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A posteriori error analysis of the boundary

penalty method

Kenneth Eriksson ∗, Mats G. Larson † and Axel Målqvist ‡

February 27, 2004

Abstract

The Boundary Penalty Method enforces Dirichlet boundary conditions weakly by
a penalty parameter. We derive a posteriori error estimate of the L

2(Ω)-norm and
energy semi-norm for this method and we propose an adaptive strategy to choose
the penalty parameter ε and the mesh parameter h by equidistributing the error
between the terms in the energy semi-norm estimate. Finally, we consider three
numerical examples where we successfully use the adaptive algorithm to solve the
Poisson equation with both smooth and non-smooth boundary data.

1 Introduction

The Boundary Penalty Method. The Boundary Penalty Method (BPM) has been
known and used for more than thirty years. The basic idea is to impose Dirichlet boundary
conditions weakly by using Robin type boundary condition with a penalty parameter ε.
We consider the following model problem: find u such that

{

−4u = f in Ω,
u = g on Γ,

(1.1)

where Ω is a polygonal domain in Rd, d = 1, 2 or 3, with boundary Γ. Further f ∈ H−1(Ω)
and g ∈ H1/2(Γ) are given data, see [1] for definitions of these spaces. The finite element
formulation using BPM [3, 4] now reads: find U ∈ V such that

(∇U,∇v) + (ε−1U, v)Γ = (f, v) + (ε−1g, v)Γ for all v ∈ V , (1.2)
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where (·, ·) is the L2(Ω) scalar product, (·, ·)Γ is the L2(Γ) scalar product, and V ⊂ H1(Ω)
is the space of continuous piecewise polynomials of degree p with respect to a given tri-
angulation K = {K} of Ω into elements K of diameter hK . We define the mesh function
(mesh parameter) h(x) such that h(x) = hK when x ∈ K. We assume that the mesh is
locally quasi-uniform.

We immediately note that this method is not consistent since u does not solve equation
(1.2). Multiplying equation (1.1) with a test function and integrating over the domain
using Green’s formula gives the following identity for the exact solution u,

(∇u,∇v) − (∂nu, v)Γ = (f, v) for all v ∈ H1(Ω), (1.3)

where ∂nu = n · ∇u is the normal derivative of u. However, there is a more complicated
method for weakly imposing Dirichlet boundary conditions called Nitsche’s method [15, 12]
which is consistent. The idea in this method is to include the term (∂nU, v)Γ that appears
in equation (1.3) in equation (1.2) together with a compensating term that makes the
method symmetric.

Both BPM and Nitsche’s method have been used for problems with interior sub-domain
interfaces. One of the first papers on the interior penalty method is Babuška [2] from 1970.
In a recent paper [14] this method has been used for gluing together non-matching grids.

There are various reasons for studying the BPM. One is that it allows Dirichlet (ε
small), Neumann (ε large), and Robin (ε as a function on Γ) boundary conditions in the
same framework. It is also very easy to implement and it has for these reasons been used
in many finite element codes over the years. Another reason for studying this method is
that it serves as a simpler compliment to Nitsche’s method e.g. when solving problems on
non-matching grids. As mentioned before Lazarov et.al. [14] chooses this method in their
work on non-matching grids.

Previous Work. One of the first works on this subject is Babuška [3] from 1973. His
results was then improved and extended among others by Barrett and Elliott [4] during
the eighties. Their work are all in an a priori setting and has inspired us to do an a
posteriori error analysis of this method. Some important results from these papers are
that for piecewise linears ε = h in the boundary penalty formulation, equation (1.2),
yields an optimal H1(Ω) error estimate but this choice leads to a suboptimal L2(Ω) error
estimate. As mentioned earlier BPM is not a consistent method i.e. (1.2) will not hold if
U is replaced by u. For higher order polynomials this will force the penalty parameter ε
be proportional to a higher power of h. The reason why ε ∼ h is desired is that this choice
will not affect the condition number of the stiffness matrix. High condition number leads
to slow convergence for iterative solvers. For higher order base functions Nitsche’s method
is optimal for ε ∼ h.

As far as we know this is the first a posteriori paper on the boundary penalty method.
However, there are several related papers on a posteriori error estimates for discontinuous
Galerkin and non-conforming finite element methods [8, 5, 12].
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New Contributions. The aim of this paper is to derive an a posteriori error estimate
of the error in terms of the mesh parameter h and the penalty parameter ε, and based on
these results construct an adaptive algorithm to solve problem (1.2) efficiently.

