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Abstract

In this paper we study the Galerkin least-squares method for minimizing pollution

when solving Helmholtz equation. We especially consider how stochastic perturba-

tions on a structured mesh affects the optimal choice of the method parameter τ .

The analysis is based on an error representation formula derived by a posteriori error

estimates using duality. The primary goal with this work is not to present a brand

new method for this problem but to show how existing methods derived for struc-

tured meshes can be modified to work on unstructured grids. We conclude that a

parameter optimized for a structured mesh needs to be increased by a term propor-

tional to the variance of the perturbation to be unbiased on a perturbated grid. We

present numerical examples in one and two dimensions to confirm our theoretical

results.

1 Introduction

It is well known that the standard Galerkin finite element method suffers from a substantial
loss of accuracy when solving the Helmholtz equation for higher wave numbers. The
problem is basically that the waves propagate to slow when using the standard Galerkin
method. The solution is to increase the numerical wave number.

Previous work. The choice of numerical wave number have been solved by dispersion
analysis in one and two dimension. In one dimension it is actually possible to achieve
nodal exactness by the Galerkin Least-Squares (GLS) method, see [6, 9, 5], or the Gen-
eralized Finite Element Method (GFEM), see [2], and in two dimensions these methods
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gives significant improvement compared to the standard Galerkin method. The expression
”pollution” is often used to describe this phenomenon and it was first stated in [2]. A draw
back of using these methods to determine the numerical wave number in higher dimensions
is that they are designed to be optimal for one certain direction on a structured grid.

Recent work on variational multiscale methods and subgrid modelling [8, 7] has given
an understanding of the origin of GLS. It also represents an alternative to the dispersion
analysis that works independent of the structure of the mesh. In a paper dealing with edge
elements for electro-magnetic modelling [10] an improvement in accuracy when solving
the vector Helmholtz equation was discovered on unstructured grids. This effect can also
be seen in numerical studies for example in [5]. These results encouraged us to further
investigate this area.

New contributions. Our goal with this paper is to understand how methods for min-
imizing pollution on structured grids needs to be modified to suit unstructured grids. To
create the unstructured grid we start with a structured grid and add perturbations to the
nodes from a given distribution. We need a method for computing an optimal method
parameter τ on a given mesh. We achieve this by deriving an error representation formula
using a posteriori error estimation techniques iteratively and choosing τ so this error func-
tional equals zero. This method is independent of the structure of the mesh and converges
to an optimal τ in the sense that a given linear functional of the error is zero for this choice
of τ .

We then study a family of meshes with stochastic perturbations δi, in each interior
node i, and calculate the expected value of τ , E[τ ]. In one dimension we get the following
result:

E[τ ] = Ch2k2(1 + 6Var(δi)), (1.1)

where C < 0 is a constant that can be calibrated by a standard method on a structured
grid e.g. see [5]. This means that the numerical wave number kh modifies in the following
way, k2

h = k2(1− τk2). From equation (1.1) we see clearly that the average of τ calculated
on perturbated girds will not be equal to τ calculated on the structural grid. However we
also see that for small perturbations, τ from the structural calculation is a good estimate.
The challenge is to extend this analysis to two dimensions where it is much harder to find
an optimal τ .

In two dimensions we again derive an optimal τ independent of the structure of the
mesh by using an error representation formula based on an a posteriori error estimate.
The procedure needs to be done in an iterative fashion. A typical linear functional of the
error we study could be an integral over the error over an outflow boundary. Again we
recognize a modification of τ proportional to the variance of the perturbation. For a plane
wave in two dimensions numerical calculations shows improved results compared to a plane
wave in one dimension. We argue that this effect arises from the fact that the variance of
on integral of the error on the outflow boundary is smaller than the variance of the error
measured in one point. This could explain the effect in [10].

Of course there are numerous advantages of using randomized unstructured meshes

2



instead of structured ones. When it comes to wave propagation on of the most important
are that a randomized mesh is isotropic i.e. ”looks the same” in all directions. This means
that if we can find an optimal τ for one direction it will work well for waves propagating
in an arbitrary direction.

