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MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III:

EXISTENCE AND STABILITY

ANDERS LOGG

Abstract. We prove existence and stability of solutions for the multi-adaptive Galerkin
methods mcG(q) and mdG(q), and their dual versions mcG(q)∗ and mdG(q)∗, including
strong stability estimates for parabolic problems. This paper is the third in a series
devoted to multi-adaptive Galerkin methods. In the companion paper [7], we return to
the a priori error analysis of the multi-adaptive methods. The stability estimates derived
in this paper will then be essential.

1. Introduction

This is part III in a sequence of papers [4, 5] on multi-adaptive Galerkin methods,
mcG(q) and mdG(q), for approximate (numerical) solution of ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial condition,
T > 0 a given final time, and f : R

N × (0, T ] → R
N a given function that is Lipschitz-

continuous in u and bounded.
The mcG(q) and mdG(q) methods are based on piecewise polynomial approximation of

degree q on partitions in time with time steps which may vary for different components
Ui(t) of the approximate solution U(t) of (1.1). In part I and II of our series on multi-
adaptive Galerkin methods, we prove a posteriori error estimates, through which the time
steps are adaptively determined from residual feed-back and stability information, obtained
by solving a dual linearized problem. In this paper, we prove existence and stability of
discrete solutions, which we later use together with special interpolation estimates to prove
a priori error estimates for the mcG(q) and mdG(q) methods in part IV [7].

1.1. Notation. For a detailed presentation of the multi-adaptive methods, we refer to
[4, 5]. Here, we only give a quick overview of the notation: Each component Ui(t), i =
1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is a piecewise polynomial
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2 ANDERS LOGG

on a partition of (0, T ] into Mi subintervals. Subinterval j for component i is denoted
by Iij = (ti,j−1, tij], and the length of the subinterval is given by the local time step
kij = tij − ti,j−1. This is illustrated in Figure 1. On each subinterval Iij, Ui|Iij is a
polynomial of degree qij and we refer to (Iij, Ui|Iij) as an element.

Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks between
certain synchronized time levels 0 = T0 < T1 < . . . < TM = T . We refer to the set of
intervals Tn between two synchronized time levels Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.

We denote the length of a time slab by Kn = Tn − Tn−1. We also refer to the entire
collection of intervals Iij as the partition T .

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T ] for different compo-
nents. Elements between common synchronized time levels are organized in
time slabs. In this example, we have N = 6 and M = 4.

1.2. Outline of the paper. The first part of this paper is devoted to proving existence of
solutions for the multi-adaptive methods mcG(q) and mdG(q), including the dual methods
mcG(q)∗ and mdG(q)∗ obtained by interchanging trial and test spaces, by proving (rele-
vant) fixed point iterations assuming the time steps are sufficiently small. The proof is
constructive and mimics the actual implementation of the methods. The multi-adaptive
ODE-solver Tanganyika, presented in [5], thus repeats the proof of existence each time it
computes a new solution.

In the second part of this paper, we prove stability estimates, including general exponen-
tial estimates for mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗, and strong stability estimates
for parabolic problems for the mdG(q) and mdG(q)∗ methods.
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2. Multi-adaptive Galerkin and multi-adaptive dual Galerkin

2.1. Multi-adaptive continuous Galerkin, mcG(q). To formulate the mcG(q) method,

we define the trial space V and the test space V̂ as

V = {v ∈ [C([0, T ])]N : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

V̂ = {v : vi|Iij ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N},
(2.1)

where Pq(I) denotes the linear space of polynomials of degree q on an interval I. In other
words, V is the space of continuous piecewise polynomials of degree q = qi(t) = qij ≥

1, t ∈ Iij, on the partition T , and V̂ is the space of (possibly discontinuous) piecewise
polynomials of degree q − 1 on the same partition.

We now define the mcG(q) method for (1.1) in the following way: Find U ∈ V with
U(0) = u0, such that

(2.2)

∫ T

0

(U̇ , v) dt =

∫ T

0

(f(U, ·), v) dt ∀v ∈ V̂ ,

where (·, ·) denotes the R
N inner product. If now for each local interval Iij we take vn ≡ 0

when n 6= i and vi(t) = 0 when t 6∈ Iij, we can rewrite the global problem (2.2) as a
sequence of successive local problems for each component: For i = 1, . . . , N , j = 1, . . . ,Mi,
find Ui|Iij ∈ Pqij (Iij) with Ui(ti,j−1) given, such that

(2.3)

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij),

where the initial condition is specified for i = 1, . . . , N by Ui(0) = ui(0).

We define the residual R of the approximate solution U by Ri(U, t) = U̇i(t)− fi(U(t), t).
In terms of the residual, we can rewrite (2.3) as

(2.4)

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij−1(Iij),

that is, the residual is orthogonal to the test space on each local interval. We refer to (2.4)
as the Galerkin orthogonality of the mcG(q) method.

2.2. Multi-adaptive discontinuous Galerkin, mdG(q). For the mdG(q) method, we
define the trial and test spaces by

(2.5) V = V̂ = {v : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

that is, both trial and test functions are (possibly discontinuous) piecewise polynomials of
degree q = qi(t) = qij ≥ 0, t ∈ Iij, on the partition T . We define the mdG(q) solution
U ∈ V to be left-continuous.

We now define the mdG(q) method for (1.1) in the following way, similar to the definition
of the continuous method: Find U ∈ V with U(0−) = u0, such that

(2.6)
N
∑

i=1

Mi
∑

j=1

[

[Ui]i,j−1vi(t
+
i,j−1) +

∫

Iij

U̇ivi dt

]

=

∫ T

0

(f(U, ·), v) dt ∀v ∈ V̂ ,
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where [Ui]i,j−1 = Ui(t
+
i,j−1)−Ui(t

−

i,j−1) denotes the jump in Ui(t) across the node t = ti,j−1.
The mdG(q) method in local form, corresponding to (2.3), reads: For i = 1, . . . , N ,

j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij), such that

(2.7) [Ui]i,j−1v(ti,j−1) +

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),

where the initial condition is specified for i = 1, . . . , N by Ui(0
−) = ui(0).

