
PSfrag replacements

Tn−1

Tn

FINITE ELEMENT CENTER

PSfrag replacements

Tn−1

Tn

PSfrag replacements

Tn−1 Tn

PREPRINT 2004–12

Multi-adaptive Galerkin methods for ODEs V:
Stiff problems

Johan Jansson and Anders Logg

PSfrag replacements

Tn−1

Tn

Chalmers Finite Element Center
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg Sweden 2004

CHALMERS FINITE ELEMENT CENTER

Preprint 2004–12

Multi-adaptive Galerkin methods for ODEs V:
Stiff problems

Johan Jansson and Anders Logg

PSfrag replacements

Tn−1

Tn
PSfrag replacements

Tn−1

Tn

Chalmers Finite Element Center
Chalmers University of Technology

SE–412 96 Göteborg Sweden
Göteborg, April 2004

Multi-adaptive Galerkin methods for ODEs V:
Stiff problems
Johan Jansson and Anders Logg
NO 2004–12
ISSN 1404–4382

Chalmers Finite Element Center
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Göteborg, Sweden 2004

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V:
STIFF PROBLEMS

JOHAN JANSSON AND ANDERS LOGG

Abstract. We develop the methodology of multi-adaptive time-stepping for stiff prob-
lems. The new algorithm is based on adaptively stabilized fixed point iteration on time
slabs and a new method for the recursive construction of time slabs. Numerical examples
are given for a series of well-known stiff and non-stiff test problems.

1. Introduction

This is part V in a sequence of papers [7, 8, 9, 10] on multi-adaptive Galerkin methods,
mcG(q) and mdG(q), for approximate (numerical) solution of ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T]→ R
N is the solution to be computed, u0 ∈ R

N a given initial value, T > 0
a given final time, and f : R

N × (0, T]→ R
N a given function that is Lipschitz-continuous

in u and bounded.
The mcG(q) and mdG(q) methods are based on piecewise polynomial approximation of

degree q on partitions in time with time steps which may vary for different components Ui(t)
of the approximate solution U(t) of (1.1). In part I and II of our series on multi-adaptive
Galerkin methods, we prove a posteriori error estimates, through which the time steps
are adaptively determined from residual feed-back and stability information, obtained by
solving a dual linearized problem. In part III, we prove existence and stability of discrete
solutions, which are used in part IV to prove a priori error estimates. In the current paper,
we develop the methodology of multi-adaptive time-stepping for stiff problems.

1.1. The stiffness problem. As noted already by Dahlquist [1] in the 1950s, there is a
certain class of problems, so-called stiff problems, for which standard explicit methods are
not suitable. This is often referred to as the stiffness problem. As noted in [3], we run
into the same difficulties when we try to solve the system of equations given by an implicit
method using direct fixed point iteration. Within the setting of multi-adaptive Galerkin

Date: April 13, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE, continuous

Galerkin, discontinuous Galerkin, mcgq, mdgq, explicit, stiff problems.
Johan Jansson, email : johanjan@math.chalmers.se. Anders Logg, email : logg@math.chalmers.se.

Department of Computational Mathematics, Chalmers University of Technology, SE–412 96 Göteborg,
Sweden.

1

2 JOHAN JANSSON AND ANDERS LOGG

methods, this becomes evident when the adaptively determined time steps become too
large for the fixed point iteration to converge, which typically happens outside transients.
We are thus forced to take (much) smaller time steps than required to meet the given error
tolerance.

In [3], we present a new methodology for the stabilization of explicit methods for stiff
problems, based on the inherent property of the stiff problem itself: rapid damping of high
frequencies. Using sequences of stabilizing time steps, consisting of alternating small and
large time steps, an efficient explicit method is obtained.

In the current paper, we extend the ideas presented in [3] for the mono-adaptive cG(1)
method to general multi-adaptive time stepping. In particular, we show that the technique
of stabilizing time step sequences can be extended to adaptively stabilized fixed point
iteration on time slabs, where the damping factor α plays the role of the small stabilizing
time steps.

1.2. Implementation. The presented methodology has been implemented in DOLFIN

[5], the C++ implementation of the new open-source software project FEniCS [2] for the
automation of Computational Mathematical Modeling (CMM). The multi-adaptive solver
in DOLFIN is based on the original implementation Tanganyika, presented in [8], but has
been completely rewritten for DOLFIN. The new implementation is discussed in detail in
[6].

1.3. Notation. For a detailed description of the multi-adaptive Galerkin methods, we
refer the reader to [7, 8, 9, 10]. In particular, we refer to [7] or [9] for the definition of the
methods.

The following notation is used throughout this paper: Each component Ui(t), i =
1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is a piecewise polyno-
mial on a partition of (0, T] into Mi subintervals. Subinterval j for component i is de-
noted by Iij = (ti,j−1, tij], and the length of the subinterval is given by the local time

step kij = tij − ti,j−1. This is illustrated in Figure 1. On each subinterval Iij, Ui|Iij
is a

polynomial of degree qij and we refer to (Iij, Ui|Iij
) as an element.

Furthermore, we shall assume that the interval (0, T] is partitioned into blocks between
certain synchronized time levels 0 = T0 < T1 < . . . < TM = T . We refer to the set of
intervals Tn between two synchronized time levels Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1.

1.4. Outline of the paper. We first discuss a few basic and well-known properties of
fixed point iteration in Section 2, and then present our new methodology of adaptively
stabilized fixed point iteration in Section 3. In Section 4, we then discuss two important
parts of the multi-adaptive algorithm: the construction of multi-adaptive time slabs, and
the adaptively stabilized fixed point iteration on time slabs. Finally, in Section 5, we
present numerical results for a sequence of stiff test problems taken from [3].