Outline In §2 we present a one dimensional model problem, derive an a posteriori error
estimate and state a formula for choosing the method parameter τ . We then study how
this choice of τ depends on the structure of the mesh. In §3 we present numerical results
for this problem and in §4 we turn our attention to a two dimensional model problem.
Again we derive an a posteriori error estimate from which we can calculate the parameter
τ . In §5 we present numerical results for two test examples and finally in §6 we draw some
conclusions of this work.

2 One Dimensional Model Problem

We consider the following one dimensional model problem: find u such that






−u′′ − k2 u = 0 in Ω,
u′(0) = ik,

u′(π) = ik u(π) ,
(2.1)

where Ω = [0, π]. This setting makes the wave propagate freely from left to right with
analytic solution u(x) = eikx. The corresponding weak formulation reads: find u ∈ H1(Ω)
such that

(u′, v′) − k2 (u, v) − ik u(π)v(π)∗ = −ik v(0)∗, for all v ∈ H1(Ω), (2.2)

where (·, ·) is the ordinary L2(Ω) scalar product and v(x)∗ is the complex conjugate of
v(x).

2.1 The Galerkin Least-Squares Method

The GLS stabilization, see [6], of the weak form reads: find u ∈ H1(Ω) such that

(u′, v′) − k2 (u, v) + (τ Lu, Lv)Ω̃ − ik u(π)v(π)∗ = −ik v(0)∗, for all v ∈ H1(Ω), (2.3)

where τ is a complex number, L = − ∂2

∂x2 −k
2, and Ω̃ is the union of element interiors. This

method can now be discretized and we can introduce p = 1 − τk2 as the new parameter.
If we for the sake of simplicity only consider the space V of piecewise linear base functions
we get: find U ∈ V such that

(U ′, v′) − k2p (U, v) − ik U(π)v(π)∗ = −ik v(0)∗, for all v ∈ V . (2.4)

Here we see that the stabilization is done basically by changing the wave number in the
Galerkin method, see [6]. Next we present an a posteriori error analysis for the piecewise
linear case.
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2.2 Error Representation Formula

We would like to choose p in order to minimize a given linear functional of the error
e = u − U i.e. (e, ψ), where ψ is a given function in H−1(Ω). We begin the a posteriori
analysis by presenting the dual problem: find φ such that







−φ′′ − k2 φ = ψ in Ω,
φ′(0) = 0,

φ′(π) = −ik φ(π) ,
(2.5)

We proceed with the following calculation,

(e, ψ) = (e,−φ′′ − k2 φ) (2.6)

= (e′, φ′) − (k2 e, φ) − [eφ′∗]π0 (2.7)

= −(U ′, φ′) + (k2 U, φ) + [u′ φ∗]π0 − ik e(π)φ(π)∗ (2.8)

= (U ′′, φ− πφ) + (k2 U, φ− πφ) − (U ′, πφ) (2.9)

+ (k2U, πφ) + ik U(π)φ(π)∗ − ik φ(0)∗

= (U ′′, φ− πφ) + (k2 U, φ− πφ) + (τ k4U, πφ) (2.10)

= (k2 U, φ− πφ) + (τ k4U, πφ). (2.11)

This calculation suggests that τ = − (k2 U,φ−πφ)
(k4U,πφ)

or in terms of p,

p = 1 − τk2 =
(U, φ)

(U, πφ)
(2.12)

would make (e, ψ) small.

Remark 2.1 We also note that if there exists a τ̂ such that (e, ψ) = 0 it can always be

written on the form τ̂ = − (k2 U,φ−πφ)
(k4U,πφ)

or p̂ = (U,φ)
(U,πφ)

.

Remark 2.2 In practice φ will not be known so we have to calculate it numerically. Since
we need to subtract the interpolant we use higher order elements for the dual problem.
However this is a computationally expensive way of getting high accuracy and should pri-
marily be used if error control is essential.

It is possible to proceed iteratively starting with p0 = 1 solving equation (2.4) for Un
and choosing,

pn+1 =
(Un, φ)

(Un, πφ)
for n = 0, 1, . . . . (2.13)

In section 3 we present numerical results that shows fast convergence for this particular
algorithm for nodal error control. We are going to use the iterative algorithm described in
equation (2.13) to calculate optimal values of p on perturbated grids. In this way we can
study how an optimal p depends on the size of the perturbation δ.
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Figure 1: One dimensional unstructured mesh with n = 19 and δ = 0.4.

