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SE–412 96 Göteborg Sweden
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ON THE UNIQUENESS OF WEAK SOLUTIONS

OF NAVIER-STOKES EQUATIONS:

REMARKS ON A CLAY INSTITUTE PRIZE PROBLEM

JOHAN HOFFMAN AND CLAES JOHNSON

Abstract. We consider the Clay Institute Prize Problem asking for a mathematical
analytical proof of existence, smoothness and uniqueness (or a converse) of solutions to
the incompressible Navier-Stokes equations. We argue that the present formulation of the
Prize Problem asking for a strong solution is not reasonable in the case of turbulent flow
always occuring for higher Reynolds numbers, and we propose to focus instead on weak
solutions. Since weak solutions are known to exist by a basic result by J. Leray from 1934,
only the uniqueness of weak solutions remains as an open problem. To seek to give some
answer we propose to reformulate this problem in computational form as follows: For a
given flow what quantity of interest can be computed to what tolerance to what cost?
We give computational evidence that quantities of interest (or output quantitites) such
as the mean value in time of the drag force of a bluff body subject to a turbulent high
Reynolds number flow, is computable on a PC up to a tolerance of a few percent. We also
give evidence that the drag force at a specific point in time is uncomputable even on a
very high performance computer. We couple this evidence to the question of uniqueness
of weak solutions to the Navier-stokes equations, and thus give computational evidence
of both uniqueness and non-uniqueness in outputs of weak solutions. The basic tool of
investigation is a representation of the output error in terms of the residual of a computed
solution and the solution of an associated linear dual problem acting as a weight. By
computing the dual solution coupled to a certain output and measuring the energy-norm
of the dual velocity, we get quantitiative information of computability of different outputs,
and thus information on output uniqueness of weak solutions.

1. Introduction

One of the Clay Institute $1 million Prize Problems concerns the existence, uniqueness
and smoothness of solutions to the Navier-Stokes equations for incompressible fluid flow.
The Navier-Stokes equations take the form of an initial value problem for a set of partial
differential equations expressing conservation of momentum and mass. The existence of at
least one weak solution for a given set of data, was proved by J. Leray 1934 [7]. A weak
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2 JOHAN HOFFMAN AND CLAES JOHNSON

solution satisfies the Navier-Stokes partial differential equations in an average sense, while
a strong solution or smooth solution is required to satisfy the equations in a pointwise
sense. A strong solution is also a weak solution, but a weak solution may not be a strong
solution.

Leray also referred to the weak solution he proved to exist as a turbulent solution. Leray
could not prove the uniqueness of a weak (turbulent) solution, neither could he prove
existence of a strong solution. Despite heavy efforts by many excellent mathematicians,
little improvements on Leray’s result have been made. Today the following problems are
open:

• (PS) Is there a unique strong (smooth) solution to the Navier-Stokes equations?
• (PW) Is a weak solution of the Navier-Stokes equations unique?

The Clay Prize Problem concerns the mathematical proof of existence (or non-existence)
of strong solutions, which we may summarize in (PS), as formulated by C. Fefferman in
[2]. We remark that uniqueness of a strong (smooth) solution is considered easy to prove
mathematically, so (PS) may be reduced to the question of existence (or non-existence) of
strong solutions.

The purpose of this note is to propose an approach to the Clay Prize Problem using
modern computational methods. The idea is thus to give input to the question of existence
and uniqueness of solutions to the Navier-Stokes equations by computing approximate
solutions and studying their uniqueness by computational means. Fefferman asks in [2] for
“deep new ideas” to approach the Clay Prize Problem, and even if computational methods
may not be so “deep”, we believe they may indeed offer some new perspectives. Using a
computational approach we may study the question of existence and uniqueness for a set
of specific cases with given data, which may be representative for a wider selection of data,
but we will not be able to give one answer for all possible data, as the ideal analytical
mathematical proof would give. We are thus restricted to a case by case study, and a
reformulation of the Prize Problem as a set of 103 Prizes each of $103, would seem more
natural.