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 3

PSfrag replacements

Tn−1

Tn

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T] for different compo-
nents. Elements between common synchronized time levels are organized in
time slabs. In this example, we have N = 6 and M = 4.

2. Fixed point iteration

Let F : R
N → R

N be a given differentiable function of the form

(2.1) F (x) ≡ x− g(x)

and consider the problem of solving the equation

(2.2) F (x) = 0

or, alternatively, x = g(x) by fixed point iteration. Given an initial guess x0, we iterate
according to

(2.3) xn = g(xn−1) = xn−1 − (xn−1 − g(xn−1)) = xn−1 − F (xn−1),

for n = 1, 2, . . ., to obtain the fixed point x satisfying x = g(x). By the Banach fixed point
theorem, this iteration converges to the unique solution x of (2.2), if the Lipschitz constant
Lg of g satisfies

(2.4) Lg < 1,

or, since the Lipschitz constant is bounded by the derivative of g, if ‖g ′‖ ≤ C with C < 1
for a suitable norm ‖ ·‖. To see this, we note that F (xn) = xn−g(xn) = g(xn−1)−g(xn) =
g′(ξ)(xn−1 − xn), and thus, by (2.3),

(2.5) F (xn) = g′(ξ)F (xn−1),

and so the residual F (xn) of (2.2) converges to zero if ‖g′‖ is bounded by C < 1.

4 JOHAN JANSSON AND ANDERS LOGG

For the increment dn ≡ xn − xn−1, we similarly obtain dn = xn − xn−1 = g(xn−1) −
g(xn−2) = g′(ξ)(xn−1 − xn−2), and thus

(2.6) dn = g′(ξ)dn−1.

We finally note that for the error en ≡ xn − x, with x the solution of (2.2), we obtain
en = xn − x = g(xn−1)− g(x) = g′(ξ)(xn−1 − x), and thus

(2.7) en = g′(ξ)en−1.

By (2.5), (2.6), and (2.7), it now follows that we can measure either the residual F (xn)
or the increment dn to determine the convergence of the error en. If the solution does
not converge, the fixed point iteration needs to be stabilized. In the next section, we
present an algorithm for adaptively stabilized fixed point iteration, based on measuring
the convergence of the residual F (xn) or the increment dn.

3. Adaptive fixed point iteration

To stabilize the fixed point iteration, we modify the basic iteration (2.3) according to

(3.1) xn = (I − α)xn−1 + αg(xn−1) = xn−1 − α(xn−1 − g(xn−1) = xn−1 − αF (xn−1),

where I is the N ×N identity matrix and the damping factor α is an N ×N matrix to be
determined. We will mainly consider the case of a diagonal or scalar α. Note that (2.3) is
recovered for α = I.

To show the equivalent of (2.5), we write F (xn) = xn − g(xn) in the form F (xn) =
(xn − xn−1) + (xn−1 − g(xn−1)) + (g(xn−1)− g(xn)). It now follows by (3.1) that F (xn) =
−αF (xn−1) + F (xn−1) + g′(ξ)(xn−1 − xn) = (I − α)F (xn−1) + g′(ξ)αF (xn−1), and thus

(3.2) F (xn) = [I − (I − g′(ξ))α]F (xn−1).

Similarly, we obtain dn = xn−xn−1 = (I−α)xn−1 +αg(xn−1)−(I−α)xn−2−αg(xn−2) =
(I − α)dn−1 + αg′(ξ)(xn−1 − xn−2), and thus

(3.3) dn = [I − α(I − g′(ξ))] dn−1.

We also note that x = (I − α)x + αg(x) if x = g(x), and thus the error en satisfies
en = xn−x = (I−α)xn−1 +αg(xn−1)− (I−α)x−αg(x) = (I−α)en−1 +αg′(ξ)(xn−1−x),
i.e.,

(3.4) en = [I − α(I − g′(ξ))] en−1.

The question is now how to choose the damping factor α. One obvious choice is to take
α such that I − α(I − g′(xn−1)) = 0, where we have replaced the unknown intermediate
value ξ with the latest known value xn−1. This gives α = (I − g′(xn−1))−1 = (F ′(xn−1))−1,
and thus

(3.5) xn = xn−1 − (F ′(xn−1))−1F (xn−1),

which is Newton’s method for the solution of (2.2).
We now present an algorithm for stabilized fixed point iteration which adaptively deter-

mines the damping factor α, and which avoids computing the Jacobian F ′ and solving a

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 5

linear system in each iteration as in Newton’s method. We focus on the case where α is
either diagonal or scalar.

3.1. Diagonal damping. Let α = diag(α1, . . . , αN) be a diagonal matrix, and assume
for simplicity that g′ is constant and equal to −B. With this choice of α, the fixed point
iteration is given by

(3.6) xn
i = (1− αi)x

n−1
i + αigi(x

n−1), i = 1, . . . , N,

or xn = Gαxn−1, with Gα = I − α(I + B). We assume that

(1) B is diagonally dominant, and
(2) Bii ≥ 0, i = 1, . . . , N .

By (3.4), it follows that the fixed point iteration converges for ‖Gα‖l∞ < 1, where ‖Gα‖l∞
denotes the maximum absolute row sum, ‖Gα‖l∞ = maxi

∑N
j=1 |(Gα)ij|. For i = 1, . . . , N ,

we have
N

∑

j=1

|(Gα)ij| = |1− αi − αiBii|+ αi

∑

j 6=i

|Bij| ≤ |1− α− αBii|+ αiBii,

since B is diagonally dominant and Bii ≥ 0. We now take

(3.7) αi = 1/(1 + Bii),

which gives
∑N

j=1 |(Gα)ij| = Bii/(1 + Bii) < 1. We thus conclude that if B is diagonally
dominant and Bii ≥ 0 for each i, then we can choose α diagonal such that the stabilized
fixed point iteration (3.1) converges. We also note that the convergence may be slow if
some Bii � 1, since then Bii/(1 + Bii) is close to unity.