2.3 Unstructured Mesh

We introduce a new parameter 0 ≤ δ < 1 which is a measure of how unstructured the
mesh is. We divide [0, π] into n subintervals in the following way,







x0 = 0
xi = iπ

n
+ δi, for i = 1, . . . , n− 1,

xn = π,

where δi ∈ U([− δπ
2n
, δπ

2n
]), see Figure 1. From this definition we note that the interval length

hi = xi − xi−1 the perturbated mesh is equal to h+ δi − δi−1. With this notation we need
to define δ0 = δn = 0. We are interested in how the expected value and the variance of the
error (e, ψ) depends on δ, h = π/n, and k. We now see p as a stochastic parameter p̂ and
use equation (2.11) to get,

(e, ψ) = k2(U, φ− πφ) − k2(p̂− 1)(U, πφ). (2.14)

Our aim is to find p = E[p̂] such that E[(e, ψ)] = 0 for a given δ. We start with the
following Lemma.

Lemma 2.1 Let z ∈ C2([0, h]) such that z(0) = z(h) = 0, ϕ0 = 1 − x
h
, and ϕ1 = x

h
. Then

we have,
∫ h

0
ϕ0z dx = −h2

3

∫ h

0
ϕ2

0ϕ1z
′′ dx− h2

6

∫ h

0
ϕ0ϕ

2
1z

′′ dx,
∫ h

0
ϕ1z dx = −h2

6

∫ h

0
ϕ2

0ϕ1z
′′ dx− h2

3

∫ h

0
ϕ0ϕ

2
1z

′′ dx.
(2.15)

Proof. We start with
∫ h

0
ϕiz dx for i = 0, 1 and integrate by part. We use the fact that

(−hϕ0)
′ = 1, (hϕ1)

′ = 1 and that the boundary term will vanish since z(0) = z(h) = 0 to
get,

∫ h

0
ϕ0z dx = h

2

∫ h

0
ϕ2

0z
′ dx,

∫ h

0
ϕ1z dx = −h

2

∫ h

1
ϕ2

1z
′ dx.

(2.16)

Next we proceed with the first equation in (2.16) and use that (hϕ1)
′ = 1 and integrate by

parts,

∫ h

0

ϕ2
0z

′ dx = −h

∫ h

0

ϕ1

(

ϕ2
0z

′
)′
dx = 2

∫ h

0

ϕ0ϕ1z
′ dx− h

∫ h

0

ϕ1ϕ
2
0z

′′ dx. (2.17)

Since ϕ0 + ϕ1 = 1 on [0, h] we have,

0 =

∫ h

0

(ϕ0 + ϕ1)
2z′ dx =

∫ h

0

(ϕ2
0 + 2ϕ0ϕ1 + ϕ2)z′ dx, (2.18)
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inserted in equation (2.17) this yields
∫ h

0

ϕ2
0z

′ dx = −
1

2

∫ h

0

ϕ2
1z

′ dx−
h

2

∫ h

0

ϕ2
0ϕ1z

′′ dx. (2.19)

A similar calculation gives
∫ h

0

ϕ2
1z

′ dx = −
1

2

∫ h

0

ϕ2
0z

′ dx−
h

2

∫ h

0

ϕ0ϕ
2
1z

′′ dx. (2.20)

Together equation (2.19) and equation (2.20) now gives
∫ h

0
ϕ2

0z
′ dx = −2h

3

∫ h

0
ϕ2

0ϕ1z
′′ dx− h

3

∫ h

0
ϕ0ϕ

2
1z

′′ dx,
∫ h

0
ϕ2

1z
′ dx = h

3

∫ h

0
ϕ2

0ϕ1z
′′ dx+ 2h

3

∫ h

0
ϕ0ϕ

2
1z

′′ dx.
(2.21)

Finally we combine equation (2.16) and (2.21) to prove the Lemma.

We initially need to study how the first term i equation (2.14) depends on the stochastic
parameters {δi}

n−1
i=1 .