Before further scrutinizing the two problems formulated above, we recall that the Reynolds

number Re = UL
ν

, where U is a characteristic flow velocity, L a characteristic length scale,
and ν > 0 the viscosity of the fluid, may be used to characterize different flow regimes. If
Re is relatively small (Re ≤ 10−100), then the flow is viscous and the flow field is ordered
and smooth or laminar, while for larger Re, the flow will at least partly be turbulent with
time-dependent non-ordered features on a range of length scales down to a smallest scale
(which may be estimated to be of size Re−3/4, assuming L = 1). We may expect a laminar
flow to be determined pointwise in space-time, while in a turbulent flow, because of its
rapid fluctuations, we can only expect various mean values to be uniquely determined. In
many applications of scientific and industrial importance Re is very large, of the order 106

or larger, and the flow shows a combination of laminar and turbulent features.
An example, to which we will return below, is the flow of air around our car when we are

traveling at say 60 mph, which is an example of the flow around a bluff body, that is a body
which is not very streamlined, at Re ≈ 106. We know from observation that there is a large
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volume behind the car (the “wake”) where the air flow is very irregular (turbulent) and
seemingly unpredictive in a pointwise sense. A corresponding solution to the Navier-Stokes
equations would be non-smooth signifying that derivatives of the solution would be very
large corresponding to a rapidly fluctuating solution.

Below we shall give also computational evidence of the existence of turbulent solutions.
So even if we cannot analytically construct turbulent solutions to the Navier-Stokes equa-
tions, we can observe turbulent flow in real life and we can also compute approximate
solutions which are turbulent. Of course it is natural to expect that computed solutions
approximate the weak (turbulent) solutions proved to exist by Leray.

In this note we now focus on flows at moderate to large Reynolds numbers, where we thus
expect to meet both laminar and turbulent flow features. Normalizing the flow velocity U
and the lenght scale L both to one, we thus focus on flows with small vicosity ν, say typically
ν ≤ 10−6. We then can argue that (PS) does not seem to give a reasonable formulation
of the Clay Prize Problem, because the answer is either trivial or impossible to give. The
reason is of course that a turbulent flow is non-smooth and it would seem impossible to
uniquely define the exact value of the velocity at a specific point in space-time, as would
be required for a strong solution. Thus, because turbulent fluid flow is observed to exist
both experimentally and computationally and it appears that the Navier-Stokes equations
describe fluid flow, we seem to have clear evidence that strong (smooth) solutions to the
Navier-Stokes do not exist in general. So the answer to (PS) would simply be that smooth
solutions cannot exist in general, and (PS) would then be solved almost without effort (in
the negative sense).

At this point we may have to remark that there may be some (pure) mathematicians
who would insist that a turbulent solution could be viewed as a smooth solution with
possibly very large derivatives, which indeed would satsify the Navier-Stokes equations in
a strong sense. The formulation of the Clay Prize Problem given in [2] indicates that indeed
Fefferman may take this standpoint. However, we believe that this point of view is not
scientifically reasonable because of the extreme sensitivity of pointwise values of a turbulent
flow to small perturbations, which effectively makes it impossible to determine a unique
velocity and pressure at a specific point in space-time. This couples to the suggested (very
simple) proof of uniqueness of smooth solutions which would use a standard Gronwall-type
argument involving a constant of the form eKT where K would measure the size of the first
derivatives of the velocity. There is evidence that in a turbulent flow we typically have
K ∼ Re1/2, and thus with Re = 106 and T = 1, we would have to deal with amplification
factors of size e1000, which is a number beyond any comprehension, and a corresponding
uniqueness proof would have no scientific meaning. We shall below also give computational
evidence of strong pointwise sensitivity in turbulent flows. Altogether, we believe that from
a scientific point of view it is not reasonable to maintain that a turbulent solution may
mathematically be viewed as a smooth solution with large derivatives and very strong
sensitive to perturbations. We thus believe, following Leray, that a turbulent solution
has to be viewed as a weak solution of the Navier-Stokes equations. In mathematical
terms we may express the strong pointwise sensitivity in turbulent flow, as follows: The
Navier-Stokes equations are not well-posed in a strong sense in the case of turbulent flow.
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Having now discarded (PS) as trivial and thus not correctly posed as a Clay Prize
Problem, we now focus on (PW) instead: Is a weak solution unique? To attempt to
give some (partial) answer, we have to make the uniqueness question more precise. This
is because from our experience of turbulent flow, we cannot hope a flow to be uniquely
determined in a pointwise sense in space-time, and we must therefore seek some less precise
way of measuring uniqueness. As already indicated, it is then natural to consider instead
of pointwise quantities some more or less local mean values in space-time. More precisely,
we choose as a quantity of interest or output a certain mean value. In the case of the car it
may be a meanvalue in time of the total drag force D(t) at time t acting on the car in the
direction opposite to the motion of the car. The consumption of fuel of a car is directly
related to the mean value in time of the drag force D(t), which suitably normalized is
referred to as the cD-coefficient, or drag coefficient. Some car manufacturers like to present
the cD of a certain car as an indication of fuel economy (for example cD < 0.3). For a
jumbo-jet a decrease in drag with one percent could save $400 million in fuel cost over a
25 year life span.