In the same way as for the continuous method, we define the residual R of the approxi-
mate solution U by Ri(U, t) = U̇i(t)−fi(U(t), t), defined on the inner of each local interval
Iij, and rewrite (2.7) in the form

(2.8) [Ui]i,j−1v(t
+
i,j−1) +

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij (Iij).

We refer to (2.8) as the Galerkin orthogonality of the mdG(q) method. Note that the
residual has two parts: one interior part Ri and the jump term [Ui]i,j−1.

2.3. The dual problem. The motivation for introducing the dual problem is for the a
priori or a posteriori error analysis of the multi-adaptive methods. For the a posteriori
analysis, we formulate a continuous dual problem [4]. For the a priori analysis [7], we
formulate a discrete dual problem in terms of the dual multi-adaptive methods mcG(q)∗

and mdG(q)∗.
The discrete dual solution Φ : [0, T ] → R

N is a Galerkin approximation of the exact
solution φ : [0, T ] → R

N of the continuous dual backward problem

−φ̇(t) = J>(πu, U, t)φ(t) + g(t), t ∈ [0, T ),

φ(T ) = ψ,
(2.9)

where πu is an interpolant or a projection of the exact solution u of (1.1), g : [0, T ] → R
N

is a given function, ψ ∈ R
N is a given initial condition, and

(2.10) J>(πu, U, t) =

(
∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t), t) ds

)>

,

that is, an appropriate mean value of the transpose of the Jacobian of the right-hand side
f(·, t) evaluated at πu(t) and U(t). Note that by the chain rule, we have

(2.11) J(πu, U, ·)(U − πu) = f(U, ·) − f(πu, ·).

2.4. Multi-adaptive dual continuous Galerkin, mcG(q)∗. In the formulation of the
dual method of mcG(q), we interchange the trial and test spaces of mcG(q). With the

same definitions of V and V̂ as in (2.1), we thus define the mcG(q)∗ method for (2.9) in

the following way: Find Φ ∈ V̂ with Φ(T+) = ψ, such that

(2.12)

∫ T

0

(v̇,Φ) dt =

∫ T

0

(J(πu, U, ·)v,Φ) + Lψ,g(v),
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for all v ∈ V with v(0) = 0, where

(2.13) Lψ,g(v) ≡ (v(T ), ψ) +

∫ T

0

(v, g) dt.

Notice the extra condition that the test functions should vanish at t = 0, which is intro-
duced to make the dimension of the test space equal to the dimension of the trial space.
Integrating by parts, (2.12) can alternatively be expressed in the form

(2.14)
N
∑

i=1

Mi
∑

j=1

[

−[Φi]ijvi(tij) −

∫

Iij

Φ̇ivi dt

]

=

∫ T

0

(J>(πu, U, ·)Φ + g, v) dt.

2.5. Multi-adaptive dual discontinuous Galerkin, mdG(q)∗. Interchanging trial and
test spaces does not make any difference for the discontinuous method since the trial and
test spaces are identical. With the same definitions of V and V̂ as in (2.5), we define the

mdG(q)∗ method for (2.9) in the following way: Find Φ ∈ V̂ with Φ(T+) = ψ, such that

(2.15)
N
∑

i=1

Mi
∑

j=1

[

[vi]i,j−1Φi(t
+
i,j−1) +

∫

Iij

v̇iΦi dt

]

=

∫ T

0

(J(πu, U, ·)v,Φ) dt+ Lψ,g(v),

for all v ∈ V with v(0−) = 0. Integrating by parts, (2.15) can alternatively be expressed
in the form

(2.16)

N
∑

i=1

Mi
∑

j=1

[

−[Φi]ijvi(t
−

ij) −

∫

Iij

Φ̇ivi dt

]

=

∫ T

0

(J>(πu, U, ·)Φ + g, v) dt.

3. Existence of solutions

To prove existence of the discrete mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗ solutions
defined in the previous section, we formulate fixed point iterations for the construction of
solutions. Existence then follows from the Banach fixed point theorem, if the time steps
are sufficiently small. The proof is thus constructive and gives a method for computing
solutions (see [5]).

3.1. Multi-adaptive Galerkin in fixed point form. We start by proving the following
simple lemma.

Lemma 3.1. Let A be a d× d matrix with elements Amn = n
m+n−1

, and let B be a d× d
matrix with elements Bmn = n

m+n
, for m,n = 1, . . . , d. Then, detA 6= 0 and detB 6= 0.

Proof. To prove that A is nonsingular, we let p(t) =
∑d

n=1 xnnt
n−1 be a polynomial of

degree d− 1 on [0, 1]. If for m = 1, . . . , d, we have
∫ 1

0
p(t)tm−1 dt = 0, it follows that p ≡ 0.

Thus,
∑d

n=1 xn
n

m+n−1
= 0 for m = 1, . . . , d implies x = 0, which proves that detA 6= 0. To

prove that B is nonsingular, let again p(t) =
∑d

n=1 xnnt
n−1. If for m = 1, . . . , d we have

∫ 1

0
p(t)tm dt = 0, take q(t) =

∑d
m=1 ymt

m, such that p and q have the same zeros on [0, 1]
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and pq ≥ 0. Then,
∫ 1

0
pq dt = 0 but pq ≥ 0 on [0, 1] and so p ≡ 0. Thus,

∑n
n=1 xn

n
m+n

= 0
for m = 1, . . . , d implies x = 0, which proves that detB 6= 0. �

To rewrite the methods in explicit fixed point form, we introduce a simple basis for the
trial and test spaces and solve for the degrees of freedom on each local interval.

