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A STABILIZED NONCONFORMING FINITE ELEMENT METHOD FOR

INCOMPRESSIBLE FLOW

ERIK BURMAN AND PETER HANSBO

Abstract. In this paper we extend the recently introduced edge stabilization method to
the case of nonconforming finite element approximations of the linearized Navier-Stokes
equation. To get stability also in the convective dominated regime we add a term giving
L

2-control of the jump in the gradient over element boundaries. An a priori error estimate
that is uniform in the Reynolds number is proved and some numerical examples are
presented.

1. Introduction

The solution of the Navier-Stokes equations for incompressible flow using finite element
methods remains a challenging problem, in particular if the objective is to construct a
method which remains robust and accurate for a wide range of Reynolds numbers. The
discretization must assure not only satisfaction of the Babŭska-Brezzi condition but also
stabilization of the convective terms and sufficient control of the incompressibility condi-
tion. Approximations using non-conforming Crouzeix-Raviart (CR) elements are attrac-
tive for the velocity approximation in combination with elementwise constant pressures,
since they satisfy the Babŭska-Brezzi condition and have local conservation properties.
This discretization was proposed and analyzed in [13] and a stabilized version using the
streamline diffusion stabilization was analyzed in [11]. In neither of these cases the high
Reynolds number limit was treated. Moreover, in a recent paper, [4], the authors showed
that a stabilized nonconforming finite element method using the Crouzeix-Raviart element
remains uniformly stable in the vanishing viscosity limit for the generalized Stokes’ equa-
tion. However, the discretization of convection dominated problems using CR-elements are
not stable without both a weak coupling on the element inflow boundary as in the discon-
tinuous Galerkin method and streamline diffusion stabilization of the convective terms in
the interior of the element (see [10, 9, 12]). In this respect, the element needs stabiliza-
tion from both the streamline diffusion method and the discontinuous Galerkin method.
Considering the fact that the method uses more degrees of freedom than the continuous
Galerkin approximation this seems suboptimal. Moreover, the streamline diffusion stabi-
lization has the drawback that it does not permit lumped mass for time stepping. In this
paper we therefore propose to apply the recently introduced edge stabilization operator
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2 ERIK BURMAN AND PETER HANSBO

(see [2, 3]) to the lowest order Crouzeix-Raviart element for the stabilization of the convec-
tive terms. We prove that this operator stabilizes exactly that part of the convective term
which is not already included in the approximation space. In this sense this is the smallest
perturbation needed to make the Crouzeix-Raviart element stable for convection-diffusion
problems. This stabilization method has the advantage, as compared to other stabilized
methods, that we may lump mass for efficient timestepping, we do not add any additional
degrees of freedom, and we do not need any special structure of the mesh. For Oseen’s
equation we prove an optimal a priori error estimate in the energy norm independent of the
Reynolds number. Another attractive feature of the proposed stabilization is that, unlike
SUPG, here the stabilization parameter is independent of the flow regime; we illustrate this
by proving an L2 a priori error estimate for the velocities in the case of low local Reynolds
number. Finally, we study the performance of the numerical scheme on some linear and
nonlinear model cases.

2. A finite element method for the Oseen’s equation

We consider, in Ω ⊂ R
d with boundary ∂Ω, the problem of solving

(2.1)

σ u + β · ∇u + ∇p − 2µ∇ · ε(u) = f , in Ω

∇ · u = 0, in Ω

u = 0 on ∂Ω

where u, β ∈ [H1
0 (Ω) ∩ H0(div; Ω)]d, β ∈ W 1,∞(Ω), p ∈ L2

0(Ω), f is a given source term, σ
and µ are bounded positive functions. By H0(div; Ω) we denote the functions in [L2(Ω)]d

such that ∇·u = 0, and by L2
0(Ω) the functions in L2(Ω) with zero mean value. The weak

form of this problem is to find (u, p) ∈ [H1
0 (Ω)]d × L2

0(Ω) such that

(2.2)

{

a(u, v) + b(p, v) = (f , v)
b(q, u) = 0

∀ (v, q) ∈ [H1
0 (Ω)]d × L2

0(Ω),

where

a(u, v) := (σ u, v) + (β · ∇u, v) + 2(µε(u), ε(v))

b(p, v) = −(p,∇ · v) and (f , v) := (f , v).

We let (·, ·) denote the L2-scalar product with the corresponding norm ‖ · ‖ = (·, ·)1/2. The
Hs(Ω) norm will be denoted by ‖ · ‖s,Ω. The well posedness of the above problem follows
by the Lax-Milgram lemma applied in the space [H1

0 (Ω)]d ∩H0(div; Ω). The finite element
method consists of seeking a piecewise polynomial approximation uh ∈ Vh, ph ∈ Qh. We
let Vh denote the space of the lowest order non-conforming Crouzeix-Raviart elements. Let
Th denote a shape regular triangulation of the domain Ω, E(K) the set of all faces of an
element K ∈ Th, E := ∪K∈Th

E(K) the set of all faces in Th, E∂Ω := {e ∈ E : e ⊂ ∂Ω}, and
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E0 := E \ E∂Ω the set of the boundary and inner faces respectively. For a given piecewise
continuous function ϕ, the jump [ϕ] and the average {ϕ} on a face e ∈ E are defined by

[ϕ](x) :=

{

lims→0+(ϕ(x + sn) − ϕ(x − sn)) if e 6⊂ ∂Ω
lims→0+ = −ϕ(x − sn) if e ⊂ ∂Ω

{ϕ}(x) :=

{

1
2
lims→0+(ϕ(x + sn) + ϕ(x − sn)) if e 6⊂ ∂Ω

1
2
lims→0+2ϕ(x − sn) if e ⊂ ∂Ω

where n is a normal unit vector on e and x ∈ e. If e ⊂ ∂Ω we choose the orientation of n

to be outward with respect to Ω otherwise n has an arbitrary but fixed orientation. For
the nonconforming finite element functions, continuity across edges e will only be enforced
with respect to

je(vh) :=

∫

e

[vh] ds.