(U, φ− πφ) =
n
∑

i=1

∫ xi

xi−1

U(φ− πφ) dx (2.22)

On each element [xi−1, xi] we assume φ ∈ C2([xi−1, xi]) and apply Lemma 2.1 with z =
φ− πφ, ϕ0 = ϕi−1, ϕ1 = ϕi, and h = hi to get,

(U, φ− πφ) =

n
∑

i=1

∫ xi

xi−1

U(φ− πφ) dx (2.23)

=
n
∑

i=1

Ui−1

∫ xi

xi−1

ϕi−1(φ− πφ)(x) dx (2.24)

+

n
∑

i=1

Ui

∫ xi

xi−1

ϕi(φ− πφ)(x) dx

= −

n
∑

i=1

h2
i

6

∫ xi

xi−1

φ′′ϕi−1ϕi (U(x) + Ui−1 + Ui) dx (2.25)

= −
n
∑

i=1

h3
i

1

hi

∫ xi

xi−1

1

6
φ′′ϕi−1ϕi (U(x) + Ui−1 + Ui) dx. (2.26)

We introduce the following notation,

zi({δi}
n−1
i=1 ) = −

k2

hi

∫ xi

xi−1

1

6
φ′′ϕi−1ϕi (U(x) + Ui−1 + Ui) dx. (2.27)

With this notation equation (2.14) and equation (2.23) now gives

(e, ψ) =
n
∑

i=1

h3
i zi − (p̂− 1)

∫ π

0

k2Uπφ dx. (2.28)
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We now make the following simplification. We replace zi in equation (2.28) with z̄i
which is zi calculated on a structured grid i.e.

z̄i = −
k2

h

∫ ih

(i−1)h

1

6
φ′′ϕ̄i−1ϕ̄i

(

Ū(x) + Ūi−1 + Ūi
)

dx, (2.29)

where ϕ̄i are the base functions on the structured grid and Ū is the solution on the
structured grid. This means that z̄i are not stochastic variables. We also introduce
w̄ =

∫ π

0
k2π̄φ(x)Ū(x) dx, where π̄ in the Scott-Zhang interpolant, see [3], onto the struc-

tured grid, i.e w̄ is not stochastic.
If hk is small these approximations can be motivated by linearization in terms of δ but

the most important argument is the good agreement we get with numerical experiments,
see section 3. We define an approximation to (e, ψ) in the following way,

ēψ =
n
∑

i=1

h3
i z̄i − (p̂− 1)w̄, (2.30)

and we choose p̂ such that ēψ = 0 i.e.

p̂ = 1 +
1

w̄

n
∑

i=1

h3
i z̄i. (2.31)

7



Since we want to find one parameter p that suits many meshes with a given δ we study
the expected value of p̂. To do this we need to do the following observation,

E[p̂] = 1 +
1

w̄
E

[

n
∑

i=1

h3
i z̄i

]

(2.32)

= 1 +
1

w̄

n
∑

i=1

E[h3
i ]z̄i (2.33)

= 1 +
1

w̄

n
∑

i=1

E[(h + δi − δi−1)
3]z̄i (2.34)

= 1 +
1

w̄

n
∑

i=1

E[h3 + 3h2(δi − δi−1) + 3h(δi − δi−1)
2 + (δi − δi−1)

3]z̄i (2.35)

= 1 +
1

w̄

n
∑

i=1

(

h3 + 3h2E[δi − δi−1]
)

z̄i (2.36)

+
1

w̄

n
∑

i=1

(

3hE[(δi − δi−1)
2] + E[(δi − δi−1)

3]
)

z̄i

= 1 +
1

w̄

n
∑

i=1

(

h3 + 3hE[(δi − δi−1)
2]
)

z̄i (2.37)

= 1 +
1

w̄

n
∑

i=1

(

h3 + 6hVar(δi)
)

z̄i (2.38)

= 1 +

∑n
i=1 hz̄i
w̄

(

h2 + 6Var(δi)
)

, (2.39)

where we use that {δi}
n−1
i=1 are independent, E[δi] = 0, and E[δ2

i ] = E[δ2
i−1] = V ar(δi). We

neglect the boundary effect due to the fact that δ0 and δn are not stochastic. If we let
z̄ =

