
where we have also used assumption (A2). With similar estimates for other components

which are discontinuous at ¢ = t; ;_1, the estimate (4.18) now follows by assumptions (A4)
and (A5). O

Using these estimates for .J T we now derive estimates for ®, corresponding to the
estimates for U in Lemma 4.1.

Lemma 4.4. (Derivative and jump estimates for ®) Let & be the meG(qg)* or mdG(q)*
solution of (1.3) with g = 0, and define ® as in (2.2). If assumptions (Al)—(A5) and
(A5") hold, then there is a constant C' = C(q, cg, ¢}, a) > 0, such that

(4.19) 1P L7y S CCh @l Loz P=1,...,0+1,
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and
(4.20)
p—1
18P, e < R PIAIG @] iy + C S ANy e P =1, 4
n=0
for each local interval I;;, where t;; is an internal node of the time slab T .
Proof. By definition, ® = — f*(®, ) = —J(xu, U)T®. It follows that
- qr—1 p—l p—1 qp—1-n
P = — _JTP = — JT ) et
and so, by Lemma 4.3,
p—1
1O )l < CD AT Co i 1PN cr i) < CCh || c(7 100,
n=0

for 0 <p—1<g. To estimate the jump at t = ¢;;, we use Lemma 3.2, Lemma 4.3, and
assumption (A5”), to obtain

P~ p—1—n
~(10 (n)
o e8] [( &) o]
p—1
g+1—(p—1—n q- n —-n n
<Y (KT NAIS O | ey + 1A )
n=0
p—1
< Ckj™ pllfll"“Z’f Co 1Pl Lz i) + C Y MA@ )il
n=0
p—1
< ORI AIF NP et + C D 1A 1@ e
n=0
for0<p—-1<qg-—1. O

Our next task is to estimate the jump in the discrete dual solution ® itself, corresponding
to Lemma 4.2.

Lemma 4.5. (Jump estimates for ®) Let ® be the mcG(q)* or mdG(q)* solution of (1.3)
with g = 0. If assumptions (A1)—(Ab) and (Ab5”) hold, then there is a constant C' =
C(q, ek, ¢}, ) > 0, such that

(4.21) I[@P];, e < CELPCH M@l L)y P=0,...,7+1,

with r =0,...,q— 1 for the mcG(q) method and r =0, ...,q for the mdG(q) method, for
each local interval 1;;, where t;; is an internal node of the time slab T .
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Proof. The proof is by induction. We first note that at ¢t = ¢;;, we have

@P) = (eP () = eV (t1)) + (8P (1) — &P (1)) + (&P (1) — 2P (17))

ey +eg+e_.

By Theorem 2.1 (or Theorem 2.2), ® is an interpolant of ®; if ® is the mcG(g)* solution,

then ®; is the W£qéj;]—interpolant of ®; on I;;, and if @ is the mdG(q)* solution, then ®; is

the Wéqgj—interpolant of ®;. It follows that

le—| < CR PR oy +C Y ka P[], p=0,...,r+1,

zeN;; m=1

where r = 0,...,q — 1 for the meG(q)* solution and r = 0,..., g for the mdG(q)*solution.
Similarly, we have

r r+1) m (m)
|€+|§Ck:z—]’_—il-1p"(b(+ ||Loo(113+1 +C Z ka+pl p:O,...,r+1.

2€N; j41 m=1

To estimate ey, we note that e = 0 for p = 0, since ® is continuous. For p = 1,...,q,
Lemma 4.4 gives

p—1

(422) ol = [P} < CREZ P ANF2I@) iz iy + C S NAIE )]

Using assumption (A2), and the estimates for e, ey, and e_, we obtain for r = 0 and
p=0,

@] < Chijit|Pill owriyen) + 0+ Chisg| 4] 1oc) < Cla™ + DkijCo0l| || 1o (700
= COkijCo 0l|P|| Loo (T 100)-