So we may ask, for example, if the cD of a car would be uniquely determined? Or in the
setting of weak solutions: Will two weak solutions give the same cD? The corresponding
normalized mean value in time of the total force perpendicular to the direction of motion
is referred as the lift coefficient cL, which is crucial for flying vehicles (or sailing boats and
also very fast cars).

We will approach this type of problem by computational methods, and it is then natural
to rephraze the problem as a problem of computability. We then specify an output, an
error tolerance TOL, a certain amount of computational work W (or computational cost),
and we ask if we can compute the output up to the tolerance TOL with the available work
W. For example, we may ask if we can compute the cD-coefficient of a specific car up to a
tolerance of 5% on our PC within 1 hour?

More generally we propose the following formulation of the Clay Prize Problem:

• (PC) For a given flow, what output can be computed to what tolerance to what
cost?

We may view (PC) as a computational version of a variant of (PW) of the form:

• (PWO) Is the output of a weak solution unique?

(PWO) can alternatively be phrazed as a question of well-posedness in a weak sense. We
refer to (PWO) as a question of weak uniqueness with respect to a given output. Below we
will approach the questions of weak uniqueness of the mean value cD and the momentary
value D(t) of the drag force. Of course, (PWO) couples to the concept observable quantities

of basic relevance in physic. It may seem that only uniqueness of observable quantities could
be the subject of scientific investigation. This couples to questions of classical vs quantum
mechanics, e.g. the question if an electron can be located at a specific point in time and
space.

We will now address (PC) using the technique of adaptive finite element methods with
a posteriori error estimation based on duality developed in [5, 6]. The a posteriori error
estimate results from an error representation expressing the output error as a space-time
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integral of the residual of a computed solution multiplied with weights which related to
derivatives of the solution of an associated dual problem. The weights express sensitivity

of a certain output with respect to the residual of a computed solution, and their size
determine the degree of computability of a certain output: The larger the weights are, the
smaller the residual has to be and the more work is required. In general the weights increase
as the size of the mean value in the output decreases, indicating increasing computational
cost for more local quantities. We give computational evidence in a bluff body problem
that a mean value in time of the drag (the cD) is computable to a reasonable tolerance
at a reasonable computational cost, while the value of the drag at a specific point in time
appears to be uncomputable even at a very high computational cost.

We can rephrase this result for (PC) as the following result for (PWO): Two weak solu-
tions of a bluff body problem give the same cD. At least we have then given computational
evidence of a certain output uniqueness of weak solutions.

As a general remark on approximate solutions obtained using the finite element method,
we recall that a finite element solution is set up to be an approximate weak solution, and
thus there is a strong connection between finite element solutions and weak solutions.

Lerays proof of existence of weak solutions is based on a basic energy estimate for ap-
proximate solutions of the Navier-Stokes equations, which could be finite element solutions.
Using the the basic energy estimate one may extract a weakly convergent subsequence of
approximate solutions as the mesh size tends to zero, and this way obtain a proof of exis-
tence of a weak solution. Even if the finite element solution on each given mesh is unique,
a weak limit of a sequence of finite element solutions does not have to be unique, and thus
the Leray solution is not necessarily unique. Of course, with this perspective the ques-
tions (PWO) and (PC) become closely coupled: (PWO) is close to the question of output
uniqueness of a weak limit of a sequence of finite element solutions, which is close to the
output computability (PC).