3.2. Scalar damping. With α ∈ (0, 1] scalar, we assume as above that g ′ = −B is
constant. We further assume that

(1) B is non-defective, i.e., B is diagonalizable:

∃V =
[

v1 · · · vN
]

non-singular : V −1BV = diag(λ1, . . . , λN),

with λ1, . . . , λN the eigenvalues of B;
(2) Reλi > −1 for all λi;
(3) |Imλi|/(1 + Re λi) ≤ tanβ, for some β ∈ (0, π/2), i.e., | arg(1 + λi) | ≤ β for all λi,

as illustrated in Figure 2.

Note that the first condition is not a major restriction. If B should be defective, B will
be made non-defective by a small perturbation, which will always be introduced through
round-off errors.

To determine the size of α, we write the error en−1 in the form en−1 =
∑N

i=1 en−1
i vi. By

(3.4), it follows that

en = (I − α(I + B))
N

∑

i=1

en−1
i vi =

N
∑

i=1

en−1
i (1− α(1 + λi))v

i =
N

∑

i=1

σie
n−1
i vi,

6 JOHAN JANSSON AND ANDERS LOGG

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�
�
�

�
�
�

PSfrag replacements

Tn−1

Tn

Reλ

Im λ

−1

β

Figure 2. The eigenvalues λ of the matrix B are assumed to lie within the
shaded sector.

where σi = 1 − α(1 + λi). It follows that the stabilized fixed point iteration converges if
we take α such that |σi| < 1 for i = 1, . . . , N . With

(3.8) α =
cos β

1 + maxi |λi|
,

we obtain

|σi|2 = (Re σi)
2 + (Im σi)

2 = (1− α(1 + Re λi))
2 + α2(Im λi)

2 = 1 + α2r̃2
i − 2α(1 + Reλi),

where r̃i = |1 + λi|. By assumption, | arg(1 + λi) | ≤ β, and thus 1 + Re λi ≥ r̃i cos β. It
follows that

|σi|2 ≤ 1 + α2r̃2
i − 2αr̃i cos β = 1 +

r̃2

i
cos2 β

(1+maxi |λi|)2
− 2r̃i cos2 β

1+maxi |λi|

≤ 1 + r̃i cos2 β
1+maxi |λi|

− 2r̃i cos2 β
1+maxi |λi|

= 1− r̃i cos2 β
1+maxi |λi|

< 1,

and thus the fixed point iteration (3.1) converges.
We note that, since α is chosen based on the largest eigenvalue, the convergence for

eigenmodes corresponding to smaller eigenvalues may be slow, if r̃i � 1 + maxi |λi|. To
improve the convergence for these eigenmodes, the algorithm determines a suitable num-
ber m of stabilizing iterations with damping factor α given by (3.8), and then gradually

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 7

increases α by a factor two, towards α = 1,

(3.9) α← 2α/(1 + α).

This corresponds to the use of stabilizing time step sequences in [3] for the stabilization of
explicit methods for stiff problems.

To determine the number m of stabilizing iterations, we note that with α = 1, the
eigenmode corresponding to the largest eigenvalue will diverge by a factor maxi |λi|. We
further note that with damping factor α given by (3.8), this eigenmode will converge by a
factor ∼ 1− cos β. To compensate for one iteration with α = 1, we thus need to choose m
such that

(1− cos β)m max
i
|λi| < 1,

giving

(3.10) m >
log (maxi |λi|)

log 1/(1− cos β)
.

We note that the number of stabilizing iterations becomes large for β close to π/2, and to
limit the number of stabilizing iterations m, we assume in practice that β = π/4, which
gives cos β = 1/

√
2 and m ≈ log(maxi |λi|).

With α and m determined by (3.8) and (3.10), respectively, we need to determine the
value of ρ = maxi |λi|, which is obtained by cumulative power iteration as follows. The
residual F (xn), or the increment dn, is measured for a sequence of iterations with α = 1.
We let ρ1 = ‖F (x1)‖l2/‖F (x0)‖l2, and for n = 2, 3, . . . determine ρn according to

(3.11) ρn = (ρn−1)
(n−1)/n(‖F (xn)‖l2/‖F (xn−1)‖l2)1/n,

until ρn has converged to within some tolerance, typically 10%. When ρ has been computed,
the damping factor α and the number of stabilizing steps m are then determined for
β = π/4 according to

(3.12) α =
1/
√

2

1 + ρ
,

and

(3.13) m = log ρ.