Lemma 3.2. The mcG(q) method for (1.1) in fixed point form reads: For i = 1, . . . , N ,
j = 1, . . . ,Mi, find {ξijn}

qij
n=1, such that

(3.1) ξijn = ξij0 +

∫

Iij

w[qij ]
n (τij(t))fi(U(t), t) dt,

with

ξij0 =

{

ξi,j−1,qi,j−1
, j > 1,

ui(0), j = 1,

where {w
[qij ]
n }

qij
n=1 ⊂ Pqij−1([0, 1]), w

[qij ]
qij ≡ 1, and τij(t) = (t − ti,j−1)/(tij − ti,j−1). A

component Ui(t) of the solution is given on Iij by

Ui(t) =

qij
∑

n=0

ξijnλ
[qij ]
n (τij(t)),

where {λ
[qij ]
n }

qij
n=0 ⊂ Pqij ([0, 1]) is the standard Lagrange basis on [0, 1] with t = 0 and t = 1

as two of its qij + 1 ≥ 2 nodal points.

Proof. Our starting point is the local formulation (2.3). Dropping indices for ease of
notation and rescaling to the interval [0, 1], we have

∫ 1

0

U̇v dt =

∫ 1

0

fv dt ∀v ∈ Pq−1([0, 1]),

with U ∈ Pq([0, 1]). Let now {λ
[q]
n }qn=0 be a basis for Pq([0, 1]). In terms of this basis, we

have U(t) =
∑q

n=0 ξnλ
[q]
n (t), and so

q
∑

n=0

ξn

∫ 1

0

λ̇[q]
n λ

[q−1]
m dt =

∫ 1

0

fλ[q−1]
m dt, m = 0, . . . , q − 1.

Since the solution is continuous, the value at t = 0 is known from the previous interval (or
from the initial condition). This gives

U(0) =

q
∑

n=0

ξnλ
[q]
n (0) = ξ0,

if we assume that λ
[q]
n (0) = δ0n. The remaining q degrees of freedom are then determined

by
q
∑

n=1

ξn

∫ 1

0

λ̇[q]
n λ

[q−1]
m−1 dt =

∫ 1

0

fλ
[q−1]
m−1 − ξ0

∫ 1

0

λ̇
[q]
0 λ

[q−1]
m−1 dt, m = 1, . . . , q.
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If det
(

∫ 1

0
λ̇

[q]
n λ

[q−1]
m−1 dt

)

6= 0, this system can be solved for the degrees of freedom (ξ1, . . . , ξn).

With λ
[q]
n (t) = tn, we have

det

(
∫ 1

0

λ̇[q]
n λ

[q−1]
m−1 dt

)

= det

(
∫ 1

0

ntn−1tm−1 dt

)

= det

(

n

m+ n− 1

)

6= 0,

by Lemma 3.1. Solving for (ξ1, . . . , ξn), we obtain

ξn = α[q]
n ξ0 +

∫ 1

0

w[q]
n f dt, n = 1, . . . , q,

for some constants {α
[q]
n }qn=1, where {w

[q]
n }qn=1 ⊂ Pq−1([0, 1]) and ξ0 is determined from

the continuity requirement. For any other basis {λ
[q]
n }qn=0 with λ

[q]
n (0) = δ0n, we obtain a

similar expression for the degrees of freedom by a linear transformation. In particular, let

{λ
[q]
n }qn=0 be the Lagrange basis functions for a partition of [0, 1] with t = 0 as a nodal

point. For f ≡ 0 it is easy to see that the mcG(q) solution is constant and equal to its

initial value. It follows that α
[q]
n = 1, n = 1, . . . , q, and so

ξn = ξ0 +

∫ 1

0

w[q]
n f dt, n = 1, . . . , q,

with U(1) = ξq if also t = 1 is a nodal point. To see that w
[q]
q ≡ 1, take v ≡ 1 in (2.3). The

result now follows by rescaling to Iij. �

Lemma 3.3. The mdG(q) method for (1.1) in fixed point form reads: For i = 1, . . . , N ,
j = 1, . . . ,Mi, find {ξijn}

qij
n=0, such that

(3.2) ξijn = ξ−ij0 +

∫

Iij

w[qij ]
n (τij(t))fi(U(t), t) dt,

with

ξ−ij0 =

{

ξi,j−1,qi,j−1
, j > 1,

ui(0), j = 1,

where {w
[qij ]
n }

qij
n=0 ⊂ Pqij([0, 1]), w

[qij ]
qij ≡ 1, and τij(t) = (t−ti,j−1)/(tij−ti,j−1). A component

Ui(t) of the solution is given on Iij by

Ui(t) =

qij
∑

n=0

ξijnλ
[qij ]
n (τij(t)),

where {λ
[qij ]
n }

qij
n=0 ⊂ Pqij ([0, 1]) is the standard Lagrange basis on [0, 1] with t = 1 as one of

its qij + 1 ≥ 1 nodal points.

Proof. In as similar way as in the proof of Lemma 3.2, we use (2.7) to obtain

(ξ0 − ξ−0 )λ[q]
m (0) +

q
∑

n=0

ξn

∫ 1

0

λ̇[q]
n λ

[q]
m dt =

∫ 1

0

fλ[q]
m dt, m = 0, . . . , q.
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With λ
[q]
n (t) = tn, these 1 + q equations can be written in the form

ξ0 +

q
∑

n=1

ξn

∫ 1

0

ntn−1 dt =

∫ 1

0

f dt+ ξ−0 ,

q
∑

n=1

ξn

∫ 1

0

ntn−1tm dt =

∫ 1

0

ftm dt, m = 1, . . . , q,

which by Lemma 3.1 has a solution, since

det

(
∫ 1

0

ntn−1tm dt

)

= det

(

n

m + n

)

6= 0.

We thus obtain

ξn = α[q]
n ξ

−

0 +

∫ 1

0

w[q]
n f dt, n = 0, . . . , q.