Our main results are the following bounds of the energy and L2(Ω) norm of the error
e = u− U :

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − U‖1/2,Γ

)

, (1.4)

‖e‖ ≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)

, (1.5)

where ‖ · ‖s,Γ is the Hs(Γ) norm, R(U) is a computable bound of the residual, f + 4U ∈
H−1(Ω), on Ω, and C denotes throughout this paper various constants independent of h
and ε.

To design an adaptive algorithm from the energy semi-norm estimates we need to see
explicitly how the a posteriori quantity ‖g− U‖1/2,Γ depends on ε. We introduce P as the
L2(Γ) projection onto V and get,

‖Pg − U‖1/2,Γ ≤ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 . (1.6)

Combining the first part of equation (1.4) and equation (1.6) yields the final error
estimate that will be used for the adaptive algorithm,

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − Pg‖1/2,Γ

)

+ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 . (1.7)

Obviously there exists an upper bound on ε in equation (1.2) for which the approxima-
tion gets to poor. We can capture this bound by considering the error estimate in equation
(1.7). We also need to impose a lower bound on ε for at least two reasons: the condition
number of the stiffness matrix grows when ε decreases, and we may get undesired oscilla-
tions in the solution when solving problems with rough boundary data (see Example 3 in
section 4). The conclusion of this discussion is that ε needs to be small enough to balance
the two terms in equation (1.7) but not smaller.

We also present an estimate of the term ‖Pg− U‖−1/2,Γ in the L2(Ω)-norm bound, see
equation (1.5), and by using this estimate we get the following bound of the L2(Ω)-norm
of the error,

‖e‖ ≤ C
(

‖(h2 + εh+ ε2)R(U)‖ + ‖g − Pg‖−1/2,Γ + ε‖g − Pg‖1/2,Γ

)

(1.8)

+ εC
(

‖P (∂nU)‖−1/2,Γ + ε‖P (∂nU)‖1/2,Γ

)

.

Here we see that ε ∼ h is not enough to get an optimal order error estimate since the
estimate contains the term ε‖P (∂nU)‖−1/2,Γ.

In this work we consider piecewise linear approximations since in this case have an
optimal a priori estimate in the energy semi-norm. We are not interested in tracking the
constants in the error estimates.
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Outline. In Section 2, we present the a posteriori error analysis for control in energy
semi-norm and L2(Ω)-norm. In Section 3 we use the error estimates to derive an adaptive
algorithm for choosing the penalty parameter. In Section 4 we present three numerical
examples, and finally we present a small summary in Section 5.

2 A Posteriori Error Estimates

2.1 The Error Representation Formula

Subtracting (1.2) from (1.3) yields the error equation

(∇e,∇v) + (ε−1e, v)Γ = (∂nu, v)Γ for all v ∈ V . (2.1)

Green’s formula gives,

(f + 4U, v) + (∂ne+ ε−1e, v)Γ = (∂nu, v)Γ for all v ∈ V , (2.2)

where the first scalar product is defined in the following way,

(f + 4U, v) =
∑

K

∫

K

(f + 4U)v dx−
∑

K

∫

∂K\Γ

∂U

∂nK

v ds. (2.3)

We also need to take weighted L2(Ω) norms of f + 4U . We define our domain residual
according to [10] as a piecewise constant function,

R(U) = |f + 4U | +
1

2
max
∂K\Γ

h−1
K |[∂nU ]| on K ∈ K, (2.4)

where S are edges on the current element K with boundary ∂K, and [·] is the jump in the
function value over the edge. We note that |(f + 4U, v)| ≤ ‖hsR(U)‖‖h−sv‖ for s ∈ R.
Next we introduce a dual problem: find φ such that

{

−4φ = ψ in Ω,
φ = 0 on Γ,

(2.5)

where ψ ∈ H−1(Ω). Multiplying (2.5) by the error e and using Green’s formula yields,

(e, ψ) = (e,−4φ) = (∇e,∇φ) − (e, ∂nφ)Γ = (f + 4U, φ) − (g − U, ∂nφ)Γ. (2.6)

It follows from equation (2.2) that (f + 4U, v) = 0 for v ∈ V such that v = 0 on Γ. We
then get (f +4U, πφ) = 0, where πφ is the Scott-Zhang interpolant of φ, see [6]. Together
this gives,

(e, ψ) = (f + 4U, φ− πφ) − (g − U, ∂nφ)Γ (2.7)
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2.2 The Error Estimates

We start this section by proving estimates of the error in energy and L2(Ω) norm.

