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Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Göteborg, Sweden 2004



Adaptive Variational Multiscale Methods

Based on A Posteriori Error Estimation

Mats G. Larson ∗ Axel Målqvist †

April 8, 2004

Abstract

The variational multiscale method (VMM) provides a general framework for con-
struction of multiscale finite element methods. In this paper we propose a method
for parallel solution of the fine scale problem based on localized Dirichlet problems
which are solved numerically. Next we present a posteriori error estimates for VMM
which relates the error in linear functionals and the energy norm to the discretiza-
tion errors, resolution and size of patches in the localized problems, in the fine scale
approximation. Based on the a posteriori error estimates we propose an adaptive
VMM with automatic tuning of the critical parameters. We primary study ellip-
tic second order partial differential equations with highly oscillating coefficients or
localized singularities.

1 Introduction

Many problems in science and engineering involve models of physical systems on many
scales. For instance, models of materials with microstructure such as composites and flow
in porous media. In such problems it is in general not feasible to seek for a numerical
solution which resolves all scales. Instead we may seek to develop algorithms based on
a suitable combination a global problem capturing the main features of the solution and
localized problems which resolves the fine scales. Since the fine scale problems are localized
the computation on the fine scales is parallel in nature.

Previous work. The Variational Multiscale Method (VMM) is a general framework for
derivation of basic multiscale method in a variational context, see Hughes [8] and [10]. The
basic idea is to decompose the solution into fine and coarse scale contributions, solve the
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fine scale equation in terms of the residual of the coarse scale solution, and finally eliminate
the fine scale solution from the coarse scale equation. This procedure leads to a modified
coarse scale equation where the modification accounts for the effect of fine scale behavior
on the coarse scales. In practice it is necessary to approximate the fine scale equation
to make the method realistic. In several works various ways of analytical modeling are
investigated often based on bubbles or element Green’s functions, see Oberai and Pinsky,
[11] and Arbogast [1]. In [7] Hou and Wu present a different approach. Here the fine scale
equations are solved numerically on a finer mesh. The fine scale equations are solved inside
coarse elements and are thus totally decoupled.

New contributions. In this work we present a simple technique for numerical approx-
imation of the fine scale equation in the variational multiscale method. The basic idea is
to split the fine scale residual into localized contributions using a partition of unity and
solving corresponding decoupled localized problems on patches with homogeneous Dirich-
let boundary conditions. The fine scale solution is approximated by the sum Uf =

∑

i Uf,i

of the solutions Uf,i to the localized problems. The accuracy of Uf depends on the fine
scale mesh size h and the size of the patches. We note that the fine scale computation is
naturally parallel.

To optimize performance we seek to construct an adaptive algorithm for automatic
control of the coarse mesh size H, the fine mesh size h, and the size of patches. Our
algorithm is based on the following a posteriori estimate of the error e = u − Uc − Uf in
the energy norm for the Poisson equation with variable coefficients a:

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (1.1)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

where

(−Σ(Uf,i), vf)∂ωi
= (f + ∇ · a∇Uc, ϕivf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i), (1.2)

C refers to nodes where no local problems have been solved, F to nodes where local problems
are solved, Uc is the coarse scale solution, U = Uc +Uf , R(U) is a computable bound of the
residual f+∇·a∇U , Ri(Uf,i) is a bound of the fine scale residual ϕi(f+∇·a∇Uc)+∇·a∇Uf,i,
Σ(Uf,i) is related to the normal derivative of the fine scale solution Uf,i and measures the
effect of restriction to patches. If no fine scale equations are solved we obtain the first
term in the estimate; the first part of the second sum measures the effect of restriction to
patches; and finally the second part measures the influence of the fine scale mesh parameter
h.

In addition to the energy norm error estimate we also derive error representation for-
mulas for errors in linear functionals of the computed solution using duality techniques.
The framework is fairly general and may be extended to other types of multiscale methods,
for instance, based on localized Neumann problems.
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Outline. In Section 2 we introduce the model problem and the variational multiscale
formulation of this problem we also discuss the split of the coarse and fine scale spaces.
In Section 3 we present a posteriori estimates of the error leading to Section 4 where we
present an adaptive algorithm. In section Section 5 we present numerical results and finally
Section 6 consists of concluding remarks and suggestions on future work.