By the same argument as in the proof of Lemma 3.2, we conclude that when {λ
[q]
n }qn=0 is

the Lagrange basis for a partition of [0, 1], we have

ξn = ξ−0 +

∫ 1

0

w[q]
n f dt, n = 0, . . . , q,

with U(1) = ξq = ξ−0 +
∫ 1

0
f dt if t = 1 is a nodal point. The result now follows by rescaling

to Iij. �

Lemma 3.4. The mcG(q)∗ method for (2.9) in fixed point form reads: For i = 1, . . . , N ,

j = Mi, . . . , 1, find {ξijn}
qij−1
n=0 , such that

(3.3) ξijn = ψi +

∫ T

tij

f ∗

i (Φ, ·) dt+

∫

Iij

w[qij ]
n (τij(t))f

∗

i (Φ(t), t) dt,

where f ∗(Φ, ·) = J>(πu, U, ·)Φ + g, {w
[qij ]
n }

qij−1
n=0 ⊂ Pqij ([0, 1]), w

[qij ]
n (0) = 0, w

[qij ]
n (1) = 1,

n = 0, . . . , qij − 1, and τij(t) = (t− ti,j−1)/(tij − ti,j−1). A component Φi(t) of the solution
is given on Iij by

Φi(t) =

qij−1
∑

n=0

ξijnλ
[qij−1]
n (τij(t)),

where {λ
[qij−1]
n }

qij−1
n=0 ⊂ Pqij−1([0, 1]) is the standard Lagrange basis on [0, 1].

Proof. Our starting point is the definition (2.14). For any 1 ≤ i ≤ N , take vn ≡ 0 when
n 6= i and let vi be a continuous piecewise polynomial that vanishes on [0, ti,j−1] with vi ≡ 1
on [tij, T ], see Figure 3.4. With f ∗(Φ, ·) = J>(πu, U, ·)Φ + g, we then have

Mi
∑

l=j

[

−[Φi]ilvi(til) −

∫

Iil

Φ̇ivi dt

]

=

∫ T

ti,j−1

f ∗

i (Φ, ·)vi dt.
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We integrate by parts, moving the derivative onto the test function, to get

−[Φi]ilvi(til) −

∫

Iil

Φ̇ivi dt = −[Φi]ilvi(til) − [Φivi]
t−
il

t+
i,l−1

+

∫

Iil

Φiv̇i dt

= Φi(t
+
i,l−1)vi(ti,l−1) − Φi(t

+
il )vi(til) +

∫

Iil

Φiv̇i dt.

Summing up, noting that vi(ti,j−1) = 0, v̇i = 0 on [tij, T ] and Φi(t
+
Mi

) = ψi, we have

−ψi +

∫

Iij

Φiv̇i dt =

∫ T

ti,j−1

f ∗

i (Φ, ·)vi dt,

or
∫

Iij

Φiv̇i dt = Φ̃ij +

∫

Iij

f ∗

i (Φ, ·)vi dt,

with Φ̃ij = ψi +
∫ T

tij
f ∗

i (Φ, ·) dt. Dropping indices and rescaling to the interval [0, 1], we

obtain
∫ 1

0

Φv̇ dt = Φ̃(1) +

∫ 1

0

f ∗v dt,

for all v ∈ Pq([0, 1]) with v(0) = 0 and v(1) = 1. Let now {λ
[q−1]
n }q−1

n=0 be a basis of

Pq−1([0, 1]) and write Φ(t) =
∑q

n=1 ξnλ
[q−1]
n−1 (t). For m = 1, . . . , q, we then have

q
∑

n=1

ξn

∫ 1

0

λ
[q−1]
n−1 (t)mtm−1 dt = Φ̃(1) +

∫ 1

0

f ∗ tm dt.

If now det
(

∫ 1

0
λ

[q−1]
n−1 (t)mtm−1 dt

)

6= 0, we can solve for (ξ1, . . . , ξn). With λ
[q−1]
n−1 (t) = tn−1,

we have

det

(
∫ 1

0

λ
[q−1]
n−1 (t)mtm−1 dt

)

= det

(
∫ 1

0

mtn−1tm−1 dt

)

= det

(

m

m + n− 1

)

6= 0,

by Lemma 3.1. Solving for the degrees of freedom, we obtain

ξn = α[q]
n Φ̃(1) +

∫ 1

0

w[q]
n f

∗ dt, n = 1, . . . , q.

By a linear transformation, we obtain a similar expression for any other basis of P q([0, 1]).
For f ∗ ≡ 0, it is easy to see that the mcG(q)∗ solution is constant and equal to its initial

value. Thus, when {λ
[q−1]
n }q−1

n=0 is the standard Lagrange basis for a partition of [0, 1], it

follows that α
[q]
n = 1, n = 1, . . . , q, and so

ξn = Φ̃(1) +

∫ 1

0

w[q]
n f

∗ dt, n = 1, . . . , q.

We note that w
[q]
n (0) = 0, n = 1, . . . , q, since each w

[q]
n is a linear combination of the

functions {tm}qm=1. We also conclude that w
[q]
n (1) = 1, since w

[q]
n (1) = α

[q]
n = 1, n = 1, . . . , q.
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The result now follows by rescaling to Iij. We also relabel the degrees of freedom from
(ξ1, . . . , ξq) to (ξ0, . . . , ξq−1). �

PSfrag replacements

0 Tti,j−1 ti,j

vi(t)

Figure 2. The special choice of test function used in the proof of Lemma 3.4.

Lemma 3.5. The mdG(q)∗ method for (2.9) in fixed point form reads: For i = 1, . . . , N ,
j = Mi, . . . , 1, find {ξijn}

qij
n=0, such that

(3.4) ξijn = ξ+
ijqij

+

∫

Iij

w[qij ]
n (τij(t))f

∗

i (Φ(t), t) dt,

with

ξ+
ijqij

=

{

ξi,j+1,0, j < Mi,
ψi, j = Mi,

where f ∗(Φ, ·) = J>(πu, U, ·)Φ+ g, {w
[qij ]
n }

qij
n=0 ⊂ Pqij([0, 1]), and τij(t) = (t− ti,j−1)/(tij −

ti,j−1). A component Φi(t) of the solution is given on Iij by

Φi(t) =

qij
∑

n=0

ξijnλ
[qij ]
n (τij(t)),

where {λ
[qij ]
n }

qij
n=0 ⊂ Pqij ([0, 1]) is the standard Lagrange basis on [0, 1] with t = 0 as one of

its qij + 1 ≥ 1 nodal points.