Using this definition our finite element space may be defined as

Vh := {vh ∈ [L2(Ω)]d : vh|K ∈ [P1(K)]d, ∀K ∈ Th, je(vh) = 0, ∀e ∈ E}.

Moreover we introduce the space of piecewise constants with mean value zero,

Qh := {qh ∈ L2
0(Ω) : qh|K ∈ P0(K)},

and the subspace Wh of Vh such that

Wh := {wh ∈ Vh : (∇ · wh, qh)h = 0, ∀qh ∈ Qh}

where (∇ ·wh, qh)h =
∑

K(∇ ·wh, qh)K . Since the above spaces are H1-nonconforming we
introduce the broken norm equivalent of the L2-norm

‖u‖2
h =

∑

K

‖u‖2
K.

and the broken H1-seminorm
|u|2h =

∑

K

|u|21,K.

The local mesh size is defined by

hK := max
K

h∂K,

and we will assume that hK/h∂K < C where C is a fixed constant. We will use C and c as
generic constants taking different values every time. To indicate their provenance or main
dependence, a subscript may be added, e.g., cµ. We introduce the interpolation operator
rhu : [H1(Ω)]d → V h defined by

rhu(xe) =
1

|e|

∫

e

uds,

where xe is the midpoint of the edge e. The L2-projections onto the spaces are also
required for the analysis. Let π0,h : L2(K) → P0(K), πd

0,h : [L2(K)]d → [P0(K)]d denote

the L2-projection onto the constant functions on K and π1,h : [L2(K)]d → Vh the standard
L2-projection onto the finite element space. For the above defined interpolation operator
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and projections we need some approximation and stability properties. These, and some
inverse inequalities are collected in the following lemmas

Lemma 1. For the interpolation operator rh there holds, if u ∈ [H2(Ω)]d then

(2.3) ‖rhu − u‖h + h|rhu − u|h ≤ Crh
2.

Moreover, if ∇ · u = 0 then rhu ∈ Wh.

Proof The proof of the interpolation estimate is given by Crouzeix and Raviart [7].
The second claim is immediate noting that

∫

K

∇ · rhu dx =

∫

K

∇ · udx = 0

by the definition of the interpolant. �

Lemma 2. For the L2 projection the following H1 stability holds,

|π1,hu|h ≤ Cs‖u‖1,Ω.

For the error analysis, we shall use the following trace inequality

Lemma 3. For v ∈ H1(K) there holds

(2.4) ‖v‖2
∂K ≤ Ct

(

h−1
K ‖v‖2

K + hK‖v‖2
1,K

)

∀v ∈ H1(K),

where Ct is a constant independent of hK

We also need the following local inverse inequality.

Lemma 4. Let uh ∈ Vh where Vh is defined on a shape regular mesh then

‖∇uh‖K ≤ h−1
K Ci‖uh‖K,

with Ci independent of K.

Proof For proofs of lemmas 2–4, see , respectively, Carstensen [5], Thomée [14], and
Ciarlet [6]. � Our finite element method reads: find uh ∈ Vh such that

(2.5)

{

ah(uh, vh) + bh(ph, vh) + ju(uh, vh) = (f , vh)
bh(qh, uh) = 0

∀ (vh, qh) ∈ Vh × Qh,

where

(2.6) ah(uh, vh) = (σuh + β · ∇uh, vh)h −
1

2

∑

K

〈β · n[uh], {vh}〉∂K

+ (2µε(uh), ε(vh))h,

(2.7) bh(ph, vh) = −(ph,∇ · vh)h.
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and the jump terms take the form

(2.8)

ju(uh, v) =
∑

K

∫

∂K\∂Ω

γβh2
∂Kβh · [∇uh]βh · [∇v]ds

+
∑

K

∫

∂K

γa(µ + |β · n|h∂K)h∂K[t · ∇uh][t · ∇v]ds

+
∑

K

γa

∫

∂K

h∂K[(t · ∇uh) · n][(t · ∇v) · n]ds.

Here βh is the interpolant of β on Wh and t is a unit vector perpendicular to n. The
gradient jump term serves three purposes. It stabilizes the convective terms (the first sum
in (2.8)), it assures that Korn’s inequality is satisfied (the γaµ part of the second sum in
(2.8)), it gives additional control of the divergence inconsistency error (the third sum in
(2.8)). The last two properties can be obtained by introducing a lower order penalizing
term (see [4]), but the use of the jump of the gradient has the advantage of allowing for
one point quadrature in the implementation and from the point of view of analysis it is
practical. In the case of three space dimensions the tangent vector should be replaced by
the tangent tensor ∇uh × n. In the following we will for simplicity only consider the two
dimensional case for the tangent vectors.

Remark 1. The analysis below holds with only minor modifications if β is replaced by
βh also in the convective term. This is convenient when timestepping the Navier-Stokes
equation: β may be taken as the solution uh of the previous timestep.

In the analysis we will not distinguish between the different stabilization parameters,
they will all be denoted γ. We introduce the following shorthand notation

A[(uh, ph), (wh, qh)] = ah(uh, vh) + bh(ph, vh) − bh(qh, uh).

To simplify the analysis we will assume that the exact solution (u, p) belongs to [H 2(Ω)]d×
H1(Ω); it then follows that the formulation (2.5) enjoys the following consistency property.