As an example, we consider the solution of the linear system

(3.14) x = g(x) = u0 −KAx =

[

1
1

]

−
[

0 −1
κ 200

]

x,

by stabilized fixed point iteration, corresponding to one time step of size K = 1 with
the dG(0) method for a mass-spring-dashpot system with damping b = 200 and spring
constant κ. With κ = 104, the system is critically damped and B = −KA is defective
with two eigenvalues of size λ = 100. Although ‖B‖l2 ≈ 104 and there is no α ∈ (0, 1] such
that ‖Gα‖l2 < 1 with Gα = I − α(I + B), the stabilized fixed point iteration converges,
by targeting the stabilization at the largest eigenvalue λ = 100. This is illustrated in
Figure 3, where we also plot the convergence for κ = 2 · 104 and κ = 103, corresponding

8 JOHAN JANSSON AND ANDERS LOGG

0 20 40

10
−10

10
0

0 20 40
10

−3

10
−2

10
−1

10
0

0 50 100

10
−10

10
0

0 20 40
10

−3

10
−2

10
−1

10
0

0 100 200 300

10
−10

10
0

0 100 200 300
10

−3

10
−2

10
−1

10
0

PSfrag replacements

Tn−1

Tn

nnn

α
F

(x
n
)

κ = 104 κ = 2 · 104 κ = 103

Figure 3. Convergence of the stabilized fixed point iteration for the solution
of (3.14) with κ = 104, κ = 2 · 104, and κ = 103.

to an under-damped and over-damped harmonic oscillator, respectively. All three results
were obtained using same general iterative algorithm available in version 0.4.7 of DOLFIN,
which automatically detects the appropriate size of α in each iteration.

Note the different behavior of the convergence for the three different systems. For
κ = 104, there is only one eigenvalue and so α needs to be targeted only at this eigenvalue.
For κ = 2 · 104, the eigenvalues λ = 100 ± 100i of A have a large imaginary part, which
results in oscillations in the convergence. For κ = 103, the matrix A has two eigenvalues
λ1 ≈ 5 and λ2 ≈ 195 of different magnitudes. For the stabilized fixed point iteration
to converge, it is then important that α is targeted not only at the large eigenvalue λ2,
but also at the smaller eigenvalue λ1, which is accomplished by gradually increasing the
damping factor α after each sequence of stabilizing iterations.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 9

4. Algorithm

The algorithm we propose is a modified version of the algorithm presented earlier in [8].
Note that the method, mcG(q) or mdG(q), remains unchanged.

The original multi-adaptive iterative strategy of [8] is based on simple fixed point it-
eration. For certain problems (stiff problems), this iteration may fail to converge. We
take this as the definition of stiffness: A problem is stiff when simple fixed point iteration
does not converge. With this definition, the stiffness will depend on the size of the time
steps (and thus on the tolerance) and the exact construction of the time slab, as well as
properties of the differential equation (1.1) itself, such as the eigenvalues of the Jacobian
of the right-hand side f .

The modified algorithm differs from the original algorithm both in how the time slabs are
constructed, and in how the iteration is performed on each time slab. The new algorithm is
intelligent, in the sense that the iterative strategy is automatically adapted to the detected
level of stiffness. This means in particular that for a non-stiff problem, simple fixed point
iteration is used, essentially corresponding to the original algorithm of [8].

4.1. Recursive construction of time slabs. In [8], time slabs are constructed in a way
that allows each component to have its individual time step sequence, independent of the
time step sequences for other components. No restrictions are made on the time step
sequences, other than that the first time step is the same for each component and also that
the last time step for each component may be adjusted to match the given end time T for
the simulation.

The algorithm presented in [8] gives the proper time step sequence for each component,
but has the disadvantage that there is little structure in the organization of the time
slabs. In particular, a time slab does not have a well-defined left end-point Tn−1 and right
end-point Tn.

The new algorithm recursively constructs a time slab between two synchronized time
levels Tn−1 and Tn, consisting of at least one element for every component. Each element
(Iij, U |Iij

) within the time slab satisfies the relation Tn−1 ≤ ti,j−1 < tij ≤ Tn.
The time slab is organized recursively as follows. The root time slab covering the interval

(Tn−1, Tn] contains a non-empty list of elements, which we refer to as an element group, and
a possibly empty list of time slabs, which in turn may contain nested groups of elements
and time slabs. This is illustrated in Figure 4.

For the construction of the time slab, we first examine each component for its desired time
step. This time step is adaptively determined by a controller from the current component
residual with the goal of satisfying a given error tolerance, as discussed in [8]. In the
current implementation, a simple controller, based on the harmonic mean value with the
previous time step, has been used. For each component, an individual controller is used.
We let k = (ki) denote the vector of desired time steps for the different components, as
determined by the controllers.

To construct the time slab, we let K be the largest time step contained in the vector k,

(4.1) K = max
i

ki, i ∈ I0 = {1, 2, . . . , N}.

10 JOHAN JANSSON AND ANDERS LOGG

PSfrag replacements

Tn−1

Tn

Tn−1 Tn

Figure 4. The recursive organization of the time slab. Each time slab
contains an element group (shaded) and a list of recursively nested time
slabs. The root time slab in the figure contains one element group of three
elements and three time slabs. The first of these sub slabs contains an
element group of two elements and two nested time slabs, and so on. The
root time slab recursively contains a total of nine element groups and 35
elements.

We next partition the components into two groups, one group I00 ⊂ I0 containing com-
ponents with small time steps, and another group I01 ⊆ I0 containing components with
large time steps. For the partition of the components, we introduce a parameter θ ∈ [0, 1],
referred to as the partitioning threshold, which determines the granularity of the time slab.
A large partitioning threshold means that each component will have its own time step,
and a small partitioning threshold means that all components will use the same time step.
By varying θ, we may thus vary the multi-adaptive nature of the algorithm. The value of
θ determines (roughly speaking), the maximum quotient between two different time steps
within the time slab.

All components for which ki < θK are assigned to the group I00 of components with
small time steps, and the remaining components for which ki ≥ θK are assigned to the
group I01 of components with large time steps. Among the components with large time
steps, we determine the minimum time step

(4.2) K̄ = min
i

ki, i ∈ I01.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 11

The size of the time slab is then adjusted according to

(4.3) Tn = min(Tn−1 + K̄, T),

i.e., we let K̄ be the size of the time slab and adjust the size if we should reach the given
final time T . We illustrate the partition of components in Figure 5.