Proof. The mdG(q)∗ method is identical to the mdG(q) method with time reversed. �

Corollary 3.1. Let Tn be a time slab with synchronized time levels Tn−1 and Tn. With time
reversed for the dual methods (to simplify the notation), the mcG(q), mdG(q), mcG(q)∗,
and mdG(q)∗ methods can all be expressed in the form: For all Iij ∈ Tn, find {ξijn}, such
that

(3.5) ξijn = Ũi(T
−

n−1) +

∫ ti,j−1

Tn−1

fi(U, ·) dt+

∫

Iij

w[qij ]
n (τij(t))fi(U, ·) dt,

with a suitable definition of Ũi(T
−

n−1). As before, τij(t) = (t−ti,j−1)/(tij−ti,j−1) and {w
[qij ]
n }

is a set of polynomial weight functions on [0, 1].

Proof. For mcG(q), mdG(q), and mdG(q)∗, the result follows if we take Ũ(T−

n−1) = U(T−

n−1)

and note that w
[q]
q ≡ 1. For mcG(q)∗, the result follows if we define Ũ(T−

n−1) = ui(0) +
∫ Tn−1

0
fi(U, ·) dt. �
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3.2. Fixed point iteration. We now prove that for each of the four methods, mcG(q),
mdG(q), mcG(q)∗, and mdG(q)∗, the fixed point iterations of Corollary 3.1 converge, prov-
ing existence of the discrete solutions.

Theorem 3.1. (Existence of solutions) Let K = maxKn be the maximum time slab length
and define the Lipschitz constant Lf > 0 by

(3.6) ‖f(x, t) − f(y, t)‖l∞ ≤ Lf‖x− y‖l∞ ∀t ∈ [0, T ] ∀x, y ∈ R
N .

If now

(3.7) KCqLf < 1,

where Cq is a constant of moderate size, depending only on the order and method, then each
of the fixed point iterations, (3.1), (3.2), (3.3), and (3.4), converge to the unique solution
of (2.2), (2.6), (2.12), and (2.15), respectively.

Proof. Let x = (. . . , ξijn, . . .) be the set of values for the degrees of freedom of U(t) on the
time slab Tn of length Kn = Tn − Tn−1 ≤ K. Then, by Corollary 3.1, we can write the
fixed point iteration on the time slab in the form

ξijn = gijn(x) = Ũi(T
−

n−1) +

∫ ti,j−1

Tn−1

fi(U, ·) dt+

∫

Iij

w[qij ]
n (τij(t))fi(U, ·) dt.

Let V (t) be another trial space function on the time slab with degrees of freedom y =
(. . . , ηijn, . . .). Then,

gijn(x) − gijn(y) =

∫ ti,j−1

Tn−1

(fi(U, ·) − fi(V, ·)) dt+

∫

Iij

w[qij ]
n (τij(t))(fi(U, ·) − fi(V, ·)) dt,

and so

‖g(x) − g(y)‖l∞ ≤ CLf

∫ Tn

Tn−1

‖U(t) − V (t)‖l∞ dt ≤ CLfK sup
(Tn−1 ,Tn]

‖U(t) − V (t)‖l∞.

Noting now that

|Ui(t) − Vi(t)| ≤
∑

n

|ξijn − ηijn||λ
[qij ]
n (t)| ≤ C ′‖x− y‖∞,

for t ∈ Iij, we thus obtain

‖g(x) − g(y)‖l∞ ≤ CC ′LfK‖x− y‖l∞.

By Banach’s fixed point theorem, we conclude that the fixed point iteration converges to
a unique fixed point if CC ′LfK < 1. �
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4. Stability estimates

In this section, we prove stability estimates for the multi-adaptive methods and the
corresponding multi-adaptive dual methods. We consider the linear model problem

u̇(t) + A(t)u(t) = 0, t ∈ (0, T ],

u(0) = u0,
(4.1)

where A = A(t) is a piecewise smooth N×N matrix on (0, T ]. The dual backward problem
of (4.1) for φ = φ(t) is then given by

−φ̇(t) + A>(t)φ(t) = 0, t ∈ [0, T ),

φ(T ) = ψ.
(4.2)

With w(t) = φ(T − t), we have ẇ(t) = −φ̇(T − t) = −A>(T − t)w(t), and so (4.2) can be
written as a forward problem for w in the form

ẇ(t) +B(t)w(t) = 0, t ∈ (0, T ],

w(0) = w0,
(4.3)

where w0 = ψ and B(t) = A>(T − t). In the following discussion, w represents either u or
φ(T − ·) and, correspondingly, W represents either the discrete mc/dG(q) approximation
U of u or the discrete mc/dG(q)∗ approximation Φ of φ.

4.1. Exponential stability estimates. The stability estimates are based on the following
version of the discrete Grönwall inequality.

Lemma 4.1. (A discrete Grönwall inequality) Assume that z, a : N → R are non-negative,
a(m) ≤ 1/2 for all m, and z(n) ≤ C +

∑n
m=1 a(m)z(m) for all n. Then, for n = 1, 2, . . .,

we have

(4.4) z(n) ≤ 2C exp

(

n−1
∑

m=1

2a(m)

)

.