For r = 0 and p = 1, it follows by (4.22), noting that kq+2 "% < ) fllr = CCgpp, and
assumption (A2), that leo] < CCop||P|Loc(Tin) + C’||f|]7||[ Jellie < CCo0||P||Loc(7 10>
and so,

@] < Cl®illecitsn) + CCo0I PN (i) + CllPill (i) < CCo0||1 2|1 (7100
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Thus, (4.21) holds for r = 0. Assume now that (4.21) holds for r = 7 —1 > 0. Then, by
Lemma 4.4 and assumption (A5), it follows that

le-| < Ck PO I L riny

m—1
+C Y Z Ky (k%-* 2 P2 iy + Y r\f|1?-"||[<1><”>]t||lw)
n=0

zeN;; m=1

< ORGP O] it

+ O (KPP IAT NN iy + Y Ik OO @l 7))
< Ok PO @l (7000

F O (RPN + 3SR A O ) 1@
< Ck PO | o (7000 -

Similarly, we obtain the estimate
les] < Ok PO L7 ).

Again using the assumption that (4.21) holds for r = 7 — 1, we obtain

p—1
leo] < CEE I FIF 2D by +C S ARG DO 0D 1o (70
J

n=0

p—1

< Ckr-i—l pCr—i-l Nl ot (1 4 Z(kinfHT)p_l—n)
n=0

< Ck:’”*l pCT+1 NPl Lo Tin) < Ck&l_pcﬂ-lH‘I)HLoo(TJoo)‘

We thus have |[®)],]| < |e, |+ |eo| + |e_| < C’k’dr]L POGEN®N| Lo (7 100> and so (4.21) follows
by induction. O

Next, we prove an estimate for the derivatives of the discrete dual solution ®, corre-
sponding to Theorem 4.1.

Theorem 4.3. (Derivative estimates for ®) Let ® be the mcG(q)* or mdG(q)* solution of
(1.3) with g = 0. If assumptions (A1)—(Ab) hold, then there is a constant C' = C(q, ¢k, o) >
0, such that

(4.23) 189 1eir ) < CLFN® Ly P =0....0

Proof. By Theorem 2.1 (or Theorem 2.2), ® is an interpolant of ®, and so, by Theorem
5.2 in [3], we have

19|21y = 17 P 1oy < CNOP L ry +C" D ka P[0 1.,

z€N;; m=1
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for some constant C' = C’(q) > 0. For p = 1, we thus obtain the estimate

1Dill 1o rs) < CNPilleiryy = C N (@ bty = CNIT T @l priy) < CNFITN®N L7100

by assumption (A4), and so (4.23) holds for p = 1.
For p = 2,...,q, assuming that (A5”) holds for Cs,_1, we use Lemma 4.4, Lemma 4.5
(with r = p — 1) and assumption (A2), to obtain

1911y < CC 1Bl 17 i)

p—1 m—1
+C Y Y kG (k?f ) AIE2 R iy + Y Hfl|?‘”!|[<1>(”)]xl|zoo>

zEN;; m=1 n=0

m— m—n 1 1—n 1 1
<CC% 10l 1(ri) +C Y KPRV CE DD L 7 )

< OC% 19l 7y + COp i@l ieiriy Y (Rigll Fll2)™ "
S ch,p—1||¢||Loo(Tvloo)7
where we have used the fact that kg?_pkg;ﬂ_mﬂfﬂqﬂ = I f 5 (Rl fll )77 < OCy 4,

and where C' = C(q, ¢, ¢, a). Continuing now in the same way as in the proof of
Theorem 4.1, we obtain

H(D(p)HLOO(T,lOO) < CH.ng'H(I)”Loo(T,loo)a b= 17 s 4,
for C' = C(q, ¢k, ), which (trivially) holds also when p = 0. O

oo

Having now removed the additional assumption (A5”), we obtain the following version
of Lemma 4.5.