2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with a highly oscillating coefficient a and homogeneous
Dirichlet boundary conditions: find u ∈ H1

0 (Ω) such that

−∇ · a∇u = f in Ω, (2.1)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ, f ∈ H−1(Ω), and
a ∈ L∞(Ω) such that a(x) ≥ α0 > 0 for all x ∈ Ω. The variational form of (2.1) reads:
find u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V, (2.2)

with the bilinear form
a(u, v) = (a∇u,∇v) (2.3)

for all u, v ∈ V.

2.2 The Variational Multiscale Method

We employ the variational multiscale scale formulation, proposed by Hughes see [8, 10] for
an overview, and introduce a coarse and a fine scale in the problem. We choose two spaces
Vc ⊂ V and Vf ⊂ V such that

V = Vc ⊕ Vf . (2.4)

Then we may pose (2.2) in the following way: find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uc, vf) + a(uf , vf) = (f, vf ) for all vf ∈ Vf .
(2.5)

Introducing the residual R : V → V ′ defined by

(R(v), w) = (f, w) − a(v, w) for all w ∈ V , (2.6)

the fine scale equation takes the form: find uf ∈ Vf such that

(f, vf) − a(uf , vf) = (R(uc), vf ) for all vf ∈ Vf . (2.7)

3



Thus the fine scale solution is driven by the residual of the coarse scale solution. Denoting
the solution uf to (2.7) by uf = TR(uc) we get the modified coarse scale problem

a(uc, vc) + a(TR(uc), vc) = (f, vc) for all vc ∈ Vc. (2.8)

Here the second term on the left hand side accounts for the effects of fine scales on the
coarse scales.

2.3 A VMM Based on Localized Dirichlet Problems

We introduce a partition K = {K} of the domain Ω into shape regular elements K of
diameter HK and we let N be the set of nodes. Further we let Vc be the space of continuous
piecewise polynomials of degree p defined on K.

We shall now construct an algorithm which approximates the fine scale equation by a
set of decoupled localized problems. We begin by writing uf =

∑

i∈N uf,i where

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf , (2.9)

and {ϕi}i∈N is the set of Lagrange basis functions in Vc. Note that {ϕi}i∈N is a partition
of unity with support on the elements sharing the node i. We call the set of elements
with one corner in node i a mesh star in node i and denote it S i

1. Thus functions uf,i

correspond to the fine scale effects created by the localized residuals ϕiR(uc). Introducing
this expansion of uf in the right hand side of the fine scale equation (2.5) and get: find
uc ∈ Vc and uf =

∑

i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf and i ∈ N .
(2.10)

We use this fact to construct a finite element method for solving (2.10) approximately in
two steps.

• For each coarse node we define a patch ωi such that supp(ϕi) ⊂ ωi ⊂ Ω. We denote
the boundary of ωi by ∂ωi.

• On these patches we define piecewise polynomial spaces Vh
f (ωi) with respect to a fine

mesh with mesh function h = h(x) defined as a piecewise constant function on the
fine mesh. Functions in Vh

f (ωi) are equal to zero on ∂ωi.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈ Vh
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf) = (ϕiR(Uc), vf ) for all vf ∈ Vh
f (ωi) and i ∈ N .

(2.11)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero on ∂ωi, Uf

and therefore U will be continuous.
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Figure 1: Two (left) and one (right) layer stars.

Remark 2.1 For problems with multiscale phenomena on a part of the domain it is not
necessary to solve local problems for all coarse nodes. We let C ⊂ N refer to nodes where
no local problems are solved and F ⊂ N refer to nodes where local problems are solved.
Obviously C ∪ F = N . We let Uf,i = 0 for i ∈ C.

Remark 2.2 The choice of the subdomains ωi is crucial for the method. We introduce a
notation for extended stars of many layers of coarse elements recursively in the following
way. The extended mesh star Si

L = ∪j∈Si

L−1

S
j
1 for L > 1. We refer to L as layers, see

Figure 1.

2.4 Subspaces

The choice of the fine scale space Vf can be done in different ways. In a paper by Aksoylu
and Holst [4] three suggestions are made.

Hierarchical basis method. The first and perhaps easiest approach is to let Vf = {v ∈
V : v(xj) = 0, j = N}, where {xi}i∈N are the coarse mesh nodes. When Vf is discritized
by the standard piecewise polynomials on the fine mesh this means that the fine scale base
functions will have support on fine scale stars.

BPX preconditioner. The second approach is to let Vf be L2(Ω) orthogonal to Vc. In
this case we will have global support for the fine scale base functions but for the discretized
space we have rapid decay outside fine mesh stars.