Proof. By a standard discrete Grönwall inequality, we have z(n) ≤ C exp
(
∑n−1

m=0 a(m)
)

,

if z(n) ≤ C +
∑n−1

m=0 a(m)z(m) for n ≥ 1 and z(0) ≤ C, see [8]. Here, (1 − a(n))z(n) ≤

C +
∑n−1

m=1 a(m)z(m), and so z(n) ≤ 2C +
∑n−1

m=1 2a(m)z(m), since 1 − a(n) ≥ 1/2. The
result now follows if we take a(0) = z(0) = 0. �

Theorem 4.1. (Stability estimate) Let W be the mcG(q), mdG(q), mcG(q)∗, or mdG(q)∗

solution of (4.3). Then, there is a constant Cq of moderate size, depending only on the
highest order max qij, such that if

(4.5) KnCq‖B‖L∞([Tn−1,Tn],lp) ≤ 1, n = 1, . . . ,M,

then

(4.6) ‖W‖L∞([Tn−1,Tn],lp) ≤ Cq‖w0‖lp exp

(

n−1
∑

m=1

KmCq‖B‖L∞([Tm−1 ,Tm],lp)

)

,
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for n = 1, . . . ,M , 1 ≤ p ≤ ∞.

Proof. By Corollary 3.1, we can write the mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗ meth-
ods in the form

ξijn′ = wi(0) +

∫ ti,j−1

0

fi(W, ·) dt+

∫

Iij

w
[qij ]
n′ (τij(t))fi(W, ·) dt.

Applied to the linear model problem (4.3), we have

ξijn′ = wi(0) −

∫ ti,j−1

0

(BW )i dt−

∫

Iij

w
[qij ]
n′ (τij(t))(BW )i dt,

and so

|ξijn′| ≤ |wi(0)| +

∣

∣

∣

∣

∫ ti,j−1

0

(BW )i dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Iij

w
[qij ]
n′ (τij(t))(BW )i dt

∣

∣

∣

∣

∣

≤ |wi(0)| + C

∫ tij

0

|(BW )i| dt ≤ |wi(0)| + C

∫ Tn

0

|(BW )i| dt,

where Tn is smallest synchronized time level for which tij ≤ Tn. It now follows that for all

t ∈ [Tn−1, Tn], we have |Wi(t)| ≤ C|wi(0)| + C
∫ Tn

0
|(BW )i| dt, and so

‖W (t)‖lp ≤ C‖w0‖lp + C

∫ Tn

0

‖BW‖lp dt = C‖w0‖lp + C
n
∑

m=1

∫ Tm

Tm−1

‖BW‖lp dt.

With W̄n = ‖W‖L∞([Tn−1,Tn],lp), this means that

W̄n ≤ C‖w0‖lp + C

n
∑

m=1

Km‖B‖L∞([Tm−1,Tm],lp)W̄m

≡ (Cq/2)‖w0‖lp +

n
∑

m=1

Km(Cq/2)‖B‖L∞([Tm−1,Tm],lp)W̄m.

By assumption, KmCq‖B‖L∞([Tm−1 ,Tm],lp) ≤ 1 for all m, and so the result follows by Lemma
4.1. �

4.2. Stability estimates for parabolic problems. We consider now the parabolic model
problem u̇(t) +Au(t) = 0, with A a symmetric, positive semidefinite, and constant N ×N
matrix, and prove stability estimates for the mdG(q) and mdG(q)∗ methods. As before,
we write the problem in the form (4.3), and note that B = A = A>. We thus consider the
problem: Find w : [0, T ] → R

N , such that

ẇ(t) + Aw(t) = 0, t ∈ (0, T ],

w(0) = w0.
(4.7)

For the continuous problem (4.7), we have the following standard strong stability es-
timates, where “strong” indicates control of Aw (or ẇ) in terms of (the l2-norm of) the
initial data w0.
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Theorem 4.2. (Strong stability for the continuous problem) The solution w of (4.7)
satisfies for T > 0 and 0 < ε < T with ‖ · ‖ = ‖ · ‖l2 ,

‖w(T )‖2 + 2

∫ T

0

(Aw,w) dt = ‖w0‖
2,(4.8)

∫ T

0

t ‖Aw‖2 dt ≤
1

4
‖w0‖

2,(4.9)

∫ T

ε

‖Aw‖ dt ≤
1

2
(log(T/ε))1/2 ‖w0‖.(4.10)

Proof. Multiply (4.7) with v = w, v = tAw, and v = t2A2w, respectively. See [2] for a full
proof. �

We now prove an extension to multi-adaptive time-stepping of the strong stability esti-
mate Lemma 6.1 in [1]. See also Lemma 1 in [3] for a similar estimate. In the proof, we
use a special interpolant π, defined on the partition T as follows. On each local interval,
the component (πϕ)i of the interpolant πϕ of a given function ϕ : [0, T ] → R

N , is defined
by the following conditions: (πϕi)|Iij ∈ Pqij (Iij) interpolates ϕi at the left end-point t+i,j−1

of Iij and πϕi−ϕi is orthogonal to Pqij−1(Iij). (This is the interpolant denoted by π
[q]
dG∗ in

[6].) We also introduce the left-continuous piecewise constant function t̄ = t̄(t) defined by
t̄(t) = minij{tij : t ≤ tij}. With {tm} the ordered sequence of individual time levels {tij},
as illustrated in Figure 3, t̄ = t̄(t) is thus the piecewise constant function that takes the
value tm on (tm−1, tm]. We make the following assumption on the partition T :

(4.11) Tn−1

∫ Tn

Tn−1

(Av,Av) dt ≤ γ

∫ Tn

Tn−1

(Av, π(t̄Av)) dt, n = 2, . . . ,M,

for all functions v in the trial (and test) space V of the mdG(q) and mdG(q)∗ methods,
where γ ≥ 1 is a constant of moderate size if Av is not close to being orthogonal to V . In
the case of equal time steps for all components, this estimate is trivially true, because then
πAv = Av since Av ∈ V if v ∈ V . Note that we may computationally test the validity of
(4.11), see [7].