Theorem 4.4. (Jump estimates for ®) Let ® be the mcG(q)* or mdG(q)* solution of (1.3)
with g = 0. If assumptions (A1)—(Ab) hold, then there is a constant C' = C(q, cx, ) > 0,
such that

(4.24) Pl < CEEPIAITN®N c(rianyy P =000 a— 1,
for the mcG(q)* solution, and
(4.25) @@l < CREPIAIT @l (7). P =0,

for the mdG(q)* solution. This holds for each local interval I;;, where t;; is an internal
node of the time slab T .

4.4. A special interpolation estimate. In the derivation of a priori error estimates, we
face the problem of estimating the interpolation error my; —¢; on a local interval [;;, where
; is defined by

(4.26) 0i = (J (mu, u) Z‘]“ mu,u)®, i=1,...,N.

We note that ; may be discontinuous Wlthln I;;, if other components have nodes within
I;;, see Figure 2, since then some ®; (or some J;;) may be discontinuous within 7;;. To
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- —
| |
| |
i
D, (t)
| |
| |
bij—1 L lij

FIGURE 2. If some other component [ # ¢ has a node within I;;, then @,
may be discontinuous within /;;, causing ¢; to be discontinuous within ;.

estimate the interpolation error, we thus need to estimate derivatives and jumps of ¢,
which requires estimates for both J;; and &;.

In Lemma 4.3 we have already proved an estimate for J' when f is linearized around
mu and U, rather than around 7u and u as in (4.26). Replacing U by u, we obtain the
following estimate for J .

Lemma 4.6. Let wu be an interpolant, of order G, of the exact solution u of (1.1). If
assumptions (A1)—(A5) hold, then there is a constant C' = C(q, cx, ) > 0, such that

d?J 7 (mu, u _
(1.27) |~ <CIfIE", p=0..00
Loo(T \loo)
and
arJT 1 5
(1.29 ) <o p=oa-t,
tij—1 loo

for each local interval I;;, where t; j_1 is an internal node of the time slab T .
Proof. See proof of Lemma 4.3. O

From Lemma 4.6 and the estimates for ® derived in the previous section, we now obtain
the following estimates for (.

Lemma 4.7. (Estimates for ) Let ¢ be defined as in (4.26). If assumptions (Al)—(A5)
hold, then there is a constant C = C(q, ¢k, ) > 0, such that

(4.29) PN oty < CUAIE RN bz i)y P =0,y iy
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and

(4.30) lePa] < CEEZIAF Ol iy Y2 ENyG, p=0,... 05— 1,

with r;; = q;; for the mcG(q) method and r;; = g;; + 1 for the mdG(q) method. This holds
for each local interval I;; within the time slab T .
Proof. Differentiating, we have ¢® = 37 (r )%@”

D= D o , and so, by Theorem 4.3
and Lemma 4.6, we obtain

P
n)+1
16| £eoir) < CZIIfH(” AR i) = C D NAE R o)

n=0
= CIIfH’%HH‘PIILOO(T,zOO»

To estimate the jump in goﬁp)

4.6, to obtain

, we use Lemma 3.2, Theorem 4.3, Theorem 4.4, and Lemma

Z dar- ”JT(I)(n) ar- ”JT
n) dtr—n dtp—n N

n=0
11— ij+2 i
<OZ aut =) g gt ||f||7+|!f||(p LT f
P

i1 n _
PN o) D ki F )™ + kil )

n=0

ij+1
STNP| fon (7100

[P, =

NP £ (7100

< Cki’ "llf

< Ckiy IS

for the mcG(g) method. For the mdG(g) method, we obtain one extra power of k;;| f]|7.
0J

Using the interpolation estimates of [3], together with Lemma 4.7, we now obtain the
following important interpolation estimates for ¢.