Wavelet modified hierarchical basis method. The third choice is a mix of the other
two. The fine scale space Vf is defined as an approximate L2(Ω) orthogonal version of the

5
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Figure 2: HB-function and WHB-function with two Jacobi iterations.

Hierarchical basis method. We let Qa
cv ∈ Vc be an approximate solution (a small number

of Jacobi iterations) to
(Qa

cv, w) = (v, w), for all w ∈ Vc. (2.12)

and define the Wavelet modified hierarchical basis function associated with the hierarchical
basis function ϕHB to be,

ϕWHB = (I −Qa
c)ϕHB, (2.13)

see Figure 2.
For an extended description of these methods see [3, 4, 2]. In this paper we focus on

the WHB method.

3 A Posteriori Error Estimates

3.1 The Dual Problem

To derive a posteriori error estimates of the error in a given linear functional (e, ψ) with
e = u−U and ψ ∈ H−1(Ω) a given weight. We introduce the following dual problem: find
φ ∈ V such that

a(v, φ) = (v, ψ) for all v ∈ V. (3.1)

In the VMM setting this yields: find φc ∈ Vc and φf ∈ Vf such that

a(vc, φc) + a(vc, φf) = (vc, ψ), for all vc ∈ Vc,

a(vf , φf) + a(vf , φc) = (vf,ψ), for all vf ∈ Vf .
(3.2)

3.2 Error Representation Formula

We now derive an error representation formula involving both the coarse scale error ec =
uc − Uc and the fine scale error ef =

∑

i∈N ef,i :=
∑

i∈N (uf,i − Uf,i) that arises from using
our finite element method (2.11).

We use the dual problem (3.2) to derive an a posteriori error estimate for a linear
functional of the error e = ec + ef . If we subtract the coarse part of equation (2.11) from
the coarse part of equation (2.10) we get the Galerkin orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (3.3)
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The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf) = (f, ϕivf) − a(ec, ϕivf), for all vf ∈ Vh
f (ωi). (3.4)

We are now ready to state the an error representation formula.

Theorem 3.1 If ψ ∈ H−1(Ω) then,

(e, ψ) =
∑

i∈C

(ϕiR(U), φf ) +
∑

i∈F

(

(ϕiR(Uc), φf − vh
f,i)ωi

− a(Uf,i, φ
h
f − vh

f,i)ωi

)

(3.5)

for all vh
f,i ∈ Vh

f (ωi) and i ∈ F .

Proof. Starting from the definition of the dual problem and letting v = e = u− Uc − Uf

we get

(e, ψ) = a(e, φ) (3.6)

= a(e, φf) (3.7)

= a(u− Uc, φf) − a(Uf , φf) (3.8)

= (R(Uc), φf) − a(Uf , φf) (3.9)

= (R(Uc), φf) −
∑

i∈F

a(Uf,i, φf) (3.10)

=
∑

i∈C

(ϕiR(Uc), φf) (3.11)

+
∑

i∈F

(ϕiR(Uc), φf) − a(Uf,i, φf). (3.12)

Since equation (2.11) holds we can subtract functions vh
f,i ∈ Vh

f (ωi) where i ∈ F from
equation (3.12). We end up with

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf) +
∑

i∈F

(ϕiR(Uc), φf − vh
f,i) − a(Uf,i, φf − vh

f,i), (3.13)

which proves the theorem.

For example we can choose vh
f = πhφf , where πhφf is the Scott-Zhang interpolant of

φf onto Vh
f (ωi).

Remark 3.1 In practice the dual problem has to be solved numerically and the solution
has to be in a finer space then the primal solution. To achieve this we can increase the
number of layers when solving the dual problem.
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3.3 Energy Norm Estimate

Next we introduce a notation for a bound of the residual. Let R(U) be a bound of the
residual defined in the following way, see [6]:

R(U) = |f + ∇ · a∇U | + 1

2
max
∂K\Γ

h−1
K |[a∂nU ]| on K ∈ K, (3.14)

where K is the set of elements in the mesh and [·] is the difference in function value over
the current interior edge. We note that |(R(U), v)| ≤ ‖hsR(U)‖‖h−sv‖ for s ∈ R. We
define Ri(Uf,i) in the same way as R(U) on the local mesh but with U replaced by Uf,i

and f replaced by ϕiR(Uc).
We also define a new space on the patches. Let V h

f (ω̄i) be the space of piecewise

polynomials of degree p on ωi. This space is identic to V h
f (ωi) with the difference that

V h
f (ω̄i) is not necessarily zero on the boundary ∂ωi. This means that V h

f (ωi) ⊂ V h
f (ω̄i).