Theorem 4.3. (Strong stability for the discrete problem) Let W be the mdG(q) or mdG(q)∗

solution of (4.7), computed with the same time step and order for all components on the
first time slab T1. Assume that (4.11) holds and that σKn ≤ Tn−1, n = 2, . . . ,M , for some
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constant σ > 1. Then, there is a constant C = C(q, γ, σ), such that

‖W (T )‖2 + 2

∫ T

0

(AW,W ) dt+

N
∑

i=1

Mi
∑

j=1

[Wi]
2
i,j−1 = ‖w0‖

2,(4.12)

M
∑

n=1

Tn

∫ Tn

Tn−1

{

‖Ẇ‖2 + ‖AW‖2
}

dt+
M
∑

n=1

Tn
∑

ij

[Wi]
2
i,j−1/kij ≤ C ‖w0‖

2,(4.13)

∫ T

0

{

‖Ẇ‖ + ‖AW‖
}

dt +

N
∑

n=1

(

∑

ij

|[Wi]i,j−1|
2

)1/2

≤ C

(

log
T

K1
+ 1

)1/2

‖w0‖,(4.14)

where ‖ · ‖ = ‖ · ‖l2 ,
∑

ij denotes the sum over all elements within the current time slab
Tn, and where in all integrals the domain of integration does not include points where the
integrand is discontinuous.

Proof. We follow the proof presented in [1] and make extensions where necessary. With
V the trial (and test) space for the mdG(q) method defined in Section 2, the mdG(q) (or
mdG(q)∗) approximation W of w on a time slab Tn is defined as follows: Find W ∈ V ,
such that

(4.15)
∑

ij

(

[Wi]i,j−1vi(t
+
i,j−1) +

∫

Iij

Ẇivi dt

)

+

∫ Tn

Tn−1

(AW, v) dt = 0,

for all test functions v ∈ V , where the sum is taken over all intervals Iij within the time
slab Tn. To prove the basic stability estimate (4.12), we take v = W in (4.15) to get

1

2

∑

ij

[Wi]
2
i,j−1 +

1

2
‖W (T−

n )‖2 −
1

2
‖W (T−

n−1)‖
2 +

∫ Tn

Tn−1

(AW,W ) dt = 0.

The estimate now follows by summation over all time slabs Tn.
For the proof of (4.13), we would like to take v = tAW in (4.15), but this is not a valid

test function. In the proof of Lemma 6.1 in [1], the test function is chosen as v = TnAW ,
which is not possible in the multi-adaptive case, since A mixes the components of W and
as a result, vi = Tn(AW )i may not be a test function for component Wi. Instead, we take
v = π(t̄AW ), with π and t̄ defined as above, to obtain

∑

ij

(

[Wi]i,j−1(t̄(AW )i)(t
+
i,j−1) +

∫

Iij

Ẇi t̄(AW )i dt

)

+

∫ Tn

Tn−1

(AW, π(t̄AW )) dt = 0,

where we have used the orthogonality condition of the interpolant for Ẇi ∈ Pqij−1(Iij).
Noting that [Wi]m = Wi(t

+
m) −Wi(t

−

m) = 0 if component i has no node at time t = tm, we
rewrite the sum as a sum over all intervals (tm−1, tm] within (Tn−1, Tn], in the form

∑

i

∑

m

[Wi]m−1tm(AW (t+m−1))i +

∫

Im

Ẇi tm(AW )i dt
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PSfrag replacements

t0 t1 t2 . . .

Tn−1 TnT0 = 0 T1 TM = T

Figure 3. The sequence {tm} of individual time levels.

=
∑

m

tm([W ]m−1, AW (t+m−1)) +
tm
2

∫

Im

d

dt
(W,AW ) dt

=
∑

m

tm
2

([W ]m−1, A[W ]m−1) +
tm
2

[

(W (t−m), AW (t−m)) − (W (t−m−1), AW (t−m−1))
]

,

where, using the notation km = tm − tm−1, we note that

∑

m

tm
2

[

(W (t−m), AW (t−m)) − (W (t−m−1), AW (t−m−1))
]

=
∑

m

tm
2

(W (t−m), AW (t−m)) −
tm−1

2
(W (t−m−1), AW (t−m−1)) −

km
2

(W (t−m−1), AW (t−m−1))

=
Tn
2

(W (T−

n ), AW (T−

n )) −
Tn−1

2
(W (T−

n−1), AW (T−

n−1)) −
∑

m

km
2

(W (t−m−1), AW (t−m−1)).

Collecting the terms, we thus have

∑

m

tm([W ]m−1, A[W ]m−1) + Tn(W (T−

n ), AW (T−

n )) − Tn−1(W (T−

n−1), AW (T−

n−1)) +

+ 2

∫ Tn

Tn−1

(AW, π(t̄AW )) dt =
∑

m

km(W (t−m−1), AW (t−m−1)).

(4.16)

For n = 1, we have
∫ Tn

Tn−1

(AW, π(t̄AW )) dt = T1

∫ T1

0

(AW, π(AW )) dt = T1

∫ T1

0

‖AW‖2 dt,
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since π(AW ) = AW on [0, T1], where the same time steps and orders are used for all
components. We further estimate the right-hand side of (4.16) as follows:

K1(w0, Aw0) = K1([W ]0, A[W ]0) −K1(W (0+), AW (0+)) + 2K1(w0, AW (0+))

≤ T1([W ]0, A[W ]0) + 2K1(w0, AW (0+))

≤ T1([W ]0, A[W ]0) +
1

ε
‖w0‖

2 + εK2
1‖AW (0+)‖2

≤ T1([W ]0, A[W ]0) +
1

ε
‖w0‖

2 + εCqT1

∫ T1

0

‖AW‖2 dt,

where we have used an inverse estimate for AW on [0, T1]. With ε = 1/Cq, we thus obtain
the estimate

(4.17) T1(W (T−

1 ), AW (T−

1 )) + T1

∫ T1

0

‖AW‖2 ≤ Cq‖w0‖
2.