Lemma 4.8. (Interpolation estimates for @) Let ¢ be defined as in (4.26). If assumptions
(A1)—(A5) hold, then there is a constant C' = C(q, cx, ) > 0, such that

1, ij—1 1 —
(4.31) \|7qu A, — CillLay) < CETIAIFN®N (i), @ =7 > 2,
and
(4.32) =Y, — Pill Loty < CEG N S YN L ranyy @y =021,

for each local interval I;; within the time slab T .
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Proof. To prove (4.31), we use Theorem 5.2 in [3], with r = ¢;; — 2 and p = 0, together
with Lemma 4.7, to obtain

qij—

; ii—2)+1 'L'_2 +1
H/]qu }907, - (piHLoo(Iij) < Ckf;lj : || (qj H Loo(1i5) + ¢ Z Z

z€N;; m=0

qij—
Q| ez +C D Z G (Vi [-a

z€N;; m=0

4ij
(I)HLOO(T,loo) + Ckijj f

qij

< ORI £

PNl Lo (7 100)

= Ckf IS 115 PN Lz ) < ORI

The estimate for Wéqg_l} ©; — ; is obtained similarly. O

5. ESTIMATES OF DERIVATIVES AND JUMPS FOR LINEAR PROBLEMS

We now derive estimates for derivatives and jumps for the multi-adaptive solutions of
the linear problem (1.2). Assuming that the problem is linear, but non-autonomous, the
estimates are obtained in a slightly different way compared to the estimates of the previous
section.

5.1. Assumptions. We make the following basic assumptions: Given a time slab 7, as-
sume that for each pair of local intervals I;; and I,,,, within the time slab, we have

and
(B2> kij > o kmm

for some ¢ > 0 and some « € (0,1). Furthermore, assume that A has ¢ — 1 continuous
derivatives and let C'y > 0 be constant, such that

(B3) max (A |z 1) AT Leiz00)) <CH, p=0,...,4,
for all time slabs 7. We further assume that there is a constant ¢, > 0, such that

(B4) kijCa < ck.

We summarize the list of assumptions as follows:

(B1) the local orders ¢;; are equal within each time slab;

(B2) the local time steps k;; are semi-uniform within each time slab;
(B3) A and its derivatives are bounded;

(B4) the local time steps k;; are small.
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5.2. Estimates for U and ®. To simplify the estimates, we introduce the following
notation: For given p > 0, let Cy;,, > C4 be a constant, such that

For p = 0, we define Cyy = C4. Temporarily, we will assume that there is a constant
¢, > 0, such that for each p,

(B4/) k’ijOU,p S C;g.

This assumption will be removed below in Theorem 5.1. We similarly define the constant
Cop, with k;;Cs, < ). In the following lemma, we use assumptions (B1) and (B3) to
derive estimates for U and .

Lemma 5.1. (Estimates for U and ®) Let U be the mcG(q) or mdG(q) solution of (1.2)
and define U as in (2.1). If assumptions (B1) and (B3) hold, then there is a constant
C =C(q) >0, such that

and
p—1

(5.8) Oyl < CY - CEIU iyl =1010000
n=0

Similarly, for ® the mcG(q)* or mdG(q)* solution of (1.7) with g = 0, and with ® defined
as in (2.2), we obtain

(5.9) 1P L7y S CCh @l Loz P=1,...,0+1,
and

p—1
(5.10) [Py, lhe < CYCHMEM ) lls P=1,....7.

n=0

Proof. By (2.1), it follows that U= —~AU, and so U®) = 3P| (7N A== UM Tt now
follows by assumptions (B1) and (B3), that

p—1
1T 100y < CZ CL " Clp UL (7 100) £ CCF, 11U Lo (T 100) -
n=0
Similarly, we obtain ||[U(p)]ti7]._1]|lm <O O U™,, .. The corresponding
estimates for @ follow similarly. O

By Lemma 5.1, we now obtain the following estimate for the size of the jump in function
value and derivatives for U and ®.
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Lemma 5.2. (Jump estimates for U and ®) Let U be the mcG(q) or mdG(q) solution of
(1.2), and let ® be the corresponding mcG(q)* or mdG(q)* solution of (1.7) with g =0. If
assumptions (B1)—(B4) and (B4') hold, then there is a constant C' = C(q, ¢y, ¢, ) > 0,
such that

(5.11)  [[[U)],
and
(5.12) I[@P];, e < CEPCH M@l L)y P=0,...,7+1,

with r =0,...,4— 1 for the mcG(q)* solution and r =0,...,q for the mdG(q)* solution,
for each local interval I;j, where t; ;_1 and t;;, respectively, are internal nodes of the time
slab T .