We now state the following estimate for the error in the energy norm, ‖e‖a = a(e, e)1/2.

Theorem 3.2 It holds,

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (3.15)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

where

(−Σ(Uf,i), vf )∂ωi
= (ϕiR(Uc), vf)ωi

− a(Uf,i, vf)ωi
, for all vf ∈ V h

f (ω̄i). (3.16)

Proof. We start with similar arguments as in the proof of Theorem 3.1. We use the error
equation (3.3) with vc as the Scott-Zhang interpolant πce onto the coarse space Vc, see [5],
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to get,

‖e‖2
a = a(e, e) (3.17)

= a(e, e− πce) (3.18)

= a(u− Uc, e− πce) − a(Uf , e− πce) (3.19)

= (R(Uc), e− πce) − a(Uf , e− πce) (3.20)

=
∑

i∈C

(ϕiR(Uc), e− πce) (3.21)

+
∑

i∈F

(ϕiR(Uc), e− πce) − a(Uf,i, e− πce)

=
∑

i∈C

(ϕiR(Uc), e− πce) (3.22)

+
∑

i∈F

(ϕiR(Uc), πf,i(e− πce)) − a(Uf,i, πf,i(e− πce))

+
∑

i∈F

(ϕiR(Uc), e− πce− πf,i(e− πce))

−
∑

i∈F

a(Uf,i, e− πce− πf,i(e− πce))

= I + II + III (3.23)

where πf,i is the Scott-Zhang interpolant onto Vf(ωi). We start by estimating the first
term of equation (3.23), I. From interpolation theory [5] we have,

∑

i∈C

(ϕiR(Uc), e− πce) ≤
∑

i∈C

‖ϕiR(Uc)‖ωi
‖e− πce‖ωi

(3.24)

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

. (3.25)

Next we turn our attention to the second term of equation (3.23), II. We introduce Σ(Uf,i)
which the piecewise polynomial defined on ∂ωi that uniquely solves,

(−Σ(Uf,i), vf)∂ωi
= (R(Uc), ϕivf )ωi

− a(Uf,i, vf)ωi
, for all vf ∈ V h

f (ω̄i). (3.26)

With this definition we get the following estimate for the second term,

II =
∑

i∈F

(−Σ(Uf,i), πf,i(e− πce))∂ωi
(3.27)

≤
∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖ 1√
H
πf,i(e− πce)‖∂ωi

. (3.28)

We use the the following trace inequality from [5],

‖πf,i(e− πce)‖2
∂ωi

≤ C

(

1

H
‖πf,i(e− πce)‖2

ωi
+H‖∇πf,i(e− πce)‖2

ωi

)

. (3.29)
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Next we use that the Scott-Zhang interpolant is both L2 and H1 stable from [5] to get,

‖πf,i(e− πce)‖2
∂ωi

≤ C

(

1

H
‖e− πce‖2

ωi
+H‖∇(e− πce)‖2

ωi

)

(3.30)

≤ CH‖∇e‖2
ωi
. (3.31)

We conclude
II ≤ C

∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖∇e‖ωi
. (3.32)

We now take on the third term in equation (3.23),
∑

i∈F(ϕiR(Uc), e−πce−πf,i(e−πce))−
a(Uf,i, e− πce− πf,i(e− πce)),

III ≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇(e− πce)‖ωi

(3.33)

≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

. (3.34)

We need to do the following simple observation,

‖∇e‖ωi
≤ ‖ 1√

a
‖L∞(ωi)‖

√
a∇e‖ωi

, (3.35)

by Hölder’s inequality. We go back to equation (3.17) and use the estimates of the three

10



terms together with equation (3.35)

‖e‖2
a ≤

∑

i∈C

(ϕiR(Uc), e− πce) (3.36)

+
∑

i∈F

(ϕiR(Uc), πf,i(e− πce)) − a(Uf,i, πf,i(e− πce))

+
∑

i∈F

(ϕiR(Uc), e− πce− πf,i(e− πce))

−
∑

i∈F

a(Uf,i, e− πce− πf,i(e− πce))

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

(3.37)

+ C
∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖∇e‖ωi

+ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

≤ C

(

∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi)

)

‖e‖a (3.38)

+ C

(

∑

i∈F

‖
√
HΣ(Uf,i)‖∂ωi

‖ 1√
a
‖L∞(ωi)

)

‖e‖a

+ C

(

∑

i∈F

‖hRi(Uf,i)‖ωi
‖ 1√

a
‖L∞(ωi)

)

‖e‖a

Finally we get

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (3.39)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),

which proves the theorem.