Lemma 5. For u ∈ H2(Ω) and p ∈ H1(Ω) there holds

(2.9) A[(u − uh, p − ph), (vh, qh)] + ju(u − uh, vh) = R(u, p, vh)

for all (vh, qh) ∈ V h ×Qh. Where the consistency error due to the nonconforming approx-
imation is given by

R(u, p, vh) = −
1

2

∑

K

〈2µε(u) · n, [vh]〉∂K +
1

2

∑

K

〈p, [vh · n]〉∂K

Proof This is an immediate consequence of the regularity hypothesis: if u ∈ H2(Ω)
then the trace of ∇u is well defined and hence j(u, vh) = 0. The consistency error is
obtained by integration by parts,

∑

K

(2µε(u), ε(vh)) =
∑

K

(−2µ∇ · ε(u), vh) +
1

2
〈2µε(u) · n, [vh]〉∂K ,
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and

−
∑

K

(p,∇ · vh)K = (∇p, vh) −
1

2

∑

K

〈p, [vh · n]〉∂K .

�

2.1. Preliminary lemmas. In this section we will prove some preliminary results that
will facilitate the analysis. The main result of this section is lemma 6 where we show that
that the jump-term (2.8) controls the difference between the convective derivative and its
quasi interpolant on the finite element space. This lemma is the key ingredient to derive
error bounds that are independent of the Peclet number. Then we prove the coercivity of
the bilinear form. The triple norm that we will use is given by

|‖(wh, qh)‖|
2 = ‖σ1/2wh‖

2
h + |µ1/2wh|

2
h + ‖∇ · wh‖

2
h + ju(wh, wh) + cp‖qh‖

2

where cp is a constant depending on the problem parameters σ, µ, β to be specified later.
Note that although for the Crouzeix-Raviart element ∇ · uh = 0 on each triangle the
formulation must include a stabilization of the jump of the normal velocity due to the
H(div, Ω) consistency error. Therefore the triple norm must be chosen as a discrete norm
on (H(div, Ω) ∩ µ1/2[H1

0 (Ω)]d) × L2
0(Ω). The triple norm is dominated, at low Reynolds

numbers, by the H1(Ω) contribution, and at high Reynolds numbers by the part of the
jump term controlling the inconsistency in the divergence. This latter term prohibits the
decoupling of the velocities and the pressure and the order of the estimate can be no
better that the approximation properties of the pressure space. We introduce the space of
functions that are piecewise linear on each element

Yh = [{y ∈ L2(Ω) : y|K ∈ P1(K)}]d.

We now introduce a quasi interpolant based on local averages π̄h : Yh → Vh. Let xi be the
midpoint of the face shared by element K and element K ′ then

π̄hu(xi) =

{

{u(xi)} for xi an interior node
u(xi) for xi a boundary node

In the following lemma we prove that the projection error is bounded by the jumps in the
gradient.

Lemma 6. Let βh ∈ Vh and wh ∈ Vh then

‖h1/2(βh · ∇wh − π̄h(βh · ∇wh))‖
2 ≤ jβ(wh, wh)

where jβ(wh, wh) is given by

jβ(wh, wh) =
∑

K

γβ

∫

∂K\∂Ω

hKh∂K⊥(βh · [∇wh])
2ds

with h∂K⊥ denoting the triangle size perpendicular to the side on ∂K and γβ is a parameter
depending only on the number of space dimensions.
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Proof First note that (Vh · ∇)Vh ⊂ Yh so that the projection π̄h(βh · ∇wh) makes
sense. Now consider any triangle K and note that using the Crouzeix-Raviart basis func-
tions {ϕi}

d
i=1, with ϕi associated with node xi we may write

βh · ∇wh|K =
d+1
∑

i=1

βh · ∇wh(xi)ϕi(x)

and

π̄h(βh · ∇wh)|K =

d+1
∑

i=1

{βh · ∇wh(xi)}ϕi(x).

Taking the difference of the two functions in a nodal point yields

βh · ∇wh(xi)|K − {βh · ∇wh(xi)} = βh(xi) · [∇wh(xi)].

Note that if the node is on the boundary, the right hand side is zero. It follows that for
any K ∈ Th such that ∂K ∩ ∂Ω = ∅

(2.10) ‖h1/2(βh · ∇wh − π̄hβh · ∇wh)‖
2
K

=

∫

K

hK

(

d+1
∑

i=1

(βh · ∇wh(xi) − {βh · ∇wh})ϕi

)2

dx

≤

∫

K

hK

(

d+1
∑

i=1

βh · [∇wh]ϕi

)2

dx.

We now evaluate the integral using nodal point quadrature and note that since the nodes
of the Crouzeix-Raviart element are on the midpoints of the element sides this is exact for
second degree polynomials in two space dimensions, hence

(2.11) ‖h
1/2
K (βh · ∇wh − π̄hβh · ∇wh)‖

2
K =

3
∑

k=1

hK
mK

3
βh(xk) · [∇uh]

2

=
3
∑

k=1

hKh⊥
∂K

m∂Kk

6
βh(xk) · [∇uh(xk)]

2

where m∂Kk
=
∫

∂Kk
dx with ∂Kk the face associated with quadrature point k. In three

space dimensions the midpoints of the faces has to be supplemented with the six midpoints
of the edges of the tetrahedron to yield an exact quadrature formula (with weights 1/15
for the midpoints of the faces and 3/20 for the midpoints of the edges). One may then
easily show that

(2.12) ‖h
1/2
K (βh · ∇wh − π̄hβh · ∇wh)‖

2
K

≤
5

6

3
∑

k=1

hKh⊥
∂K

m∂Kk

6
(βh(xk) · [∇uh(xk)])

2
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It follows, using the Simpson quadrature formula in two dimensions and a quadrature
taking the midpoint of the face and the corner-points in three dimensions and noting that
the weight for the midpoint is d

d+1
, that

(2.13) ‖h1/2(βh · ∇wh − π̄h(βh · ∇wh))‖
2
K ≤ γd

∫

∂K

hKh∂K⊥(βh · [∇uh])
2ds.