For n > 1, it follows by the assumption (4.11), that

∫ Tn

Tn−1

(AW, π(t̄AW )) dt ≥ γ−1Tn−1

∫ Tn

Tn−1

‖AW‖2 dt ≥
γ−1σ

σ + 1
Tn

∫ Tn

Tn−1

‖AW‖2 dt,

where we have also used the assumption Tn−1 ≥ σKn. The terms on the right-hand side
of (4.16) are now estimated as follows:

km(W (t−m−1), AW (t−m−1)) = km(W (t+m−1) − [W ]m−1, A(W (t+m−1) − [W ]m−1))

= km
[

(W (t+m−1), AW (t+m−1)) + ([W ]m−1, A[W ]m−1) − 2(W (t+m−1), A[W ]m−1)
]

≤ km
[

(1 + β)(W (t+m−1), AW (t+m−1)) + (1 + β−1)([W ]m−1, A[W ]m−1)
]

,

for any β > 0. We choose β = 1/(σ − 1), to obtain

km(W (t−m−1), AW (t−m−1)) ≤
σkm
σ − 1

(W (t+m−1), AW (t+m−1)) + σkm([W ]m−1, A[W ]m−1)

≤
Cqσ

σ − 1

∫

Im

(W,AW ) dt+ σkm([W ]m−1, A[W ]m−1),

where we have again used an inverse estimate, for W on Im. From the assumption that
σKn ≤ Tn−1 for n > 1, it follows that σkm ≤ σKn ≤ Tn−1 ≤ tm, and so

Tn(W (T−

n ), AW (T−

n )) − Tn−1(W (T−

n−1), AW (T−

n−1)) +
2γ−1σ

σ + 1
Tn

∫ Tn

Tn−1

‖AW‖2 dt

≤
Cqσ

σ − 1

∫ Tn

Tn−1

(W,AW ) dt.
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Summing over n > 1 and using the estimate (4.17) for n = 1, we obtain by (4.12),

T (W (T−), AW (T−)) + T1

∫ T1

0

‖AW‖2 dt+
2γ−1σ

σ + 1

M
∑

n=2

Tn

∫ Tn

Tn−1

‖AW‖2 dt

≤ Cq‖w0‖
2 +

Cqσ

σ − 1

∫ T

T1

(W,AW ) dt ≤ Cq

(

1 +
σ/2

σ − 1

)

‖w0‖
2,

which we write as
M
∑

n=1

Tn

∫ Tn

Tn−1

‖AW‖2 dt ≤ C ‖w0‖
2,

noting that T (W (T−), AW (T−)) ≥ 0. For the proof of (4.13), it now suffices to prove that

(4.18)

∫ Tn

Tn−1

‖Ẇ‖ dt ≤ C

∫ Tn

Tn−1

‖AW‖2 dt,

and

(4.19)
∑

ij

[Wi]
2
i,j−1/kij ≤ C

∫ Tn

Tn−1

‖AW‖2 dt.

To prove (4.18), we take vi = (t− ti,j−1)Ẇi/kij on each local interval Iij in (4.15), which
gives

∑

ij

∫

Iij

t− ti,j−1

kij
Ẇ 2

i dt = −
∑

ij

∫

Iij

(AW )i
t− ti,j−1

kij
Ẇi dt

≤
∑

ij

(

∫

Iij

t− ti,j−1

kij
(AW )2

i dt

)1/2 (
∫

Iij

t− ti,j−1

kij
Ẇ 2

i dt

)1/2

≤

(

∑

ij

∫

Iij

t− ti,j−1

kij
(AW )2

i dt

)1/2 (
∑

ij

∫

Iij

t− ti,j−1

kij
Ẇ 2

i dt

)1/2

,

where we have used Cauchy’s inequality twice; first on L2(Iij) and then on l2. Using an

inverse estimate for Ẇ 2
i , we obtain

∫ Tn

Tn−1

‖Ẇ‖2 dt =
∑

ij

∫

Iij

Ẇ 2
i dt ≤ Cq

∑

ij

∫

Iij

t− ti,j−1

kij
Ẇ 2

i dt

≤ Cq
∑

ij

∫

Iij

t− ti,j−1

kij
(AW )2

i dt ≤ Cq
∑

ij

∫

Iij

(AW )2
i dt = Cq

∫ Tn

Tn−1

‖AW‖ dt,

which proves (4.18).
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To prove (4.19), we take vi = [Wi]i,j−1/kij on each local interval Iij in (4.15), which gives
∑

ij

[Wi]
2
i,j−1/kij = −

∑

ij

∫

Iij

(Ẇi + (AW )i) [Wi]i,j−1/kij dt

≤

(

∑

ij

∫

Iij

(Ẇi + (AW )i)
2 dt

)1/2(
∑

ij

[Wi]
2
i,j−1/kij

)1/2

,

where we have again used Cauchy’s inequality twice. We thus have

∑

ij

[Wi]
2
i,j−1/kij ≤ 2

∫ Tn

Tn−1

‖Ẇ‖2 dt+ 2

∫ Tn

Tn−1

‖AW‖2 dt,

and so (4.19) follows, using (4.18). This also proves (4.13).
Finally, to prove (4.14), we use Cauchy’s inequality with (4.13) to get

M
∑

n=1

∫ Tn

Tn−1

‖Ẇ‖ dt =

M
∑

n=1

√

Kn/Tn
√

Tn/Kn

∫ Tn

Tn−1

‖Ẇ‖ dt

≤

(

M
∑

n=1

Kn/Tn

)1/2 ( M
∑

n=1

Tn

∫ Tn

Tn−1

‖Ẇ‖2 dt

)1/2

≤

(

1 +

∫ T

T1

1

t
dt

)1/2

C‖w0‖ ≤ C (log(T/K1) + 1)1/2 ‖w0‖,

with a similar estimate for AW . The proof is now complete, noting that

M
∑

n=1

(

∑

ij

|[Wi]i,j−1|
2

)1/2

≤

M
∑

n=1

(

Kn

Tn
Tn
∑

ij

|[Wi]i,j−1|
2/kij

)1/2

≤

(

M
∑

n=1

Kn/Tn

)1/2 ( M
∑

n=1

Tn
∑

ij

|[Wi]i,j−1|
2/kij

)1/2

≤ C(log(T/K1) + 1)1/2 ‖w0‖.

�
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