Theorem 2.1 It holds

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − U‖1/2,Γ

)

(2.8)

If we assume that there exists a constant C such that ‖φ‖2 ≤ C‖4φ‖ we also have

‖e‖ ≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)

(2.9)

Proof. For the energy semi-norm estimate we start from equation (2.7) and let ψ = −4e,

(e,−4e) = (f + 4U, φ− πφ) − (g − U, ∂nφ)Γ. (2.10)

We have (e,−4e) = ‖∇e‖2 − (e, ∂ne)Γ and together with equation (2.10) this gives

‖∇e‖2 = (f + 4U, φ− πφ) − (e, ∂nφ)Γ + (e, ∂ne)Γ (2.11)

≤ C
(

‖hR(U)‖‖∇φ‖ + ‖e‖1/2,Γ‖∂nφ‖−1/2,Γ + ‖e‖1/2,Γ‖∂ne‖−1/2,Γ

)

. (2.12)

We recall the trace inequality,

‖n · v‖−1/2,Γ ≤ C
∑

∂K∩Γ6=∅

(‖v‖K + h‖∇ · v‖K) , (2.13)

where ‖ ·‖K is the L2(K) norm where K refers to elements in the mesh, see ([11], Theorem
2.2) and apply this result twice with v = ∇φ and v = ∇e on equation (2.12) to get,

‖∇e‖2 ≤
1

2
C2‖hR(U)‖2 +

1

2
‖∇φ‖2 + ‖e‖1/2,Γ

∑

∂K∩Γ6=∅

(‖∇e‖K + ‖hR(U)‖K) (2.14)

+ ‖e‖1/2,Γ

∑

∂K∩Γ6=∅

(‖∇φ‖K + ‖hR(U)‖K) .

Next we use the following observation,

‖∇φ‖2 = (−4e, φ) = (∇e,∇φ) ≤ ‖∇e‖‖∇φ‖, (2.15)

i.e. ‖∇φ‖ ≤ ‖∇e‖ to get,

‖∇e‖2 ≤ C‖hR(U)‖2 +
1

2
‖∇e‖2 + 2‖e‖1/2,Γ (‖∇e‖ + ‖hR(U)‖) (2.16)

≤ C
(

‖hR(U)‖2 + ‖e‖2
1/2,Γ

)

+
3

4
‖∇e‖2. (2.17)

Subtracting 3/4‖∇e‖2 on both sides proves the first part of the theorem.
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For the L2(Ω) estimate we use ψ = e/‖e‖ in (2.7) to get,

‖e‖ = (e, ψ) = (f + 4U, φ− πφ) − (g − U, ∂nφ)Γ. (2.18)

Now we use the assumption that there exists a constant C such that ‖φ‖2 ≤ C‖4φ‖ and
use the trace inequality ‖∂nφ‖1/2 ≤ C‖φ‖2 to get

‖e‖ ≤ C‖h2R(U)‖‖φ‖2 + C‖g − U‖−1/2,Γ‖φ‖2 ≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)

.
(2.19)

In Theorem 2.1 we get bounds with the ε dependence hidden. To be able to construct
an adaptive algorithm we wish to know how ‖g− U‖1/2,Γ and ‖g− U‖−1/2,Γ depends on ε.
We use the triangle inequality

‖g − U‖s,Γ ≤ ‖g − Pg‖s,Γ + ‖Pg − U‖s,Γ, (2.20)

for s = 1/2 and s = −1/2. The first part is independent of ε and the second part can be
estimated. We start with ‖g − U‖1/2,Γ.

Theorem 2.2 It holds

‖Pg − U‖1/2,Γ ≤ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 (2.21)

where Pg is the L2(Γ) projection of g onto the restriction of V on the boundary.

Proof. We let z = P (ε∂nU) ∈ V and start by using the triangle inequality,

‖Pg − U‖1/2,Γ ≤ ‖z‖1/2,Γ + ‖Pg − U − z‖1/2,Γ (2.22)

≤ ε‖P (∂nU)‖1/2,Γ + C‖h−1/2(Pg − U − z)‖Γ, (2.23)

where we use an inverse estimate [6] in the second inequality. Next we need to estimate
‖h−1/2(Pg − U − z)‖Γ.