PSfrag replacements

Tn−1

Tn

θK K̄ K

Figure 5. The partition of components into groups of small and large time
steps for θ = 1/2.

The time slab is then recursively created by first constructing a list of sub slabs for the
components contained in the group I00, and then constructing an element group containing
one element for each of the components within the group I01, as illustrated in Figure 4.
Each of these elements covers the full length of the time slab, ti,j−1 = Tn−1 and tij = Tn.

Note that we construct the list of sub slabs before we create the element group. The
tree of time slabs is thus constructed recursively depth first. This means in particular that
the first element that is constructed is for the component with the smallest time step. The
original multi-adaptive algorithm presented in [8] is based on the principle

(4.4) The last component steps first.

This property is automatically obtained through the depth first nature of the new recursive
algorithm. In Figure 6, we illustrate the recursive construction of elements by numbering
the elements in the order in which they are created.

The list of sub slabs is constructed sequentially until the list of sub slabs covers the
interval [Tn−1, Tn] of the parent (root) time slab. For the construction of each of these sub

12 JOHAN JANSSON AND ANDERS LOGG

31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

PSfrag replacements

Tn−1

Tn

Tn−1 Tn

Figure 6. Numbering of the elements in the order in which they are created.

slabs, we again determine the maximum time step,

(4.5) K = max
i

ki, i ∈ I00.

All components within I00 for which ki < θK are assigned to the group I000 of components
with small time steps within I00, and the remaining components for which ki ≥ θK are
assigned to the group I001 of components with large time steps within I00. As before, we
let

(4.6) K̄ = min
i

ki, i ∈ I001,

and let K̄ be the length of the sub slab. For the components in the group I000, we continue
recursively, until the group of components with small time steps is empty. At that point, the
second time slab in the list of time slabs within the current parent time slab is constructed,
until finally all time slabs and element groups within the root time slab have been created.

4.2. Adaptive fixed point iteration on time slabs. On each time slab, the system of
discrete equations given by the mcG(q) or mdG(q) method is solved using adaptive fixed
point iteration, as discussed in Section 3. Different iterative strategies are used, depending
on the stiffness of the problem.

As described in Section 4.1, a time slab contains a number of element groups (counting
also the element groups of the recursively contained time slabs). Each element group
contains a list of elements, and each element represents a set of degrees of freedom for a
component Ui(t) on a local interval Iij.

We may thus view the time slab as a large system of discrete equations of the form

(4.7) F (x) = 0

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 13

for the degrees of freedom x of all elements of all element groups contained in the time
slab.

Alternatively, we may view the time slab as a set of coupled sub systems of the form
(4.7), one for each element group, where each sub system consists of the degrees freedom
of each element within the element group.

Since each element can also be viewed as a sub system for the element degrees of freedom,
the time slab can be viewed as a set of sub systems, one for each element group within the
time slab, which each in turn consists of a set of sub systems, one for each element within
the element group.

We present below an iterative strategy that takes advantage of this nested structure of
sub systems, in combination with adaptive stabilization at the different levels of iteration.
We refer to iterations at the element level as level 1 iterations, and to the iterations at the
element group and time slab level as level 2 and level 3 iterations, respectively.

4.2.1. Nested fixed point iteration. The basic principle of the nested fixed point iteration is
that each iteration on a given system consists of fixed point iteration on each sub system.
For fixed point iteration on a time slab, the nested structure of sub systems consist of
elements (level 1) contained in element groups (level 2), which in turn are contained in the
time slab (level 3).

The general algorithm for nested fixed point iteration is given in Table 1. On each level,
fixed point iteration is performed as long as a certain condition (1, 2, or 3) holds. This
condition is typically of the form

(4.8) r > tol,

where r is the size of the residual for the current sub system and tol > 0 is a tolerance for
the residual. In each iteration, the current system is updated and each update consists of
successive fixed point iteration on all sub systems. By different choices of condition for the
fixed point iteration and for the type of adaptive damping on each level, different overall
iterative methods are obtained. We present below four different versions of the iterative
algorithm, which we refer to as non-stiff iteration, adaptive level 1 iteration, adaptive level

2 iteration, and adaptive level 3 iteration. The solver automatically detects which version
of the algorithm to use, depending on the stiffness of the problem.

4.2.2. Non-stiff iteration. Unless otherwise specified by the user, the problem (1.1) is as-
sumed to be non-stiff. The non-stiff version of the iterative algorithm is specified as follows.
As discussed in [8], the system of equations to be solved for the degrees of freedom {ξm}
on each element is of the form

(4.9) ξm = ξ0 +

∫

Iij

w[qij]
m (τij(t))fi(U(t), t) dt, m = 1, . . . , qij,

for the mcG(q) method, where τij(t) = (t−tij)/(tij−ti,j−1) and {w[qij]
m }qij

m=1 ⊂ P [qij−1]([0, 1])
are polynomial weight functions. For the mdG(q) method, the system of equations on each
element has a similar form.

14 JOHAN JANSSON AND ANDERS LOGG

Iterate(time slab)

while condition 3 do
Update(time slab)

end while

PSfrag replacements

Tn−1

Tn

Update(time slab)

for each element group do
Iterate(element group)

end for

Iterate(element group)

while condition 2 do
Update(element group)

end while

PSfrag replacements

Tn−1

Tn

Update(element group)

for each element do
Iterate(element)

end for

Iterate(element)

while condition 1 do
Update(element)

end while

PSfrag replacements

Tn−1

Tn

Update(element)

for each degree of freedom do
Update(degree of freedom)

end for

Table 1. Nested fixed point iteration on the time slab.