Where γd = 1/4 in two dimensions and γd = 10/9 in three dimensions. We conclude by
taking the sum over all triangles K ∈ T noting that all boundary contributions vanishes
thanks to the definitions of the quasi interpolant. �

Remark 2. A consequence of the above proof is that the jump term edge integral may
be evaluated using midpoint quadrature on the faces. In fact the first part of the jump
operator given in (2.8) can be substituted by the discrete operator given by (2.11) in two
space dimensions and by (2.12) in three to get optimal values of the stabilization constants.
The integral formulation however still remains practical from a theoretical viewpoint since
it is consistent for H2-regular solutions.

As was pointed out in the previous section we only stabilize using the jumps in the
gradient. However we need to establish a result showing the equivalence between the
jumps in the solution and the jumps in the tangential gradient.

Lemma 7. For the interior penalty term (2.8) there holds
∑

K

‖µ1/2h−1/2[wh]‖
2
∂K ≤ cju(wh, wh),

∑

K

‖h−1/2[wh · n]‖2
∂K ≤ cju(wh, wh)

and
ju(wh, wh) ≤ cγ |wh|h

for all wh ∈ Vh.

Proof By the midpoint continuity of the Crouzeix-Raviart element we note that we
may write, with ξ a coordinate along e with midpoint ξi,

[wh(ξ)]|e = [t · ∇wh]|e(ξ − ξi)

and
[wh(ξ) · n]|e = [(t · ∇wh) · n]|e(ξ − ξi).

Hence we have
∫

e

[wh(ξ)]
2dξ =

∫

e

([t · ∇wh](ξ − ξi))
2dξ =

1

12

∫

e

h2
e[t · ∇wh]

2dξ

which proves the first claim. The proof of the second claim is equivalent. The last claim
finally is an immediate consequence of the trace inequality (2.4). �



A STABILIZED NONCONFORMING FEM 9

Lemma 8. For the consistency error the following upper bound holds

|R(u, p, vh)| ≤ (cµh‖u‖2,Ω + Ch‖p‖1,Ω) ju(vh, vh)

Proof Using the zero mean value property of the Crouzeix-Raviart space followed
by the Cauchy-Schwarz inequality we obtain

(2.14) R(u, p, vh) ≤ c

(

∑

K

‖h1/2(2µ)1/2(ε(u) · n − πd
0,hε(u) · n)‖2

∂K

)1/2

·

(

∑

K

‖µ1/2h−1/2[vh]‖
2
∂K

)1/2

+ c

(

∑

K

hK‖p − π0,hp‖
2
∂K

)1/2(
∑

K

h−1
K ‖[vh · n]‖2

∂K

)1/2

.

The claim now follows using the trace inequality (2.4), standard interpolation and lemma
7. � Let us now investigate the coercivity properties of the discretization of the

convective terms.

Lemma 9. For the convective terms there holds

(2.15) (β · ∇uh, uh)h =
1

2

∑

K

〈β · n[uh], {uh}〉

Proof The result follows by integrating by parts elementwise in the left hand side
and using the equality [xy] = [x]{y} + {x}[y]. The integration by parts yields

(2.16)
∑

K

(β · ∇uh, uh)K =
1

2

∑

K

∫

∂K

[β · nuh · uh] ds −
∑

K

(uh, β · ∇uh)K .

We rewrite the edge term in the following fashion

(2.17) [β · n uh · uh] = 2β · n[uh] · {uh}

and the proof is completed using (2.17) in (2.16). � To prove the coercivity of our

operator we also need the following discrete Korn’s inequality

Lemma 10. For wh ∈ Vh there holds

C2
K |µ1/2wh|

2
h ≤ ‖(2µ)1/2ε(wh)‖

2
h + ju(wh, wh).

Proof See Brenner [1]. �

The coercivity of our formulation is an immediate consequence of lemma 9 and lemma
10.
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Lemma 11. For all (wh, qh) ∈ Vh × Qh there holds

C2
K |µ1/2wh|

2
h + ‖σ1/2wh‖

2 ≤ A[(wh, qh), (wh, qh)]

Proof First of all notice that the terms bh(uh, ph) cancel. We may write

A[(wh, qh), (wh, qh)] = ‖σ1/2wh‖
2
h + ‖(2µ)1/2ε(wh)‖

2
h + (β · ∇wh, wh)h

−
1

2

∑

K

〈β · n[wh], {wh}〉 .

Using lemma 9 for the convective term we get

(β · ∇wh, wh) −
1

2

∑

K

〈β · n[wh], {wh}〉 = 0.

The proof is then completed by applying lemma 10. �

3. Stability

In this section we will prove an inf-sup condition for our discretization vital for the
convergence analysis.

Theorem 1. (Stability). If (uf , ph) ∈ Vh × Qh then there holds

(3.1) cis|‖(uh, ph)‖| ≤ sup
(wh,qh)∈Vh×Qh

A[(uh, ph), (wh, qh)] + ju(uh, wh)

|‖(wh, qh)‖|

where the constant cis depends only on the parameters µ,σ,β,γ and remains bounded from
below when µ → 0.

Proof We prove the above inf-sup condition in two steps. First we will prove that
there exists (wh, qh) ∈ Vh × Qh such that

(3.2) |‖(uh, ph)‖|
2 ≤ A[(uh, ph), (wh, qh)] + ju(uh, wh)

and then we conclude by proving that

|‖(wh, qh)‖| ≤ C|‖(uh, ph)‖|.