From the error equation (2.2) we have,

−ε(f + 4U, v) = (g − U − ε∂nU, v)Γ = (Pg − U − z, v)Γ for all v ∈ V . (2.24)

We let w ∈ V be equal to zero on interior nodes, w = P (h−1(Pg−U−z)) on Γ, and choose
v = w in equation (2.24) to get,

‖h−1/2(Pg−U−z)‖2
Γ = (Pg−U−z, w)Γ = (Pg−U−ε∂nU,w)Γ = −ε(f+4U,w). (2.25)
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The right hand side in equation (2.25) can now be estimated in the following way,

|(f+4U,w)| ≤ C





∑

∂K∩Γ6=∅

‖R(U)‖K



 ‖w‖ ≤ C





∑

∂K∩Γ6=∅

‖R(U)‖K



 ‖h−1/2(Pg−U−z)‖Γ.

(2.26)
We need to take a closer look at the second inequality. Let K be a triangle at the boundary
and E the corresponding boundary edge of this triangle. For w as above and the finite
element base functions ϕi we have ‖ϕ

1/2
i w‖2

K ≤ ChK‖ϕ
1/2
i w‖2

E, by equivalent norms in
finite dimensional spaces, and scaling. The assumption of local quasi-uniform mesh gives
an estimate of ‖w‖ in the following way,

‖w‖2 =

∫

Ω

(

∑

i

ϕiw

)2

≤ C
∑

i

∫

Ω

ϕ2
iw

2 ≤ C
∑

i

∑

|K∩Γ|6=0

∫

K

ϕiw
2 (2.27)

≤ C
∑

i

∑

E

ChK‖ϕ
1/2
i w‖2

E ≤
∑

E

C‖h1/2w‖2
E = C‖h1/2w‖2

Γ, (2.28)

which means that ‖w‖ ≤ C‖h−1/2(Pg−U−z)‖Γ. Combining equation (2.25) and equation
(2.26) gives

‖h−1/2(Pg − U − z)‖Γ ≤ Cε
∑

∂K∩Γ6=∅

‖R(U)‖K . (2.29)

Together equation (2.29) and equation (2.22) now gives,

‖Pg − U‖1/2,Γ ≤ ‖z‖1/2,Γ + Cε
∑

∂K∩Γ6=∅

‖R(U)‖K , (2.30)

which proves the theorem.

Finally we close this section by finishing the L2(Ω)-norm estimate in the same way as
we did with the energy norm estimate. From Theorem 2.1 we see that we need to estimate
‖g − U‖−1/2,Γ in terms of the mesh parameter h and ε.

Theorem 2.3 It holds,

‖Pg − U‖−1/2,Γ ≤ εC
(

‖P (∂nU)‖−1/2,Γ + ‖∇e‖ + ‖hR(U)‖
)

(2.31)

Proof. We start in the same way as in the proof of Theorem 2.2. We let z = P (ε∂nU) ∈ V
and use the triangle inequality,

‖Pg − U‖−1/2,Γ ≤ ‖z‖−1/2,Γ + ‖Pg − U − z‖−1/2,Γ (2.32)

≤ ε‖P (∂nU)‖−1/2,Γ + ‖Pg − U − z‖−1/2,Γ. (2.33)
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We study the second term equation (2.33). By definition we have,

‖Pg − U − z‖−1/2,Γ = sup
w∈H1(Ω)

(Pg − U − z, w)Γ

‖w‖1,Ω

(2.34)

= sup
w∈H1(Ω)

(Pg − U − z, w −Qw)Γ

‖w‖1,Ω

+ sup
w∈H1(Ω)

(Pg − U − z, Qw)Γ

‖w‖1,Ω

(2.35)

= I + II, (2.36)

where Q is the L2(Ω)-projection onto the finite element space V . We start with the first
term I,

I ≤ sup
w∈H1(Ω)

‖h(Pg − U − z)‖1/2,Γ‖
1
h
(w −Qw)‖−1/2,Γ

‖w‖1,Ω

(2.37)

≤ ‖h(Pg − U − z)‖1/2,Γ sup
w∈H1(Ω)

‖ 1
h
(w −Qw)‖

‖w‖1,Ω

(2.38)

≤ C‖h(Pg − U − z)‖1/2,Γ (2.39)

≤ C‖h1/2(Pg − U − z)‖Γ, (2.40)

where the last step is done by an inverse inequality [6]. By a similar argument as in the
proof of Theorem 2.2, with the function w equal to P (h(Pg−U − z)) on Γ instead we get,

‖h1/2(Pg − U − z)‖Γ ≤ Cε‖hR(U)‖, (2.41)

i.e.