< Ck:j_’_l_pc{q]:‘;lHU”LOO(T,IOO)? b= 07"'7T+17 r= 07"'7q_7

ii—1 Hloo

Proof. The proof is by induction and follows those of Lemma 4.2 and Lemma 4.5. We first
note that at ¢t = ¢; ;_1, we have

[Ui(p)]t _ (Ui(p) (t+) _ Ui(p) (t—ir)) + (@(p) (t+) _ @(p) (t_)> + (@(p) (t_) B Ui(p) (t_)>
= ey te+e_.
Now, U is an interpolant of U and so, by Theorem 5.2 in [3], it follows that
les| < CRE N0 iy +C Y Zkzm PIO™],
zeN;; m=1

forp=0,...,r+1and r =0,...,¢. Note that the second sum starts at m = 1 rather
than at m = 0, since U is continuous. Similarly, we have

le-| < ORI I0T iy +C Y Zkfﬁpl o

z€N; j—1 m=1
To estimate ey, we note that eq = 0 for p = 0, since U is continuous. For p = 1,...,q,
Lemma 5.1 gives
p—1
el = 1T < €D CH U
n=0

Using assumption (B2), and the estimates for ey, ey, and e_, we obtain for r = 0 and
p=0,

U < Chijl|Uill o1y + 0+ Chig iUl paer; 1) < C(1+ @ ki Cuo| Ul pas7100)
= CkijCuollU|| Loe(7 1) -
It now follows by assumption (B4), that for r =0 and p =1,

0] < OOy + CCAT i + Cl0l |z
< COplUL i

) < C(1+ kijOU,O)OU,OHUHLoo(T’lOO)

131
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Thus, (5.11) holds for » = 0. Assume now that (5.11) holds for r = # — 1 > 0. Then, by
Lemma 5.1 and assumption (B4’), it follows that

m—1
les| < CRGPPCHEMNU N Legany +C ) Z’f ZCZ“‘”II[U(”)]tHzm

z€N;; m=1

< CRTPORENU N iy + €Y KD PCR RS VO U L (00
< CkrepH! (1 + Z(kijoy,am-l-") U7y < CELPOENUN 700

Similarly, we obtain the estimate |e_| < C’l{:r+1 POLENU Lo (T 1) Finally, we use Lemma
5.1 and (B4’), to obtain the estimate

|60| _ HU(P | < OZOP nH U(n] ||lo0 < OZOP nk,(r 1)+1— nC(r 1)+1||U”Loo(7'loo)

n=0 n=0
p—1

< CEPORENS " (kiyCuam1)” ™ U | Lo 100)
n=0

< Ck;"fl—”cg};l U e (7100 -

Summing up, we thus obtain [[U"]| < |es| + |eo] + |e_| < CkPCHMNU N b7 ), and
so (5.11) follows by induction. The estimates for ¢ follow smnlarly O

Theorem 5.1. (Derivative estimates for U and @) Let U be the mcG(q) or mdG(q) solution
of (1.2), and let ® be the corresponding mcG(q)* or mdG(q)* solution of (1.7) with g = 0.
If assumptions (B1)—~(B4) hold, then there is a constant C' = C(q, cx, ) > 0, such that

(513) HU(p)HLoo(T,loo) < OCZ"U||LOQ(T,IOO)7 P = 07 cee 7@7
and
(5.14) 12|17 1) < CCHIPN (T t), P=0,...,7.