∑n
i=1 hz̄i we have

p = E[p̂] = 1 +
z̄

w̄
(h2 + 6Var(δi)) (2.40)

Remark 2.3 For the uniform distribution Var(δi) = h2δ2

12
i.e.

p = 1 +
z̄

w̄
h2

(

1 +
δ2

2

)

(2.41)

Remark 2.4 Given δ we can find p by using one for the standard methods [5, 2] for struc-
tured meshes and then add the contribution suggested in equation (2.41). For example if
we want nodal exactness in the right endpoint x = π we can use the formula from [5] for
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nodal exactness on structured mesh to find z̄/w̄.

Given a formula (2.41) to find p we would like to estimate the error (e, ψ) in terms of
h, k, and δ. We start by estimating the variance of ēψ.

Proposition 2.1 It holds

Var(ēψ) = h6

(

3

2
δ2 +

3

4
δ4 +

1

28
δ6

) n
∑

i=1

z̄2
i (2.42)

Proof. We start from equation (2.30) with p̂ chosen according to equation (2.32). We
note that E[ēψ] = 0 so Var(ēψ) = E[ē2

ψ],

Var(ēψ) = E[ē2
ψ] (2.43)

= E





(

n
∑

i=1

h3
i z̄i − (p̂− 1)w̄

)2


 (2.44)

= E





(

n
∑

i=1

h3
i z̄i

)2


− 2E

[

n
∑

i=1

h3
i z̄i

]

E[(p̂− 1)w̄] + E[(p̂− 1)w̄]2 (2.45)

= E





(

n
∑

i=1

h3
i z̄i

)2


− 2E

[

n
∑

i=1

h3
i z̄i

]

E

[

n
∑

i=1

h3
i z̄i

]

+ E

[

n
∑

i=1

h3
i z̄i

]2

(2.46)

= E





(

n
∑

i=1

h3
i z̄i

)2


− E

[

n
∑

i=1

h3
i z̄i

]2

(2.47)

=
n
∑

i=1

(

E[h6
i ] − E[h3

i ]
2
)

z̄2
i . (2.48)

We need to calculate the expected value of different powers of δi. We have E[δ2n−1
i ] = 0

and

E[δ2n
i ] =

δ2nh2n

(2n+ 1)22n
, (2.49)

for all n ∈ N. We use these result and hi = h+ δi − δi−1 to get,

Var(ēψ) =
n
∑

i=1

(

E[h6
i ] − E[h3

i ]
2
)

z̄2
i (2.50)

=

n
∑

i=1

h6

(

1 +
5

2
δ2 + δ4 +

1

28
δ6 − 1 − δ2 −

1

4
δ4

)

z̄2
i (2.51)

=

n
∑

i=1

h6

(

3

2
δ2 +

3

4
δ4 +

1

28
δ6

)

z̄2
i , (2.52)
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which proves the proposition.

We need to estimate the sum in equation (2.42) in terms of h and k. For ψ ∈ H−1(Ω)
independent of h and k we have |φ| ≤ C/k for some constant C and thereby |φ′′| ≤ Ck.
The magnitude of the numeric solution U is independent of k so from equation (2.27) we
get |z̄i| ≤ Ck3. This yields

n
∑

i=1

z̄2
i ≤

n
∑

i=1

Ck6 ≤ C
k6

h
. (2.53)

We are not interested in tracking the constants in the following theory, only the h, k, and
δ dependence. If we neglect the δ4 and δ6 terms in Proposition 2.1 and use it together with
equation (2.53) we get

Var(ēψ) ≤ Ch5k6δ2. (2.54)

Since E[ēψ] = 0 we can use the Chebyshev inequality to get a bound of |ēψ|,

P (|ēψ| > ε) ≤
Var (ēψ)

ε2
. (2.55)

By choosing ε = Dδh5/2k3 we get P
(

|ēψ| > Dδh5/2k3
)

≤ C
D

hence with D large we can
make this quantity arbitrarily small i.e. there exists C independent of δ, h, and k such that

P (|ēψ| ≤ Cδh5/2k3) > 1 − ε (2.56)

for each ε > 0.