2. The Navier-Stokes equations

The Navier-Stokes equations for an incompressible fluid with constant kinematic viscos-
ity ν > 0 occupying a volume Ω in R

3 with boundary Γ, take the form:

(2.1)

u̇+ (u · ∇)u− ν∆u + ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,

u = 0 on Γ × I,
u(·, 0) = u0 in Ω,

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the velocity and p(x, t) the pressure of the fluid
at (x, t) = (x1, x2, x3, t), and f(x, t), u0(x), I = (0, T ), is a given driving force, initial data
and time interval, respectively. For simplicity and definiteness we assume homogeneous
Dirichlet boundary conditions for the velocity.

The first equation in (2.1) expresses conservation of momentum (Newton’s Second Law)
and the second equation expresses conservation of mass in the form of incompressibility.

The Navier-Stokes equations formulated 1821-45 appear to give an accurate description
of fluid flow including both laminar and turbulent flow features. Computational Fluid
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Dynamics CFD concerns the computational simulation of fluid flow by solving the Navier-
Stokes equations numerically. To computationally resolve all the features of a flow in a
Direct Numerical Simulation DNS seems to require of the order Re3 mesh points in space
time, so already a flow at Re = 106 would require Re3 = 1018 mesh points in space-time,
and thus would seem to be impossible to solve on any forseeable computer.

The computational challenge is to compute high Reynolds number flows (e.g Re = 106)
using less computational effort than in a DNS. We shall see that for certain mean value
outputs such as the cD or cL coefficients, this indeed appears to be possible: We give
evidence that the cD and cL of a surface mounted cube may be computed on a PC up to
a tolerance of a few percent (but not less).

3. The Basic Energy Estimate for the Navier-Stokes Equations

We now derive a basic stability estimate of energy type for the velocity u of the Navier-
Stokes equations (2.1), assuming for simplicity that f = 0. This is about the only analytical
a priori estimate which is known for the Navier-Stokes equations, and in [2] Fefferman is
asking for some “new deep ideas” to get further.

Scalar multiplication of the momentum equation by u and integration with respect to x
gives

1

2

d

dt

∫
Ω

|u|2 dx+ ν
3∑

i=1

∫
Ω

|∇ui|2 dx = 0,

because by partial integration (with boundary terms vanishing),∫
Ω

∇p · u dx = −
∫

Ω

p∇ · u dx = 0

and ∫
Ω

(u · ∇)u · u dx = −
∫

Ω

(u · ∇)u · u dx−
∫

Ω

∇ · u|u|2 dx

so that ∫
Ω

(u · ∇)u · u dx = 0.

Integrating next with respect to time, we thus obtain the following basic a priori stability
estimate for T > 0:

‖u(·, T )‖2 +Dν(u, T ) = ‖u0‖2,

Dν(u, T ) = ν
3∑

i=1

∫ T

0

‖∇ui‖2 dt,
(3.1)

where ‖ · ‖ denotes the L2(Ω)-norm. This estimate gives a bound on the kinetic energy of
the velocity with Dν(u, T ) representing the total dissipation from the viscosity of the fluid
over the time interval [0, T ]. We see that the growth of this term with time corresponds to
a decrease of the velocity (momentum) of the flow (with f = 0).
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The characteristic feature of a turbulent flow is that Dν(u, T ) is comparatively large,
while in a laminar flow with ν small, Dν(u, T ) is small. With Dν(u, T ) ∼ 1 in a turbulent
flow and |∇u| uniformly distributed, we may expect to have pointwise

(3.2) |∇ui| ∼ ν−1/2.

4. Weak solutions

From the basic energy estimate, Leray derived the existence of a weak solution (u, p) ∈
V ×Q of the Navier-Stokes equations defined by:

Rν(u, p; v, q) ≡((u̇, v)) + ((u · ∇u, v)) − ((∇ · v, p)) + ((∇ · u, q))
+ ((ν∇u,∇v)) − ((f, v)) = 0 ∀(v, q) ∈ V ×Q,

(4.1)

assuming u(0) = u0 ∈ L2(Ω)3 and f ∈ L2(I;H
−1(Ω)3), where

V = {v : v ∈ L2(I;H
1
0(Ω)3), v̇ ∈ L2(I;H

−1(Ω)3)},
Q = L2(I;L2(Ω)),

where H1
0 (Ω)3 is the usual Sobolev space of vector functions being square integrable to-

gether with their first derivatives over Ω, with dual H−1(Ω)3, and ((·, ·)) denoting the
corresponding L2(I;L2(Ω)) inner product or pairing. As usual, L2(I;X) with X a Hilbert
space denotes the set of functions v : I → X which are square integrable. Below we
write L2(X) instead of L2(I;X) and L2(H

1) and L2(H
−1) instead of L2(H

1
0 (Ω)3) and

L2(H
−1(Ω)3). Note that the term ((u · ∇u, v)) is interpreted as −

∑
i,j((uiuj, vj,i)), where

vj,i = ∂vj/∂xi.