Remark 3.2 We need to motivate the definition of Σ(Uf,i):

(−Σ(Uf,i), vf)∂ωi
= (ϕiR(Uc), vf )ωi

− (a∇Uf,i,∇vf )ωi
, for all vf ∈ V h

f (ω̄i), (3.40)

in equation (3.16). The function Σ(Uf,i) is a piecewise polynomial defined on the boundary
of patch ωi. Remember that

(ϕiR(Uc), vf)ωi
− (a∇Uf,i,∇vf)ωi

= 0, for all vf ∈ V h
f (ω̄i), (3.41)
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This means that have the same number of unknowns and equations and in practice calcu-
lating Σ(Uf,i) will come down to solving a linear system with a mass matrix defined on the
boundary of the patch. There is a close connection between Σ(Uf,i) and n · a∇Uf,i in fact
Σ(Uf,i) is the L2(∂ωi) projection of n · a∇Uf,i. This is further discussed in [9].

3.4 Application to A Posteriori Error Estimates for the Standard

Galerkin Method

We use the variational mutiscale method on a dual problem to estimate the error of the
standard Galerkin solution on the coarse mesh: find U ∈ Vc such that

a(U, v) = (f, v), for all v ∈ Vc. (3.42)

The corresponding discrete variational multiscale method for the dual reads: find Φc ∈ Vc

and Φf =
∑

i∈N Φf,i where Φf,i ∈ Vh
f (ωi) such that

a(vc,Φc) + a(vc,Φf) = (vc, ψ) for all vc ∈ Vc,

a(vf ,Φf,i) = (ϕivf , ψ) − a(ϕivf ,Φc) for all vf ∈ Vh
f (ωi).

(3.43)

Since we have a(u, v) = (f, v) for all v ∈ Vc we can subtract equation (3.42) from this
equation to get the Galerkin orthogonality,

a(u− U, v) = 0, for all v ∈ Vc. (3.44)

We formulate an error representation formula for the standard Galerkin method in the
following proposition.

Proposition 3.1 It holds

(u− U, ψ) =
∑

i∈N

(R(U),Φf,i) + (R(U), φf − Φf ). (3.45)

Proof. Together equation (3.44) and equation (3.2) gives

(u− U, ψ) = a(u, φc + φf) − a(U, φc + φf) (3.46)

= (f, φc + φf ) − a(U, φc + φf) (3.47)

= (R(U), φf) (3.48)

Finally we add and subtract the Φf term.

If we can get a bound of φf −Φf in terms of the fine mesh parameter h and the size of
the subdomains ωi, the computable terms (R(U),Φf,i) will serve as local error estimators
that points out elements where the fine scale influence is significant. This is done in the
following theorem

12



Theorem 3.3 It holds,

|(R(U), φf − Φf )| ≤ Ca‖HR(U)‖
∑

i∈N

‖
√
HΣ(Φf,i)‖∂ωi

‖ 1√
a
‖L∞(ωi) (3.49)

+ Ca‖HR(U)‖
∑

i∈N

‖hRi(Φf,i)‖ωi
‖ 1√

a
‖L∞(ωi),

where

(Σ(Φf,i), vf)∂ωi
= a(Φf,i, vf )ωi

− (ψ + ∇ · a∇Φc, vf)ωi
, for all vf ∈ V h

f (ω̄i), (3.50)

and Ri(Φf,i) is defined in analogy with with the earlier definition for Ri(Uf,i).

Proof. We start with the rest term of equation (3.45),

|(R(U), φf − Φf )| = |a(e, φf − Φf)| (3.51)

≤ ‖e‖a ‖φf − Φf‖a (3.52)

≤ ‖e‖a ‖φ− (Φc + Φf )‖a. (3.53)

From standard a posteriori theory we know that ‖e‖a ≤ Ca‖HR(U)‖, for some constant
Ca depending on a, and from Theorem 3.2 with f = ψ, u = φ, Uc = Φc, Uf = Φf , C = ∅,
and Uf,i = Φf,i we have,

‖φ− (Φc + Φf )‖a ≤ C
∑

i∈N

‖
√
HΣ(Φf,i)‖∂ωi

‖ 1√
a
‖L∞(ωi) (3.54)

+ C
∑

i∈N

‖hRi(Φf,i)‖ωi
‖ 1√

a
‖L∞(ωi),

with Σ(Φf,i) defined as in equation (3.50). The theorem follows immediately by combining
equation (3.53) and equation (3.54).