3 Numerical Results in One Dimension

We study pointwise error control. This is done by choosing ψ as the Dirac delta measure
in a chosen node. We can actually find an analytic formula for the dual solution in this
case,

φz(x) =
eik(π−z)

ikeikπ
cos(kx) −

1

k
sin(k(x− z))I{x>z}, (3.1)

where z indicates a point mass in x = z. We note that φz(x) ∈ C2([xi−1, xi]) for i =
1, . . . , n. We proceed with a numerical simulation to verify that the iterative algorithm
described in equation (2.13) converges and gives an optimal value of p. Figure 2 shows
rapid convergence for the iterative algorithm towards machine precision. Here ψ is chosen
as the dirac measure in x = π i.e. ψ = δπ.

In Figure 3 we illustrate how well equation (2.41), where z̄/w̄ is calculated on a struc-
tured mesh, compares to numerical experiments of the iterative a posteriori method, equa-
tion (2.13). For each δ, 5000 meshes have been evaluated, by iteration until convergence,
and the stars are the mean value of these. The dashed line is the theoretical value of
equation (2.41). We see quite a good agreement between numerics and theory. Remember
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Figure 4: log (Var(p̂)) verses log k (left) and the logarithm of the number of nodes per
wavelength (right).

that the theoretical value is based on approximations. The variance is proportional to the
square of δ which agree with the theoretical result in equation (2.41).

By changing h and k separately while holding δ = 0.1 we also get an idea of how
the variance of p̂ depends on these variables, see Figure 4. In this particular case we
get Var(p̂) ∼ h7.3k6.1 or Var ((e, ψ)) ∼ h7.3k8.1, since Var((e, ψ)) ∼ k4(U, πφ)2Var(p) ∼
k2Var(p), which is even better than Var (ēψ)) ≤ Ch5k6 that we got from theory, see equation
(2.54).

Another interesting measure of the error is the mean value i.e. ψ = 1. Letting v = 1 in
(2.4) gives us, (U, 1) = i

kp
(1 − U(π)). We have u = eikx so (u, 1) = i(1−u(π))

k
which makes

(e, 1) = −
i

kp
e(π) +

(p− 1)

p
(u, 1). (3.2)

Since p is close to one this calculation shows that the nodal error in π is very closely related
to the mean of the error and coincides if k = 2n, n ∈ N, since (u, 1) = 0 in that case.

4 Two Dimensional Model Problem

In two dimensions we consider a plane wave with wave number

k = k(cos(θ), sin(θ)) (4.1)

propagating on a unit square, see Figure 5. We use a model problem from [5] with inho-
mogeneous Robin boundary conditions chosen such that the solution u is equal to eik·x:
find u ∈ H1(Ω) such that

{

−4u− k2 u = 0 in Ω,
−∂nu = −ik(u− g) on Γ,

(4.2)

where Ω is a polygonal domain in Rd, d = 2, 3 with boundary Γ.

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5: Real part of the solution to the primal problem with θ = π/4 and to the dual
problem with ψΩ = δ[.5,.5]

4.1 The Galerkin Least-Squares Method

The corresponding discretized GLS method reads: find U ∈ V ⊂ H1(Ω) such that

(∇U,∇v) − k2 (U, v) + (τ LU, Lv)Ω̃ − ik(U, v)Γ = −ik(g, v)Γ, for all v ∈ V , (4.3)

where (·, ·)Γ is the L2(Γ) scalar product, L = −4 − k2 and V is the finite element space
of piecewise polynomials of degree p. Again we want to find a criteria for choosing τ that
minimizes a given linear functional of the error. We proceed as in the one dimensional case
starting with the error representation formula.