5. Computational solution

We now consider a computational solution of the Navier-Stokes equations. In [5, 6] we
have developed stabilized Galerkin methods for solving the Navier-Stokes equations based
on the weak formulation (4.1). Without here going into details of the construction of
these methods, which we refer to as Generalized Galerkin or G2, we can describe these
methods as producing an approximate solution (uh, ph) ∈ Vh × Qh, where Vh × Qh is a
piecewise polynomial finite element subspace of V ×Q defined on space-time meshes with
h representing the mesh size in space-time, defined by the following discrete analog of (4.1)

(5.1) Rh(uh, ph; v, q) = 0 for all (v, q) ∈ Vh ×Qh,

expressing that the discrete residual Rh(uh, ph) = Rh(uh, ph : ·, ·) is orthogonal to Vh ×Qh.
Note that in the finite element method (5.1) we use an artificial viscosity of size h instead
of the physical viscosity ν assuming h > ν. There are other more sophisticated ways of
introducing a (necessary) artificial viscosity coupled to weighted least squares stabiliztion
in G2, but here we consider the simplest form of stabilization.

The finite element solution satisfies an energy estimate analogous to (3.1) of the form

(5.2) ‖
√
h∇uh‖ ≤ C,
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where ‖ · ‖ denotes the L2(L2)-norm, which follows by choosing (v, q) = (uh, ph) in (5.1).
Here and below, C is a positive constant of unit size.

We will see below that to estimate an output error, we will have to estimate
Rν(uh, ph;ϕh, θh), where (ϕh, θh) is the solution of a certain linear dual problem with data
connected to the output. In general, (ϕh, θh) will not belong to the finite element subspace,
and we will thus need to estimate Rν(uh, ph;ϕh, θh). The basic estimate for this quantity
takes the form

(5.3) |Rν(uh, ph;ϕh, θh)| ≤ C
√
h‖ϕh‖L2(H1),

if we omit the relevant θh-term assuming exact incompressibility, and C denotes a constant
of moderate size. To motivate this estimate, we observe that estimating separately the
dissipative term in G2 (with viscosity h) using the energy estimate (5.2), we get by Cauchy’s
inequality

|((h∇uh,∇ϕ))| ≤ ‖
√
h∇uh‖‖

√
h∇ϕ‖ ≤ C

√
h‖ϕ‖L2(H1).

One can now argue that the remaining part of the residual can be estimated similarly,
which leads to (5.3). We conclude that we expect the residual of (uh, ph) to be small (of
size h1/2) in a weak norm. However, we cannot expect the residual to be small in a strong
sense: We would except the residual in an L2-sense to be of size h−1/2 reflecting the basic
energy estimate (5.2), which suggests that |∇uh| ∼ h−1/2 paralleling (3.2).

6. Output error representation

We now proceed to estimate the error in certain mean value outputs of a computed finite
element solution (uh, ph) as compared to the output of a weak solution (u, p). We then
consider an output of the form

M(u) = ((u, ψ))

where ψ ∈ L2(L2) is a given (smooth) function. The output M(u) then corresponds to a
mean value in space and time of the velocity u with the function ψ appearing as a weight.
We then establish an error representation in terms of the residual of the computed solution
and the solution (ϕh, θh) of a certain linear dual problem (with coefficients depending on
both u and uh) to be specified below, of the form

(6.1) M(u) −M(uh) = Rν(uh, ph;ϕh, θh).