sup
w∈H1(Ω)

(Pg − U − z, w −Qw)Γ

‖w‖1,Ω
≤ Cε‖hR(U)‖. (2.42)

From equation (2.24) we have −ε(f + 4U,Qw) = (Pg − U − z, Qw)Γ. We use this
result to estimate the second term II as follows,

II = −ε sup
w∈H1(Ω)

(f + 4U,Qw)

‖w‖1,Ω
(2.43)

= −ε sup
w∈H1(Ω)

(−4e, Qw)

‖w‖1,Ω
(2.44)

= −ε sup
w∈H1(Ω)

(∇e,∇Qw) − (∂ne, Qw)Γ

‖w‖1,Ω
(2.45)

≤ ε

(

‖∇e‖ sup
w∈H1(Ω)

‖∇Qw‖

‖w‖1,Ω
+ ‖∂ne‖−1/2,Γ sup

w∈H1(Ω)

‖Qw‖1/2,Γ

‖w‖1,Ω

)

. (2.46)

From [7, 9] we know that ‖Qw‖1,Ω ≤ C‖w‖1,Ω for locally quasi-uniform meshes. Together
with the estimate, ‖Qw‖1/2,Γ ≤ C‖Qw‖1,Ω, and equation (2.46) this gives,

sup
w∈H1(Ω)

(Pg − U − z, Qw)Γ

‖w‖1,Ω
≤ εC

(

‖∇e‖ + ‖∂ne‖−1/2,Γ

)

. (2.47)
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Equation (2.13) can now be used again for v = e. We get,

sup
w∈H1(Ω)

(Pg − U − z, Qw)Γ

‖w‖1,Ω
≤ εC (‖∇e‖ + ‖hR(U)‖) . (2.48)

Combining equation (2.33), (2.34), (2.37), and (2.48) proves the Theorem.

Combining the estimate (2.9) of Theorem 2.1, Theorem 2.3, and the energy semi-norm
estimate in Theorem 2.1 we finally end up with the following L2(Ω)-norm estimate,

‖e‖ ≤ C
(

‖(h2 + εh + ε2)R(U)‖ + ‖g − Pg‖−1/2,Γ + ε‖g − Pg‖1/2,Γ

)

(2.49)

+ εC
(

‖P (∂nU)‖−1/2,Γ + ε‖P (∂nU)‖1/2,Γ

)

.

Remark 2.1 In the final L2(Ω)-norm estimate, equation (2.49), we see that for sufficiently
smooth boundary data, g, letting ε ∼ h would give an optimal order error for all terms
but the εC‖P (∂nU)‖−1/2,Γ term. So if ∂nu 6= 0 we need to let ε ∼ h2 to get optimal order
convergence.

3 Adaptive Strategies

We design an adaptive strategy for the energy semi-norm estimate starting from (2.8)
in Theorem 2.1. Combining this result with equation (2.20) and Theorem 2.2 gives the
following equation:

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − Pg‖1/2,Γ

)

+ Cε



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ6=∅

‖R(U)‖K



 (3.1)

We introduce the notation,

r1 = ‖hR(U)‖ + ‖g − Pg‖1/2,Γ,

r2 = ε
(

‖P (∂nU)‖1/2,Γ +
∑

K∩Γ6=∅ ‖R(U)‖K

)

.
(3.2)

Adaptive Algorithm. The aim is to choose ε such that r1 and r2 becomes equally large.

• Let ε0 = h.

• Solve equation (1.2) for U .

• Calculate r1 and r2 according to equation (3.2).

• Determine if h-adaptivity is necessary from the size of r1.

9



• Let ε = ε0
r1

r2

.

If a mesh refinement (with new mesh parameter hnew) was needed in step 4 we replace r1
with ‖hnewR(U)‖ + ‖g − Pg‖1/2,Γ in step 5. This procedure can then be done iteratively
going from step 5 to step 2.

Remark 3.1 From experience and numerical tests for example in [13] we know that the
first term in r1 is in general over estimated due to the inequalities used to derive it. This
is not the case with the other terms and this fact could be a reason to decrease ε even
further. So even though in practice we want to use ε < ε0r1/r2 as big as possible it can we
wise to choose ε a bit under the bound.

Remark 3.2 We can also use other norms for the adaptive strategy. One reason to choose
the energy semi-norm is that ε ∼ h since r1 ∼ h and r2 ∼ ε. If we instead consider the
L2(Ω) norm we would get ε ∼ h2 to achieve optimal order. These results agree with earlier
a priori results [6].