4.2 Error Representation Formula

The corresponding dual problem reads: find φ such that

{

−4φ− k2 φ = ψΩ in Ω,
−∂nφ = ik(φ− ψΓ) on Γ,

(4.4)

where ψΩ ∈ H−1(Ω) and ψΓ ∈ H1/2(Γ), see [1] for a definition of these spaces. To the right
in Figure 5 we have the dual solution calculated for ψ as a point mass in (0.5, 0.5). In this
setting we consider two types of linear functionals of the error at the same time, namely
(e, ψΩ) and (e, ψΓ)Γ. The a posteriori analysis gives,

(e, ψΩ) − ik(e, ψΓ)Γ = (∇e,∇φ) − (k2e, φ) + (e, ikφ)Γ (4.5)

= (∂nu, φ)Γ − (∇U,∇φ) + (k2U, φ) + (e, ik φ)Γ (4.6)

= (ik(U − g), φ)Γ − (∇U,∇φ− πφ) + (k2U, φ− πφ) (4.7)

− (∇U,∇πφ) + (k2 U, πφ)

= (4U + k2 U, φ− πφ) − (∂nU − ik(U − g), φ− πφ)Γ (4.8)

+ (τLU, Lπφ)Ω̃,
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where the first scalar product in the last row is defined in the following way,

(4U, v) =
∑

K∈K

∫

K

4U v dx−
∑

K∈K

∫

∂K\Γ

∂U

∂nK
v ds, for all v ∈ H1(Ω), (4.9)

where K refers to elements in the mesh with boundary ∂K and K = {K} is the set of
elements in the mesh. We get the following error representation formula,

(e, ψΩ) − ik(e, ψΓ)Γ = (−LU, φ− πφ) (4.10)

+ (−∂nU + ik(U − g), φ− πφ)Γ + (τLU, Lπφ)Ω̃.

We derive a method for choosing τ by letting (4.10) be equal to zero,

τ = −
(4U + k2 U, φ− πφ) − (∂nU − ik(U − g), φ− πφ)Γ

(LU, Lπφ)Ω̃

(4.11)

We define (RΩ, v) = (4U+k2 U, v), for all v ∈ H1(Ω), and (RΓ, v)Γ = (∂nU+ik(U−g), v)Γ,
for all v ∈ H1(Γ), as domain and boundary residual.

Again we end up with a strategy for choosing τ . As in the one-dimensional case this
approach is independent of the structure of the mesh. We consider plane waves sent in
different angles over the unit square. The one dimensional analysis suggests that there
exists a parameter that gives us a good approximation if δ as a function of θ is close to
constant. This is the case on a totally unstructured mesh but can never be the case for a
structured mesh. This implies that we only need to optimize for one angle θ by the method
described in equation (4.11) to get a good approximation for all angles. The reason for
this is that a totally unstructured is much more isotropic than a structured mesh (if the
domain is large enough).

5 Numerical Results in Two Dimensions

We study problems on two different geometries.

Example 1. First we study a plane wave on the unit square. We use the same setting as
in [5] i.e. Robin type boundary conditions that approximately makes the wave propagate
freely over the boundaries. Since we are interested in calculating a correction for unstruc-
tured meshes and also how this correction compares to earlier work on structured grids we
start with a regular mesh constructed by the Delaunay algorithm on a two dimensional
lattice. Then we add small perturbations to the interior nodes and proceed with another
Delaunay triangulation, see Figure 6. We introduce a parameter δ in analogy with the one
dimensional case that measure how unstructured the mesh is. Now the perturbation of
the interior nodes are done both in x and y direction so δ has two entries (δx, δy). Below
δx = δy = δ if nothing else is mentioned. On these meshes we calculate an optimal p for
error control on the outflow boundary Γo when the wave propagates in the x-direction i.e.
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δ=0.2 δ=0.3

Figure 6: Delaunay triangulations with various δ.

θ = 0. This means that Γo = {(x, y) : x = 1, 0 ≤ y ≤ 1}. In equation (4.10) this is
achieved by letting ψΩ = 0 and ψΓ = IΓo

to get φ and then using equation (4.11). To
get small error i.e. find the optimal p we repeat this process iteratively in analogy with
equation (2.13) until the error is about one millionth of the Galerkin error.

In Figure 7 we see how p depends on δ. It is slowly increasing for small δ except a
jump between δ = 0 and δ = 0.05 depending on the big structural change in the grid. For
δ = 0 we have a regular mesh and for δ = 0.05 we get an approximate union jack shape.
For bigger δ we see that p increases in the same way as in the the one dimensional case.
The dashed lines are from a classic GLS-method optimized for the regular mesh, δ = 0 in
Figure 6, and the standard Galerkin method, p = 1. In this example k = 20.