Proof. Since U is an interpolant of U, it follows by Theorem 5.2 in [3], that
10 wtti) = M@0 ity < CNO Nty + € Y D kN0,
z€N;; m=1
for some constant C" = C’(q). For p = 1, we thus obtain the estimate
1Uill ety < C' N0 oy = C' AV )il i) < C'CallU |7 100):
and so (5.13) holds for p = 1.
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For p = 2,...,q, assuming that (B4’) holds for Cy,_1, we use Lemma 5.1, Lemma 5.2
(with r = p — 1) and assumption (B2), to obtain

p—1 m—1
U N 1oty < COhp iU by +C D> S KT O [[UM] e
z€N;; m=1 n=0

m— m—mn —1)+1—n -1 +1
< CC8y ULy + C Y RGPCR= T IO I UL 70

< OOl Ul iy (1 D (ks Ca)™ ™) < CCh WU,

where C' = C(q, cx, ¢}, ). It now follows in the same way as in the proof of Theorem 4.1,
that

||U(p)HLoo(T,loo) S CCZHUHLOO(TJOO)’ p: 17"'767
for C' = C(q, cx, ), which (trivially) holds also when p = 0. The estimate for ® follows
similarly. 0

Having now removed the additional assumption (B4’), we obtain the following version
of Lemma 5.2.

Theorem 5.2. (Jump estimates for U and ®) Let U be the mcG(q) or mdG(q) solution
of (1.2), and let ® be the corresponding mcG(q)* or mdG(q)* solution of (1.7) with g = 0.
If assumptions (B1)—(B4) hold, then there is a constant C' = C(q, cg, ) > 0, such that

(5.15) P sl < CREPCE U b7 00)s P =050, T
Furthermore, we have

(5.16) 1[2%]e,, e < CKLPOMR e (7 00ys P =0s--07,
for the mcG(q)* solution and

for the mdG(q)* solution. This holds for each local interval I;;, where t; j_1 and t;;, respec-
tively, are internal nodes of the time slab T .

5.3. A special interpolation estimate. As for the general non-linear problem, we need

to estimate the interpolation error mp; — ¢; on a local interval I;;, where ¢; is now defined
by

N
(5.18) pi=(AT®);=> Ay®, i=1,... N
=1

As noted above, ¢; may be discontinuous within [;;, if I;; contains nodes for other compo-
nents. We first prove the following estimates for (.

Lemma 5.3. (Estimates for ) Let ¢ be defined as in (5.18). If assumptions (B1)—(B4)
hold, then there is a constant C' = C(q, ¢y, ) > 0, such that

(5.19) 19PN bty < CORM® pizityy P =0,y i



ESTIMATES OF DERIVATIVES AND JUMPS 25

and
(5.20) 0] < CK PO D piriny Yo €Ny, P=0,...,q5 — 1,

with r;; = q;; for the mcG(q) method and r;; = g;; + 1 for the mdG(q) method. This holds
for each local interval I;; within the time slab T .

Proof. Differentiating ;, we have gogp) = L(AT®);, =37 (7) (AT(p_n)é(”))i and so, by
Theorem 5.1, we obtain

p
16 L) < C S CE ™ORN L7y = COYMP Lo (700
n=0

To estimate the jump in ¢

., we use Theorem 5.2, to obtain

p p
] < 03 [AT" e, < 03 e [0, .

n=0 n=0
p
<Oy CY TR ON 7 i)
n=0

P
< CEEPCES (ki Ca)? ™19 povi7 1) < CEGPCEM| o7 )
n=0
for the meG(g) method. For the mdG(g) method, we obtain one extra power of k;;Ca.
0J

Using Lemma 5.3 and the interpolation estimates from [3], we now obtain the following
interpolation estimates for .

Lemma 5.4. (Interpolation estimates for @) Let ¢ be defined as in (5.18). If assumptions
(B1)—~(B4) hold, then there is a constant C' = C(q, cg, ) > 0, such that

2 =1 i _
(5.21) 174 o — pill e ry) < CRET OGN L)y a5 =T > 2,
and

ii—1 ij i+ =
(5.22) 7 i = pillery) < CRECH O iriyy @y =72 1,

for each local interval I;; within the time slab T .

Proof. See proof of Lemma 4.8. U
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