For each element (Iij, U |Iij
), we define the element residual Re

ij as

(4.10) Re
ij = ξqij

− ξ0 −
∫

Iij

fi(U(t), t) dt,

noting that w
[qij]
qij ≡ 1. For a given tolerance tol, we choose condition 1 for the element

iteration as

(4.11) |Re
ij| > tol.

For the iteration on element group level, condition 2 is given by ‖Re
ij‖l2 > tol, with the l2

norm taken over all elements in the element group. Similarly, condition 3 for the iteration
on time slab level is given by ‖Re

ij‖l2 > tol, with the l2 norm taken over all elements in
the time slab. In each iteration and for each element, the degrees of freedom are updated
according to the fixed point iteration (4.9). On the element level, the update is of Gauss–
Jacobi type, meaning that the degrees of freedom {ξm} are computed using previously
computed values, i.e., the new values ξ1, . . . , ξm−1 are not used when computing the new
value of ξm. On the element group level and time slab level, the update is of Gauss–Seidel
type, meaning that when an element is updated, the latest known values are used for all
previously updated elements.

The nested fixed point iteration continues as long as condition 3 is fulfilled. In each
iteration at all levels, the convergence rate is measured, and if the convergence rate is not
acceptable (or if the residual diverges), the system is stiff and a different iterative strategy
is needed. The new choice of strategy is given by the iteration level at which stabilization
is needed: If the iteration at element level needs stabilization, we change strategy to
adaptive level 1 iteration. If the iteration at element group level needs stabilization, we

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 15

change strategy to adaptive level 2 iteration, and if the iteration at time slab level needs
stabilization, we change strategy to adaptive level 3 iteration.

4.2.3. Adaptive level 1 iteration. If the fixed point iteration at element level does not
converge, the strategy is changed to adaptive level 1 iteration, which is similar to non-stiff
iteration except that the iterations at element level are stabilized. For the mdG(0) method,
we modify the fixed point iteration (4.9) according to

(4.12) ξm ← (1− α)ξm + α

[

ξ0 +

∫

Iij

w[qij]
m (τij(t))fi(U(t), t) dt

]

,

with damping factor α determined by

(4.13) α = 1/(1− kij∂fi/∂ui(U(tij), tij)),

and appropriate modifications for higher-order methods, corresponding to the diagonal
damping discussed in Section 3.1. As noted in [8], this type of iteration may be expected
to perform well if the stiffness of the problem is of sufficient diagonal nature, i.e., if the
Jacobian of the right-hand side is diagonally dominant, which is the case for many problems
modeling chemical reactions.

As before, we measure the rate of convergence. If necessary, the strategy is changed to
adaptive level 2 iteration, if the iterations at element group level do not converge, and to
adaptive level 3 iteration, if the iterations at time slab level do not converge.

4.2.4. Adaptive level 2 iteration. If the fixed point iteration at element group level does not
converge, the strategy is changed to adaptive level 2 iteration. The algorithm is similar to
adaptive level 1 iteration, except that condition 1 is modified so that exactly one iteration
is performed on each element, and that the damping factor α is determined at the element
group level. We also perform the iteration at element group level using Gauss–Jacobi type
iteration, with the iteration at time slab level of Gauss–Seidel type. In each iteration, the
convergence rate is measured. Whenever stabilization is necessary, the damping factor α
is determined by cumulative power iteration according to (3.12), the number of stabiliz-
ing iterations is determined according to (3.13), and adaptive stabilization performed as
discussed in Section 3.2.

4.2.5. Adaptive level 3 iteration. If the fixed point iteration at time slab level does not
converge, the strategy is changed to adaptive level 3 iteration. We now modify condition 1

and condition 2, so that exactly one iteration is performed on each element and on each
element group. The iteration is now of Gauss–Jacobi type on the entire time slab, except
that values are propagated forward in time between elements representing the same com-
ponent. In each iteration, the convergence rate is measured and adaptive stabilization is
performed as discussed in Section 3.2.

16 JOHAN JANSSON AND ANDERS LOGG

4.2.6. Adaptive time step stabilization. If the adaptively stabilized fixed point iteration
fails to converge, we adjust the size of the time slab according to

(4.14) Kn ← αKn,

and let Kn be the maximum allowed size of the time slab for a sequence of m successive
time slabs, with m determined by (3.13), corresponding to the algorithm presented in [3]
for the stabilization of explicit methods for stiff problems. Note that the limitation on
the time step size might force different components to use the same time steps during the
stabilization, in particular if α is small. After the sequence of m stabilizing time slabs, the
maximum allowed size of the time slab is gradually increased by a factor two, with the
hope that the stiffness can be handled by the adaptively stabilized fixed point iteration, as
discussed above.

5. Examples

We illustrate the behavior of the multi-adaptive solver for a sequence of well-known stiff
test problems that appear in the ODE literature. To a large extent, the problems are
identical with those presented earlier in [3], where a stabilized mono-adaptive method was
used to solve the problems.

This rich set of test problems presents a challenge for the multi-adaptive solver, since
each of the test problems requires a slightly different strategy as discussed in Section 4. As
shown below, the solver automatically and adaptively detects for each of the test problems
which strategy to use and when to change strategy.

The results were obtained using the standard implementation of the stabilized multi-
adaptive solver available in DOLFIN [5] version 0.4.7, which includes the full set of test
problems. In all examples, the multi-adaptive dG(0) method was used, unless otherwise
stated. For comparison, we present the (wall clock) time of simulation for each of the test
problems, obtained on a standard desktop computer (Intel Pentium 4, 1.6 GHz) running
Debian GNU/Linux.