We can then attempt to estimate the output error by using (5.3) to get

(6.2) |M(u) −M(uh)| ≤ C
√
h‖ϕh‖L2(H1),

and the crucial question will thus concern the size of ‖ϕh‖L2(H1). More precisely, we com-
pute (an approximation of) the dual solution (ϕh, θh) and directly evaluateRν(uh, ph;ϕh, θh),
but we may use (6.2) to get a rough idea on the dependence of M(u)−M(uh) on the mesh
size h. We will then obtain convergence in output if, roughly speaking, ‖ϕh‖L2(H1) grows

slower than h−1/2.
We need here to make the role of h vs ν more precise. We assume that ν is quite small,

say ν ≤ 10−6 so that it is inconceivable that in computation we could reach h ≤ ν; we
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would rather have 10−4 ≤ h ≤ 10−2. In the finite element method we use an artificial
viscosity of size h instead of the physical viscosity ν and thus computing on a sequence of
meshes with decreasing h, could be seen as computing a sequence of solutions to problems
with decreasing effective viscosity of size h. We would then be interested in the “limit”
with h = ν, and we would by observing the convergence (or divergence) for h > ν seek to
draw a conclusion concerning the case h = ν. So, in the computational examples to be
presented we compute on a sequence of successively refined meshes with decreasing h and
we evaluate the quantity Rν(uh, ph;ϕh, θh) to seek to determine convergence (or divergence)
for a specific output.

7. The dual problem

The dual problem takes the following form, starting from a finite element solution (uh, ph)
and a weak solution (u, p) with ψ a given (smooth) function: Find (ϕh, θh) with ϕh = 0 on
Γ, such that

(7.1)
−ϕ̇h − (u · ∇)ϕh + ∇uh · ϕh − ν∆ϕh + ∇θh = ψ in Ω × I,

divϕh = 0 in Ω × I,
ϕh(·, T ) = 0 in Ω,

where (∇uh · ϕh)j = (uh),j · ϕh. This is a linear convection-diffusion-reaction problem,
where the time variable runs “backwards” in time with initial value (= 0) given at final
time T . The reaction coefficient ∇uh is large and highly fluctuating, and the convection
velocity u is of unit size and is also fluctuating. A standard Gronwall type estimate of the
solution (ϕh, θh) in terms of the data ψ would bring in an exponential factor eKT with K a
pointwise bound of |∇uh| which would be enormous, as indicated above. When we compute
the solution (ϕh, θh) we note that (ϕh, θh) does not seem to explode exponentially at all,
as would be indicated by Gronwall. Intuitively, by cancellation in the reaction term, with
roughly as much production as consumption, (ϕh, θh) grows very slowly with deceasing h,
and as we have said, the crucial question will be the growth of the quantity ‖ϕh‖L2(H1).

To establish the error representation (6.1) we multiply (7.1) by u − uh, integrate by
parts, and use the fact that

(u · ∇)u− (uh · ∇)uh = (u · ∇)e+ ∇uh · e
where e = u− uh.

In the computation, we have to replace the convection velocity u by the computed
velocity uh. We don’t expect uh to necessarily be close pointwise to u, so we have to deal
with the effect of a large perturbation in the dual linear problem. In the computations
we get evidence that the effect on a crucial quantity like ‖ϕh‖L2(H1) may be rather small,
if the output is cD or cL. More precisely, our computations show in these cases a quite
slow logarithmic growth of ‖ϕh‖L2(H1) in terms of 1/h, which indicates that the large
perturbation in u indeed has little influence on the error representation for cD and cL.

The net result is that we get evidence of output uniqueness of weak solutions in the case
the output is cD or cL. We contrast this with computational evidence that an output of
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the momentary drag D(t) for a given specific point in time t, is not uniquely determined
by a weak solution.

8. Output uniqueness of weak solutions

Suppose we have two weak solutions (u, p) and (û, p̂) of the Navier Stokes equations
with the same data. Let (ϕh, θh) be a corresponding dual solution defined by the dual
equation (7.1) with uh replaced by û and a given output (given by the function ψ). Output
uniqueness will then hold if ‖ϕh‖L2(H1) <∞.

In practice, we will seek to compute ‖ϕh‖L2(H1) approximatively, replacing both u and û
as coefficients in the dual problem by a computed solution uh, thus obtaining an approx-
imate dual velocity ϕh. We then study ‖ϕh‖L2(H1) as h decreases and we extrapolate to
h = ν. If the extrapolated value ‖ϕν‖L2(H1) <∞, or rather is not too large, then we have
evidence of output uniqueness. If the extrapolated value is very large, we get indication of
output non-uniqueness. As a crude test of largeness of ‖ϕν‖L2(H1), it appears natural to

use ‖ϕν‖L2(H1) >> ν−1/2.
We may further use a slow growth of ‖ϕh‖L2(H1) as evidence that it is possible to replace

both u and û by uh in the computation of the solution of the dual problem: a near constancy
indicates a desired robustness to (possibly large) perturbations of the coefficients u and û.