Remark 3.3 The main reason for not choosing ε too small is that the condition number of
the stiffness matrix will be very large which leads to slow convergence for iterative solvers.
ε ∼ h is optimal since in this case the condition number of the matrix will not increase
dramatically while for ε ∼ h2 it will. The other reason will be illustrated in Example 3
below.

4 Numerical Examples

We present three numerical examples to verify the theoretical results of the error analysis.

Example 1. In the first example Ω is the unit square and g = 0 on the boundary. The
load f is chosen such that the exact solution u(x, y) = x(1− x)y(1− y). The aim is to use
our adaptive strategy to choose ε in such a way that the error from the penalty method
is of the same order as the discretization error. Since the exact solution is known we first
present a plot, Figure 1, with the energy semi-norm of the error calculated for different h
(we use quasi-uniform meshes) and ε. We see clearly for each h how the error eventually
converges to the discretization error and we get no further improvement by decreasing ε.

The adaptive strategy is designed to find the biggest ε for which we achieve discretiza-
tion error by considering the error estimators r1 and r2. Figure 2 shows the values of the
error estimators for a fix value of h = 0.025. We see that the discretization part of the
error r1 is fairly constant and that the ε dependent part r2 is proportional to ε. It is clear
that the two terms r1 and r2 captures the essence of the behavior of the error in the energy
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Figure 3: ε chosen according to adaptive strategy for different ε0 and h.

semi-norm. The adaptive strategy would in this situation suggest that ε = ε0r1/r2. As
seen when comparing the figures we get a slight over estimate of ε arising from the fact
that r1 is over estimated.

To sum up this example we analyze the h-dependence of ε in our method. In this
particular example ε = ε0r1/r2 for different ε0 in the range 10−1 to 10−7. As seen from the
small clusters in Figure 3 we get very similar results on ε for different ε0. We also recognize
that ε is proportional to h.

Example 2. Next we turn our attention to a situation where g 6∈ V on one part of the
boundary. We let g = 0 on three parts of the unit square and on the fourth part we let g
be saw shaped as seen in Figure 4. The peaks and valleys are chosen so that they do not
coincide with the mesh. Using a constant ε would in this example not be the best approach
since we need a very small ε just on a part of the boundary where the normal derivative of
the solution is large. Motivated by the results in Theorem 2.2 we use two different values
of ε, ε1 on the simple part and ε2 on the complicated part. In Figure 5 we see the result of
using our algorithm with ε0 = h as a starting guess for different h. The penalty parameter
is chosen as

εi = ε0
|Γi|

|Γ|

‖hR(U)‖

‖g − U‖1/2,Γi

, (4.1)

where |Γi| is the length of the boundary segment Γi. If the function g allows it can be
convenient to replace ‖g − U‖1/2,Γ by ‖g − U‖Γ‖g − U‖1,Γ in practice. This gives a lower
value of ε but is simpler to compute. It is clear that the algorithm suggests us to choose
a much higher ε on the simple part of the domain. We also see that both ε1 and ε2 are
proportional to h just with different constants.
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Example 3. Finally we study an interesting effect that can arise from choosing ε to
small. From the earlier a priori work [3, 4] it is clear that this can lead to problems. This
effect can not be seen explicitly from the a posteriori error estimates but it can be taken
care of using the proposed adaptive strategy.

We let g be close to discontinuous, zero on one part of the boundary and one on the
other with a very steep sloop that connects the parts, see Figure 6. Further we let f = 1.
We solve the problem by iterating the adaptive algorithm starting from ε = h = 1/40 and
find an optimal ε = 1/151, see Figure 6 (right). Then we solve the same problem using
a ten times smaller ε = 1/1510 (left). We see clearly that a too small choice of ε for this
problem leads to oscillations in the solution. If ε is decreased further the effect is even
stronger.

The reason for this behavior is that equation (1.2) will force U ≈ Pg if ε is very small
and it is known that the L2 projection P has oscillating behavior for discontinuous data.
This example together with the size of the condition number motivates using the adaptive
procedure when choosing ε.

5 Conclusion

We have derived two a posteriori error estimates and designed an adaptive strategy for
choosing the penalty parameter ε in BPM for one of these. We present numerical examples
that confirms our theoretical results and we conclude that by this strategy we achieve
optimal order convergence for piecewise linears which agrees with earlier a priori work.
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