5.1. The test equation. The first test problem is the scalar problem

u̇(t) + λu(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.1)

for T = 10, λ = 1000, and u0 = 1. The solution, which is shown in Figure 7, was computed
in less than 0.01 seconds, using (diagonally) damped fixed point iteration (adaptive level
1 iteration).

5.2. The test system. The second test problem is the diagonal problem

u̇(t) + Au(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.2)

for T = 10, A = diag(100, 1000), and u0 = (1, 1). The solution, which is shown in Figure 8,
was computed in 0.01 seconds, using diagonally damped (individual for each component)
fixed point iteration (adaptive level 1 iteration).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 17

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x 10
−3

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

10
−4

10
−2

10
0

0 2 4 6 8 10

x 10
−3

10
−4

10
−2

10
0

PSfrag replacements

Tn−1

Tn

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 7. Solution and adaptive time step sequence for (5.1).

Note that the second component, which decays faster, initially uses smaller time steps
than the first component. Later, when the second component is out of the transient with
the first component still in its transient, the situation is the opposite with smaller time
steps for the first component.

5.3. A non-normal test problem. The next problem is the mass-spring-dashpot system
(3.14) with κ = 104, corresponding to critical damping, i.e.,

u̇(t) + Au(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.3)

for T = 1, with

A =

[

0 −1
104 200

]

and u0 = (1, 1). The solution, which is shown in Figure 9, was computed in 0.38 seconds,
using a combination of adaptively stabilized fixed point iteration on the time slab level
(adaptive level 3 iteration), and stabilizing time steps.

18 JOHAN JANSSON AND ANDERS LOGG

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

10
−4

10
−2

10
0

0 0.05 0.1

10
−4

10
−2

10
0

PSfrag replacements

Tn−1

Tn

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 8. Solution and adaptive time step sequence for (5.2).

5.4. The HIRES problem. The HIRES problem (“High Irradiance RESponse”) origi-
nates from plant physiology and is taken from a test set of initial value problems [11] for
ODE solvers. The problem consists of the following eight equations:

(5.4)

u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

on [0, 321.8122] with initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). The solution, which
is shown in Figure 10, was computed in 0.32 seconds, using diagonally damped fixed point
iteration (adaptive level 1 iteration).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 19

0 0.2 0.4 0.6 0.8 1

−35

−30

−25

−20

−15

−10

−5

0

0 0.05 0.1

−35

−30

−25

−20

−15

−10

−5

0

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

0 0.05 0.1
10

−6

10
−4

10
−2

10
0

PSfrag replacements

Tn−1

Tn

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 9. Solution and adaptive time step sequence for (5.3).

5.5. The Akzo-Nobel problem. We next solve the “Chemical Akzo-Nobel” problem
taken from the test set [11], consisting of the following six equations:

(5.5)

u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = Ksu1u4 − u6,

on [0, 180], where F = 3.3 · (0.9/737 − u2) and the reaction rates are given by r1 =
18.7 · u4

1

√
u2, r2 = 0.58 · u3u4, r3 = 0.58/34.4 · u1u5, r4 = 0.09 · u1u

2
4, and r5 = 0.42 · u2

6

√
u2.

The initial condition is given by u0 = (0.444, 0.00123, 0, 0.007, 0, 0.36). The solution, which
is shown in Figure 11, was computed in 0.14 seconds, using a combination of adaptively
stabilized fixed point iteration on the time slab level (adaptive level 3 iteration), and
stabilizing time steps. Note that for this particular problem, the partitioning threshold
with a default value of θ = 0.5 forces all components to use the same time steps.

20 JOHAN JANSSON AND ANDERS LOGG

0 100 200 300

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 100 200 300
10

−4

10
−2

10
0

0 1 2 3 4 5
10

−4

10
−2

10
0

PSfrag replacements

Tn−1

Tn

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 10. Solution and adaptive time step sequence for (5.4).

5.6. Van der Pol’s equation. A stiff problem discussed in the book by Hairer and Wan-
ner [4] is Van der Pol’s equation,

ü + µ(u2 − 1)u̇ + u = 0,

which we write in the form

(5.6)

{

u̇1 = u2,
u̇2 = −µ(u2

1 − 1)u2 − u1.

We take µ = 10 and compute the solution on the interval [0, 100] with initial condition
u0 = (2, 0). The solution, which is shown in Figure 12, was computed in 1.89 seconds,
using a combination of adaptively stabilized fixed point iteration on the time slab level
(adaptive level 3 iteration) and stabilizing time steps.

Note how the time steps are drastically reduced at the points where the derivatives, and
thus also the residuals, of the mdG(0) solution are large.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 21

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

0

2

4

6

8

10
x 10

−4

0 50 100 150

10
−2

10
−1

10
0

0 1 2 3 4 5

10
−2

10
−1

10
0

PSfrag replacements

Tn−1

Tn

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 11. Solution and adaptive time step sequence for (5.5).

5.7. The heat equation. A special stiff problem is the one-dimensional heat equation,

u̇(x, t)− u′′(x, t) = f(x, t), x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = 0, x ∈ [0, 1],

where we choose f(x, t) = f(x) as an approximation of the Dirac delta function at x = 0.5.
Discretizing in space, we obtain the ODE

u̇(t) + Au(t) = f,

u(0) = 0,
(5.7)

where A is the stiffness matrix (including lumping of the mass matrix). With a spatial
resolution of h = 0.01, the eigenvalues of A are distributed in the interval [0, 4 · 104]. The
solution, which is shown in Figure 13, was computed with a partitioning threshold θ = 0.1
in 2.99 seconds, using a combination of adaptively stabilized fixed point iteration on the
time slab level (adaptive level 3 iteration) and stabilizing time steps.