The similarities with the one dimensional result does not come as a surprise. Since the
dual solution is independent of y in this particular example we can use equation (4.11) to
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Figure 7: p optimized for error control with ψΩ = 0 and ψΓ = IΓo
on various unstructured

meshes.

proceed with the following heuristic calculation,

−τ(LU, Lπφ)Ω̃ = (RΩ, φ− πφ) + (RΓ, φ− πφ)Γ (5.1)

=

∫ 1

0

∫ 1

0

RΩ(φ− πφ) dy dx (5.2)

+

∫

{x∈[0,1], y=0}

RΓ(φ− πφ) dx

−

∫

{x∈[0,1], y=1}

RΓ(φ− πφ) dx

≈

∫ 1

0

(φ− πφ)

∫ 1

0

RΩ dy dx+

∫ 1

0

C(x)(φ− πφ) dx (5.3)

=

∫ 1

0

D(x)(φ− πφ) dx. (5.4)

Using the one dimensional result in equation (2.41) and that (LU, Lπφ)Ω̃ should not depend
heavily on δ we get that τ ∼ h2 +CVar(δx) ∼ h2(1 +Cδ2

x). The additional assumption we
need to do in this case is that also πφ is almost constant in the y direction.

We note one difference that actually suggests better results in the two dimensional
case when the error is integrated over the outflow boundary. Instead of having essentially
e =

∫

Rφdx, where R is the residual, we get in two dimensions e =
∫

(
∫

Rdy)φ dx i.e. an
integral over the residual in the y-direction. This would decrees the variance of the error
and therefore also the error bound by the Chebyshev inequality in equation (2.54).

Numerical results confirms this. We let δ and hk be constant and k to be free. The
variance of ik(e, IΓo

)Γ is computed for 100 different meshes in Figure 8. As seen to the
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)Γ) verses h with constant k = 4 and δ = 0.3.

left in Figure 8 Var(p) ∼ (hk)αk−2 for some α. With a similar calculation as in the one
dimensional case we get Var (ik(e, IΓo

)Γ) = k4(U, πφ)2Var(p) and since (U, πφ) ∼ 1 we get
Var ((e, IΓo

)Γ) ∼ k2Var(p) ∼ (hk)α. We see this in the right plot in Figure 8 where we plot
Var (ik(e,Γo

)Γ) verses k while holding hk constant. To determine α we perform another
test where we vary h while holding k constant. The result is presented in Figure 9. We
see that α is approximately equal to 10 i.e. as we suspected we gain one h compared to
the one dimensional case,

Var ((e, IΓo
)Γ) ∼ (hk)10, (5.5)

and from the Chebyshev inequality we get from these numerical tests

P (|(e, IΓo
)Γ| ≤ C(hk)5) ≥ 1 − ε (5.6)
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Figure 10: Real part of the solution using our method to determine τ . εx = 0.03 and
εy = 0.1.

for ε > 0 i.e. we have no pollution effect for error control in this specific norm on meshes
with constant δ.

The variance of the error can also measure the angle depends in the method. With
this result we would not expect worse angle dependence when k increases and hk is hold
constant which is a very nice result.

Example 2. Finally we consider a bit more complicated problem where we simulate
waves travelling through a slit of width εy and thickness εx. The domain is a rectangle of
length π/2 and hight π/4 with two εx wide walls in the middle only leaving a gap of εy
between them. The wave number is set to 20 so we expect five full waves in the centre of
the domain y = π/8. The real part of the solution of the primal and dual are presented
in Figure 10 and Figure 11. The dual solution is calculated for nodal error control in
(x, y) = (π/2, π/8). The wave plane propagates towards the slit and creates approximately
a point source at the slit. We get the characteristic circular waves as when rocks falls
into the sea continuously in one point. The amplitude decreases as the wave propagates
away from the slit in the same way as the dual solution decays from the point mass in
(x, y) = (π/2, π/8).

6 Conclusion

We have discussed how and when standard methods for solving the pollution problem on
structured grids needs to be modified to suit unstructured grids. The analysis is based
on a posteriori error estimates of model problems in one and two dimensions. We present
numerical simulations that confirms our theoretical results on both one and two dimensions.
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