For the first step we note that by lemma 11 we have choosing wh = uh, qh = ph

(3.3) C2
K|µ1/2uh|

2
h + ‖σ1/2uh‖

2 + ju(uh, uh) ≤ A[(uh, ph), (uh, ph)] + ju(uh, uh)

To control the L2-norm of the pressure we note, following [8], that by the surjectivity of
the divergence operator there exists a function vp ∈ [H1

0 (Ω)]d such that ∇ · vp = ph and
|vp|1,Ω ≤ c‖ph‖. Therefore we now choose wh = rhvp and qh = ∇ · uh. By the stability of
the quasi interpolation operator rh we have

(3.4) ‖rhvp‖ + |rhvp|h ≤ c‖ph‖.
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Moreover, using the definition of the quasi-interpolant rhvp we have

(3.5) ‖ph‖
2 = (ph,∇ · vp) =

∑

e

〈[ph], vp · n〉e =

∑

e

〈[ph], rhvp · n〉e = (ph,∇ · rhvp)h.

As a consequence of (3.5) we may write

(3.6) A[(uh, ph), (rhvp,∇ · uh)] + ju(uh, rhvp) = ‖ph‖
2 + ‖∇ · uh‖

2

+ (σuh, rhvp) + (µ∇uh,∇rhvp)h + (β · ∇uh, rhvp)

−
1

2

∑

K

〈β · n[uh], {rhvp}〉∂K + ju(uh, rhvp).

Using Cauchy-Schwarz inequality, Young’s inequality, and the stability (3.4), we readily
deduce

(3.7) (σuh, rhvp) ≥ −cσ‖σ
1/2uh‖

2 −
1

8
‖ph‖

2,

(3.8) (2µε(uh), ε(rhvp))h ≥ −cµ|µ
1/2uh|

2
h −

1

8
‖ph‖

2,

and by applying the third inequality of lemma 7

(3.9) ju(uh, rhvp) ≥ −ju(uh, uh)
1/2ju(rhvp, rhvp)

1/2 ≥ −cγju(uh, uh) −
1

8
‖ph‖

2.

It now remains to bound the convective term. An integration by parts yields

(3.10) (β · ∇uh, rhvp) −
1

2

∑

K

〈β · n[uh], {rhvp}〉∂K

= (uh, β · ∇rhvp) −
1

2

∑

K

〈β · n{uh}, [rhvp]〉∂K

For the first term we clearly have

(3.11) (uh, β · ∇rhvp) ≥ −2c‖β‖L∞(Ω)‖uh‖‖ph‖.

For the second we use the H1-regularity of vp, the trace inequality (2.4) and the local
inverse inequality to obtain

(3.12)
1

2

∑

K

〈β · n{uh}, [rhvp − vp]〉∂K ≥ −2
∑

K

‖β‖L∞(K)‖uh‖∂K‖rhvp − vp‖∂K

≥ −2
∑

K

‖β‖L∞(K)(h
−1
K ‖uh‖

2
K + hK‖uh‖

2
1,K)1/2h

1/2
K ‖vp‖1,K

≥ −2Cic‖β‖L∞(Ω)‖uh‖ ‖ph‖.



12 ERIK BURMAN AND PETER HANSBO

Combining (3.11) and (3.12) we obtain

(3.13) (β · ∇uh, rhvp) −
1

2

∑

K

〈β · n[uh], rhvp〉∂K ≥ cβ‖uh‖
2
Ω −

1

8
‖ph‖

2.

Using now (3.7)–(3.9) and (3.13) to find a lower bound for the expression (3.6) we get

(3.14) A[(uh, ph), (rhvp,∇ · uh)] + ju(uh, rhvp) =
1

2
‖ph‖

2 + ‖∇ · uh‖
2

− Cµσβγ(‖σ
1/2uh‖

2 + |µ1/2uh|
2
h + ju(uh, uh))

where

Cµσβγ = max

(

cσ,
cβ

σ
,

cµ

C2
K

, cγ

)

.

Combining (3.3) and (3.14) we conclude that (3.2) holds for the choice

wh = uh + (2Cµσβγ)
−1rhvp, qh = ph + ∇ · uh.

More precisely we have, with cp = (2Cµσβγ)
−1,

(3.15)
1

2
|‖(uh, ph)‖|

2 ≤ A[(uh, ph), (wh, qh)] + ju(uh, wh).

It remains to prove that

|‖(wh, qh)‖| ≤ C|‖(uh, ph)‖|

this is obtained simply by noting that

(3.16) |µ1/2wh|
2
h ≤ |µ1/2uh|

2
h + |µ1/2cprhvp|

2
h ≤ |µ1/2uh|

2
h + µc2

pc‖ph‖
2.

Proceeding in the same fashion for the other terms in the triple norm yields

(3.17)

|‖(wh, qh)‖|
2 = |µ1/2wh|

2
h + ‖σ1/2wh‖

2 + ju(wh, wh) + ‖∇ · wh‖
2 + ‖qh‖

2

≤ |µ1/2uh|
2
h + ‖σ1/2uh‖

2 + j(uh, uh)
+2‖∇ · uh‖

2 + C‖ph‖
2

≤ C|‖(uh, ph)‖|
2

and we conclude that

cis|‖(uh, ph)‖||‖(wh, qh)‖| ≤ |‖(uh, ph)‖|
2 ≤ A[(uh, ph), (wh, qh)] + ju(uh, wh).

Clearly the constant cis is independent of h and furthermore it does not vanish for vanishing
µ. �
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4. Error estimates

We will now proceed to derive a priori error estimates in the triple norm. The estimate
takes the form

|‖(u − uh, p − ph)‖| ≤ Ch

The energy norm estimate is independent of the Peclet number, indicating that the pro-
posed method should be stable for a wide range of Reynolds numbers when applied to the
full Navier-Stokes equations.