We now proceed to give computational evidence.

9. Computational results: Uniqueness of cD and cL

The computational example is a bluff body benchmark problem at the CDE-Forum [1],
and is described in detail in [3, 4].

We compute the mean value in time of drag and lift forces on a surface mounted cube in a
rectangular channel from an incompressible fluid governed by the Navier-Stokes equations
(2.1), at Re = 40.000 based on the cube side length and the bulk inflow velocity. We
compute the mean values over a time interval of a length corresponding to 40 cube side
lengths, which we take as approximations of cD and cL defined as mean values over very
long time.

The incoming flow is laminar time-independent with a laminar boundary layer on the
front surface of the body, which separates and develops a turbulent time-dependent wake
attaching to the rear of the body. The flow is thus very complex with a combination of
laminar and turbulent features including boundary layers and a large turbulent wake, see
Figure 1.

The dual problem corresponding to cD has boundary data of unit size for ϕh on the cube
in the direction of the main flow, acting on the time interval underlying the mean value,
and zero boundary data elsewhere. A snapshot of the dual solution corresponding to cD

is shown in Figure 2, and in Figure 3 we plot ‖ϕh‖L2(H1) as a function of h−1, with h the
smallest element diameter in the computational mesh.

We find that ‖ϕh‖L2(H1) shows a slow logarithmic growth, and extrapolating we find that

‖ϕν‖L2(H1) ∼ ν−1/2. We take this as evidence of computability and weak uniqueness of cD.
We obtain similar results for the lift coefficient cL.
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Figure 1. Velocity |uh| (upper) and pressure |ph| (lower), from side and top respectively.
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Figure 2. Dual velocity |ϕh| (upper) and dual pressure |θh| (lower), with
respect to the computation of mean drag cD, from side and top respectively.
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Figure 3. log10-log10-plot of ‖ϕh‖L2(H1) as a function of 1/h.

10. Computational results: Non-uniqueness of D(t)

We now investigate the computability and weak uniqueness of the total drag force D(t)
at a specific time t. In Figure 4 we show the variation in time of D(t) computed on different
meshes, and we notice that D(t) for a given t appears to converge very slowly or not at all
with decreasing h.

We now choose one of the finer meshes corresponding to h−1 ≈ 150, and we compute the
dual solution over a time interval [0, T ] with data corresponding to a mean value of D(t)
over a time interval [T0, T ], where we let T0 → T . We thus seek to compute D(T ).

In Figure 5 we find a growth of ‖ϕh‖L2(H1) similar to |T −T0|−1/2. The results show that
for |T − T0| = 1/16 we have ‖ϕh‖L2(H1) ≈ 10ν−1, and extrapolation of the computational
results indicate further growth of ‖ϕh‖L2(H1) as T0 → T and h → ν. We take this as
evidence of non-computability and weak non-uniqueness of D(T ).

11. Conclusion

We have given computational evidence of weak uniqueness of mean values such as cD

and cL and weak non-uniqueness of a momentary value D(t) of the total drag. In the
computations we observe this phenomenon as a continuous degradation of computability
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Figure 4. D(t) (normalized) as a function of time, for the 5 finest compu-
tational meshes.

(increasing error tolerance) as the length of the mean value decreases to zero. When the
error tolerance is larger than one, then we have effectively lost computability, since the
oscillation of D(t) is of unit size. We compute cD and cL as mean values of finite length (of
size 10), and thus we expect some variation also in these values, but on a smaller scale than
for D(t), maybe of size = 0.1 with 0.01 as a possible lower limit with present computers.
Thus the distinction between computability (or weak uniqueness) and non-computability
(weak non-uniqueness) may in practice be just one or two orders of magnitude in output
error, rather than a difference between 0 and ∞.

Of course, this is what you may expect in a quantified computational world, as compared
to an ideal mathematical world. In particular, we are led to a point of view where we
measure residuals of approximate weak solutions, rather than working with exact weak
solutions with zero residuals. A such quantified mathematical world is in fact richer than
an ideal zero residual world, and thus possibly more accessible.
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