4 Adaptive Algorithm

We use the energy norm estimate in Theorem 3.2 to construct an adaptive algorithm. We
remember the result,

‖e‖a ≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖ 1√

a
‖L∞(ωi) (4.1)

+ C
∑

i∈F

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

‖ 1√
a
‖L∞(ωi),
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These contributions to the error can easily be understood. The first term is the standard
a posteriori estimate for a Galerkin solution on the coarse mesh i.e. this is what we get
if we do not solve any local problems. The first part of the second sum represents the
error arising from the fact that we solve the local problems on patches ωi instead of the
whole domain. Remember that Σ(Uf,i) is closely related to the normal derivative of the
fine scale solution on the boundary of the patches. Finally, the second part of the second
sum represents the fine scale resolution. The two contributions to the second sum clearly
points out the parameters of interest when using our method. The first one is the patch
size, increasing patch size will decrease ‖

√
HΣi‖∂ωi

, the second one is the fine scale mesh
size h.

From equation (4.1) we now state the following adaptive algorithm:

Adaptive Algorithm.

• Start with no nodes in F .

• Calculate a solution U on the coarse mesh.

• Calculate the residuals for each coarse node, Ri = ‖HR(Uc)‖ωi
.

• Calculate the contributions from the first term of the local problems, Si = ‖
√
HΣi‖∂ωi

.

• Calculate the contributions from the second term of the local problems, Wi =
‖hRi(Uf,i)‖ωi

.

• For large values in Ri add i to F , for large values in Si or Wi either increase the
number of layers or decrease the fine scale mesh size h for local problem i. Return
to 2 or stop if the desired tolerance is reached.

5 Numerical Examples

We solve two dimensional model problems with linear base functions defined on a uniform
triangular mesh.

Example 1. In the first example we let a = 1, f = 1, and Ω be the unit square with
a slit, see Figure 5. The solution u is forced to be zero on the boundary including the
slit. We solve the problem by using the adaptive algorithm above with a refinement level
of 10 % each iteration. Figure 5 shown the adaptive choice of refinement level k, where
h = H · 2−k, and number of layers L for the local problems after one and two iterations.
We plot the difference between our solution and a reference solution in Figure 5. We see
that the Galerkin solution has a large error in the singularity and that we can take care of
this singularity by solving local problems chosen in an adaptive fashion.
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Figure 3: Unit square with a slit between (0.5, 0.5) and (1, 0.5).
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Figure 4: Refinement level, h = H · 2−k, and number of layers L for each coarse node. The
upper pictures are after one iteration in the adaptive algorithm and the lower pictures are
after two iterations.

15



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10
−3

Galerkin

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10
−3

one iteration

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10
−3

two iteration

Figure 5: The error in the Galerkin solution (left), after one step in the adaptive algorithm
(middle), and after two steps (right).

Figure 6: The coefficient is discontinuous with the values a = 1 on the white squares and
a = 0.05 on the lattice.
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Figure 7: Reference solution (upper left), standard Galerkin on coarse mesh (upper right),
solution with local problems using one layer stars (lower left), and finally local problems
using two layer stars (lower right).

Example 2. In this example we use a simple geometry, the unit square, but we let the
coefficient a oscillate rapidly according to Figure 5. We calculate a reference solution on the
fine space and compare it to the standard Galerkin on the coarse mesh with and without
solving local problems. We see that standard Galerkin on a coarse mesh performs badly
for this problem, Figure 5. Solving local problems using one layer stars give the solution
the correct magnitude and if we use two layers we see that the fine scale features of the
solution starts to fall into place. In this example no adaptivity was used. Local problems
was solved for all coarse nodes.

6 Conclusions and Future Work

We have presented a method for parallel solution of the fine scale equations in the varia-
tional multiscale method based on solution of localized Dirichlet problems on patches and
developed an a posteriori error analysis for the method. Based on the estimates we design
a basic adaptive algorithm for automatic tuning of the critical parameters: resolution and
size of patches in the fine scale problems. It is also possible to decide wether a fine scale
computation is necessary or not and thus the proposed scheme may be combined with
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a standard adaptive algorithm on the coarse scales. The method is thus very general in
nature and may be applied to any problem where adaptivity is needed.

In this paper we have focused on two scales in two spatial dimensions. A natural
extension would be to solve three dimensional problems with multiple scales. It is also
natural to extend this theory to other equations modeling for instance flow and materials.
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