Lemma 12. (Approximation) Consider the projection (π1,hu, π0,hp) of the exact solution

(u, p) ∈ [H2(Ω)]d × H1(Ω)

onto the finite element space Vh × Qh. For the projection error there holds

|‖(π1,hu − u, π0,hp − p)‖| ≤ Ch

where C ≤ c(1 + µ1/2 + |β|1/2h1/2 + σ1/2h + γ1/2)‖u‖2,Ω + cπ‖p‖1,Ω.

Proof By the optimal approximation property of the L2-projection we have

‖σ1/2(π1,hu − u)‖ ≤ cσh2

and

‖π0,hp − p‖ ≤ Ch.

We now consider rhu− π1,hu. Noting that rhu− π1,hu = π1,h(rhu−u) we obtain using
the H1-stability of the L2-projection for the Crouzeix–Raviart element on locally quasi
uniform meshes, (see [5])

(4.1) ‖∇(rhu − π1,hu)‖h ≤ Cs‖∇(rhu − u)‖h ≤ CsCrh

and we conclude that

‖µ1/2∇(u − π1,hu)‖h ≤ cµh

and

‖∇ · (u − π1,hu)‖h ≤ Ch.

Finally we estimate the penalizing term ju(π1,hu − u, π1,hu − u)

∑

K

∫

∂K

[∇(π1,hu − u)]2ds ≤ 2
∑

K

∫

∂K

(∇(π1,hu − u))2ds

≤ 2
∑

K

(h−1
K ‖∇(π1,hu − u)‖2

K + hK‖u‖2
2,K) ≤ Ch

where we have used the trace inequality (2.4) in the second inequality. We conclude that

ju(π1,hu − u, π1,hu − u)1/2 ≤ cγ1/2(1 + µ1/2 + |β|1/2h1/2)h‖u‖2,Ω

�
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Lemma 13. (Continuity). Let η = π1,hu− u and ζ = π0,hp − p be the projection error of
the velocity and the pressure respectively, then there holds

A[(η, ζ), (wh, qh)] + ju(η, wh) − R(u, p, wh)

≤ C(|‖(η, ζ)‖| + (cµ + cβh1/2)h‖u‖2,Ω + Ch‖p‖1,Ω)|‖(wh, qh)‖|

Proof Clearly we have using Cauchy-Schwarz inequality

(ση, wh) ≤ C‖σ1/2η‖|‖(wh, 0)‖| ≤ cσ|‖(η, ζ)‖||‖(wh, qh)‖|,

(2µε(η), ε(wh)) ≤ C|µ1/2η|h|‖(wh, 0)‖| ≤ cµ|‖(η, ζ)‖||‖(wh, qh)‖|.

ju(η, wh) ≤ |‖(η, ζ)‖||‖(wh, qh)‖|

We consider now the terms expressing the pressure velocity coupling. By the orthogonality
of the L2-projection π0,h we have

b(ζ, wh) = (π0,hp − p,∇ · wh)h = 0.

Using once again the Cauchy-Schwartz inequality we readily obtain

b(qh, η) = (qh,∇ · η)h ≤ |‖(wh, qh)‖| |‖(η, ζ)‖|.

It remains to treat the convective term and the nonconsistency term. Let us first con-
sider the convective term, an integration by parts yield together with the addition and
substraction of βh yields

(4.2) (β · ∇η, wh) −
1

2

∑

K

〈β · n[η], {wh}〉 = −(η, (β − βh) · ∇wh) − (η, βh · ∇wh)

+
1

2

∑

K

〈β · n, {η}[wh]〉 = I + II + III.

The first term is controlled using a local inverse inequality and a local approximation result
for β − βh.

I ≤ ‖η‖

(

∑

K

‖β‖2
W 1,∞(K)h

2
K‖∇wh‖

2

)1/2

≤ cβ‖η‖Ci‖wh‖ ≤ cβh2|‖(wh, qh)‖|‖ ‖u‖2,Ω

Using lemma 6 we have for the term II

(4.3) II = ((η, (βh · ∇wh − π̄h(βh · ∇wh)))

≤ ‖h−1/2η‖‖h1/2(βh · ∇wh − π̄h(β · ∇wh))‖

≤ γ−1/2‖h−1/2η‖ju(wh, wh) ≤ cγh
3/2|‖(wh, qh)‖| ‖u‖2,Ω.
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For the term III we obtain using the trace inequality (2.4) and the approximation prop-
erties of the L2-projection.

III ≤

(

∑

K

〈

|β · n|1/2[wh], [wh]
〉

∂K

)1/2

‖β · n‖
1/2
L∞(K)‖{η}‖∂K

≤ j(wh, wh)
1/2
∑

K

‖β · n‖
1/2
L∞(K)‖{η}‖∂K

≤ j(wh, wh)
1/2cβh3/2 ‖u‖2,Ω.

Only the nonconsistent residual remains to be bounded and we conclude the proof by
applying lemma 8. �

Theorem 2. Let (u, p) ∈ [H2(Ω)]d × H1(Ω) be the solution of (2.1) and let (uh, qh) ∈
Vh × Qh be the finite element solution of (2.5). Then there holds

(4.4) |‖(u − uh, p − ph)‖| ≤ (cσh + cµ + cβh1/2 + cγ)h‖u‖2,Ω

+ Ch‖ph‖1,Ω

Proof We will consider the discrete error eh
u = π1,hu−uh and eh

p = π0,hp− ph since
using lemma 12 we have

|‖(u − uh, p − ph)‖| ≤ |‖(u − π1,hu, p − π0,hp)‖|

+ |‖(π1,hu − uh, π0,hp − ph)‖|

≤ Ch + |‖(π1,hu − uh, π0,hp − ph)‖|

where C is the constant given in lemma 12. By lemma 1 we have

(4.5) cis|‖(e
h
u, e

h
p)‖| ≤

A[(eh
u, e

h
p), (wh, qh)] + ju(e

h
u, wh)

|‖(wh, qh)‖|

Using now Galerkin orthogonality we may write

(4.6) cis|‖(e
h
u, e

h
p)‖| ≤

A[(η, ζ), (wh, qh)] + ju(η, wh) − R(u, p, wh)

|‖(wh, qh)‖|

where η = π1,hu−u and ζ = π0,hp− p. We conclude the proof by applying lemma 13 and
lemma 12. �

Remark 3. Since the estimate is only first order, due to the low order approximation
of the pressure and the inclusion of the divergence in the triple norm, the virtues of the
streamline stabilization are not obvious. We could in fact proceed with an inverse inequality
in term II of (4.2) and still have the same formal convergence order of the triple norm.
It is however known that this would destroy stability of the velocities for problems with
important gradients. This is illustrated in the numerical section.
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As we mentioned in the introduction the interior penalty method is independent of the
Reynolds number. Of course, for low local Reynolds number the numerical scheme is stable
without stabilization (except for the Korn’s inequality), so that the stabilization may be
eliminated. We will however show that this is unnecessary for our discretization by proving
that even when keeping the stabilizing terms our discretization has optimal L2-convergence
of the velocities in the local low Reynolds number regime in spite of the fact that γβ is
independent of µ. Consider the dual continuous problem of seeking φ ∈ [H1

0 (Ω)] and
r ∈ L2

0(Ω) such that

(4.7)
σφ − β · ∇φ − 2µ∇ · ε(φ) + ∇r = e in Ω,

∇ · φ = 0 in Ω

where e := u − uh, and assume that we have the regularity estimate

(4.8) ‖φ‖H2(Ω) + ‖r‖H1(Ω) ≤ ‖e‖.

We recall that since uh ∈ Wh and rhφh ∈ Wh we have ∇ · e = 0 and ∇ · (φ − rhφ) = 0
elementwise. Multiply the first line of (4.7) by e and integrate by parts to obtain

‖e‖2 = ah(e, φ) + ju(e, φ) −
∑

K

〈2 µn · ε(φ), [e]〉∂K +
∑

K

〈r, [n · e]〉∂K.

Where we have used the partial integration

−(e, β · ∇φ) =
∑

K(β · ∇e, φ)K −
∑

K 〈β · ne, φ〉∂K

=
∑

K(β · ∇e, φ)K − 1
2

∑

K 〈β · n[e], {φ}〉∂K

and the divergence free property of the error and of φ. Using Galerkin orthogonality,
the divergence free property of the interpolant and the zero mean value property of the
Crouzeix-Raviart element, we obtain

‖e‖2 = ah(e, φ − rhφ) + ju(e, φ − rhφ)

−
∑

K〈2 µ(n · ε(φ) − πd
0,hn · ε(φ)), [e]〉∂K

−
∑

K〈2 µ(n · ε(φ) − πd
0,hn · ε(φ)), [φ − rhφ]〉∂K

+
∑

K〈r − π0,hr, [n · e]〉∂K

+
∑

K〈p − π0,hp, [n · (φ − rhφ)]〉∂K

≤ |‖(e, 0)‖| |‖(φ− rhφ, 0)‖| + cβju(e, e)1/2 (
∑

K ‖φ − rhφ‖2
∂K)

1/2

+
(

∑

K hK‖2µ1/2(n · ε(φ) − πd
0,hn · ε(φ))‖2

L2(∂K)

)1/2

|‖(e, 0)‖|

+
(
∑

K hK‖r − π0,hr‖L2(∂K)

)1/2
|‖(e, 0)‖|

+
(

∑

K hK‖2µ1/2(n · ε(φ) − πd
0,hn · ε(φ))‖2

L2(∂K)

)1/2

|‖(φ − rhφ, 0)‖|

+
(
∑

K hK‖p − π0,hp‖L2(∂K)

)1/2
|‖(φ − rhφ, 0)‖|.
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Using lemma 12, the trace inequality (2.4) and error estimates for rh and for piecewise
constant interpolation, we arrive at

‖e‖2 ≤ Ch
(

|‖(e, 0)‖| + h‖u‖H2(Ω) + h‖p‖H1(Ω)

) (

‖φ‖H2(Ω) + ‖r‖H1(Ω)

)

,

and thus we have

Theorem 3. Under the regularity assumption (4.8), the L2–error in the velocities can be
estimated as

(4.9) ‖e‖ ≤ Ch2
(

‖u‖H2(Ω) + ‖p‖H1(Ω)

)

.

5. Numerical results

5.1. Convergence study in the case of small viscosity. Let

λ = (µ−1 − (µ−2 + 16π2)1/2)/2.

Then the exact solution to (2.1) is given by

u1(x1, x2) = 1 − eλx1 cos 2π x2,
u2(x1, x2) = λx1

2π
eλ sin 2π x2,

p = 1
2
e2λx + C,

with β = u, σ = 0 and a right hand side matching the exact solution. In our examples,
we also chose C to give zero mean pressure. We solved this problem approximatively on
Ω = (−1/2, 3/2) × (0, 2), using stability parameters γu = γ = 1/100 and γβ = 1/4.

In Figure 1 we show the convergence for µ = 10−3, and in Figure 2 for µ = 10−5. Note
that the absolute value of the pressure decreases linearly with the inverse of µ in L2, which
is why the absolute error in pressure is smaller in Fig. 2.
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Figure 1. Convergence for µ = 10−3
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Figure 2. Convergence for µ = 10−5

5.2. Stability in the Navier-Stokes case. We show the influence of the different sta-
bilizing terms for the lid-driven cavity flow in Ω = (0, 1) × (0, 1) and with µ = 10−3. In
Figure 3 we show the numerical solution of Navier-Stokes equations (with β = u) after 15
fixed point iterations, we present the solution using only upwind fluxes, as well as the fully
stabilized solution. Note that we do not get a wiggle free solution without the jump in
the convective derivative. On the other hand, in Figure 4 we show the solution obtained
using only the jump in convective derivative as stabilization. This solution is markedly
less diffusive, yet still completely stable.

Figure 3. Approximate solution of the velocities, left:with fluxes only and
right: with fluxes plus jump of the convective derivative.

5.3. Navier-Stokes flow over a step. Finally, we give an example of Navier–Stokes
flow over a step using increasing Reynolds numbers. The computational domain is given
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Figure 4. Approximate solution of the velocities with jump of the convec-
tive derivative only.

by Ω = (0, 4) × (0, 1) \ (1.2, 1.6) × (0, 0.4), and the boundary conditions are: u = (0, 0)
at the upper and lower parts of ∂Ω; u = (4 x2 (1 − x2), 0) at the inflow; natural boundary
condition at outflow (not traction free: the viscous operator was written as −µ∆u for this
example).

We give the velocities and pressures (shown L2–projected onto the continuous space
{v ∈ C0(Ω) : v|K ∈ P1(K), ∀K ∈ Th} for ease of presentation) computed without the
edge fluxes, and compare in Figure 8 with a computation with fluxes. Clearly, the fluxes
introduce too much artificial viscosity into the method (at least when combined with the
gradient jumps). This could be improved by tuning the gradient jump parameter, but the
conclusion is that the flux terms are indeed not necessary.

6. Conclusion

We have studied a nonconforming stabilized finite element method for incompressible
flow. The velocities were approximated using the Crouzeix-Raviart element and the pres-
sures were chosen as piecewise constants. The numerical scheme proposed is of interior
penalty type and remains stable in all flow regimes without streamline-diffusion type sta-
bilization. Instead we stabilize the jump in the streamline derivative between adjacent
elements. We prove that this stabilization controls the part of the streamline derivative
which is not already in the approximating space, allowing an optimal order a priori error
estimate in the energy norm which is uniform in the Peclet (Reynolds) number. Moreover
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Figure 5. Approximate solution of the velocities and pressures at Reynolds
number 100.

Figure 6. Approximate solution of the velocities and pressures at Reynolds
number 1000.

the stabilizing term has the right asymptotic behaviour in the low Peclet regime and op-
timal order L2 estimates for the velcities are proved in this case. We present numerical
results for different Reynolds numbers showing the robustness of the method and indicating
optimal convergence of the error in the L2-norm. We also test the stability of the scheme
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Figure 7. Approximate solution of the velocities and pressures at Reynolds
number 10000.

Figure 8. Approximate solution of the velocities and pressures at Reynolds
number 10000, with fluxes.

on the lid-driven cavity flow and observe that the jumps in the streamline gradient is the
most important stabilizing term.
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We believe that this scheme offers an attractive alternative to the ones proposed in [13]
and in [11]. We have stability for all Reynolds numbers and may still lump mass for efficient
timestepping.

7. Acknowledgements

This paper was written while the second author was a guest of the Bernoulli center at
the Ecole Polytechnique Fédérale de Lausanne, working within a program for the modeling
of cardiovascular flow. The support of the Bernoulli center is gratefully acknowledged.

References

[1] S. Brenner. Korn’s inequalities for piecewise H
1 vector fields. to appear in Math. Comp. 2004.

[2] E. Burman. A unified analysis for conforming and non-conforming stabilized finite element methods
using interior penalty. Preprint, 2003, availiable at http://dmawww.epfl.ch/∼burman

[3] E. Burman and P. Hansbo. Edge stabilization for Galerkin approximations of convection–diffusion–
reaction problems. to appear in Comput. Methods Appl. Mech. Engrg., 2004.

[4] E. Burman and P. Hansbo. Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem.
Preprint 2003–15, Chalmers Finite Element Center, 2003.

[5] C. Carstensen. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H
1-

stability of the L
2-projection onto finite element spaces. Math. Comp., 71(237):157–163, 2002.

[6] P. Ciarlet. The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
[7] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving

the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér.
Rouge, 7(R-3):33–75, 1973.

[8] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, Springer-Verlag,
Berlin, 1986.

[9] V. John, G. Matthies, F. Schieweck, and L. Tobiska. A streamline-diffusion method for nonconform-
ing finite element approximations applied to convection-diffusion problems. Comput. Methods Appl.
Mech. Engrg., 166(1-2):85–97, 1998.

[10] V. John, J. M. Maubach, and L. Tobiska. Nonconforming streamline-diffusion-finite-element-methods
for convection-diffusion problems. Numer. Math., 78(2):165–188, 1997.

[11] G. Lube and L. Tobiska. A nonconforming finite element method of streamline diffusion type for the
incompressible Navier-Stokes equations. J. Comput. Math., 8(2):147–158, 1990.

[12] G. Matthies and L. Tobiska. The streamline-diffusion method for conforming and nonconforming finite
elements of lowest order applied to convection-diffusion problems. Computing, 66(4):343–364, 2001.

[13] Roger Temam. Navier-Stokes equations, North-Holland, Amsterdam, 1984.
[14] Vidar Thomée. Galerkin finite element methods for parabolic problems, Springer-Verlag, Berlin, 1997.



A STABILIZED NONCONFORMING FEM 23

Chalmers Finite Element Center Preprints

2003–01 A hybrid method for elastic waves
L.Beilina

2003–02 Application of the local nonobtuse tetrahedral refinement techniques near
Fichera-like corners
L.Beilina, S.Korotov and M. Kř́ıžek
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