22 JOHAN JANSSON AND ANDERS LOGG

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

u

38 40 42 44 46 48
−15

−10

−5

0

5

10

15

u

0 20 40 60 80 100
10

−10

10
−5

10
0

38 40 42 44 46 48

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Tn−1

Tn

tt

tt

U1(t)
U2(t)
U3(t)

k
(t

)

k
(t

)

Figure 12. Solution and adaptive time step sequence for (5.6).

5.8. A chemical reaction test problem. The next problem originating from 1966
(Robertson) is taken from Hairer and Wanner [4]. This problem models the following
system of chemical reactions:

A 0.04

−→ B (slow)

B + B 3·107

−→ B + C (very fast)

B + C 104

−→ A + C (fast)

which gives an initial value problem of the form

(5.8)

u̇1 = −0.04u1 + 104u2u3,
u̇2 = 0.04u1 − 104u2u3 − 3 · 107u2

2,
u̇3 = 3 · 107u2

2.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−4

10
−2

10
0

PSfrag replacements

Tn−1

Tn

t

t

U
(t

)
k
(t

)

Figure 13. Solution and adaptive time step sequence for (5.7).

We compute the solution on the interval [0, 0.3] with u0 = (1, 0, 0). The solution, which is
shown in Figure 14, was computed in 0.01 seconds, using diagonally damped fixed point
iteration (adaptive level 1 iteration).

5.9. A mixed stiff/non-stiff test problem. As a final test problem, we solve the simple
system

(5.9)

u̇1 = u2,
u̇2 = −(1− u3)u1,
u̇3 = −λ(u2

1 + u2
2)u3,

which, since u3 ≈ 0 and u2
1 + u2

2 ≈ 1, we recognize as the combination of a harmonic
oscillator (the first and second components) and the simple scalar test problem (5.1). We
take λ = 1000 and compute the solution on [0, 30] with initial condition u0 = (0, 1, 1). As
an illustration, we use the mcG(1) method for the first two non-stiff components and the
mdG(0) method for the third stiff component.

24 JOHAN JANSSON AND ANDERS LOGG

0 0.1 0.2 0.3

0.99

0.995

1

u1

0 0.1 0.2 0.3
0

5

10

x 10
−3

u3

0 0.1 0.2 0.3
0

1

2

3

4
x 10

−5

u2

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−3

10
−2

10
−1

10
0

PSfrag replacements

Tn−1

Tn

t

t
t

t

U1(t)
U2(t)
U3(t)

k
(t

)

Figure 14. Solution and adaptive time step sequence for (5.8).

The solution, which is shown in Figure 16, was computed in 0.06 seconds, using di-
agonally damped fixed point iteration (adaptive level 1 iteration). With a partitioning
threshold of default size θ = 0.5, we notice that the time steps for the stiff third compo-
nent are sometimes decreased, whenever ki > θk3 for i = 1 or i = 2. This is also evident
in Figure 15, where we plot the sequence of time slabs on the interval [10, 30].

PSfrag replacements

Tn−1

Tn

t
i = 1
i = 2
i = 3

Figure 15. The structure of the time slabs on the interval [10, 30] for the
solution of (5.9).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 25

0 10 20 30
−1

−0.5

0

0.5

1

0 0.1 0.2 0.3
−1

−0.5

0

0.5

1

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Tn−1

Tn

t

tt

U
(t

)

U
(t

)
k
(t

)

Figure 16. Solution and adaptive time step sequence for (5.9).

References

[1] G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential
Equations, PhD thesis, Stockholm University, 1958.

[2] T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg, and R. Scott,
The FEniCS project, Tech. Rep. 2003–21, Chalmers Finite Element Center Preprint Series, 2003.

[3] K. Eriksson, C. Johnson, and A. Logg, Explicit time-stepping for stiff ODEs, SIAM J. Sci.
Comput., 25 (2003), pp. 1142–1157.

[4] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II — Stiff and Differential-
Algebraic Problems, Springer Series in Computational Mathematics, vol 14, 1991.

[5] J. Hoffman and A. Logg et al., DOLFIN, http://www.phi.chalmers.se/dolfin/.
[6] J. Jansson and A. Logg, Algorithms for multi-adaptive time-stepping, Tech. Rep. 2004–13,

Chalmers Finite Element Center Preprint Series, 2004.
[7] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24 (2003), pp. 1879–

1902.
[8] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applications, SIAM J. Sci.

Comput., 25 (2003), pp. 1119–1141.
[9] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Submitted to SIAM J.

Numer. Anal., (2004).
[10] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Submitted to SIAM

J. Numer. Anal., (2004).
[11] F. Mazzia and F. Iavernaro, Test set for initial value problem solvers, release 2.2, Department of

Mathematics, University of Bari, Report 40/2003, (2003).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 27

Chalmers Finite Element Center Preprints

2003–01 A hybrid method for elastic waves
Larisa Beilina

2003–02 Application of the local nonobtuse tetrahedral refinement techniques near
Fichera-like corners
L. Beilina, S. Korotov and M. Kř́ıžek

2003–03 Nitsche’s method for coupling non-matching meshes in fluid-structure vibration
problems
Peter Hansbo and Joakim Hermansson

2003–04 Crouzeix–Raviart and Raviart–Thomas elements for acoustic fluid–structure
interaction
Joakim Hermansson

2003–05 Smoothing properties and approximation of time derivatives in multistep back-
ward difference methods for linear parabolic equations
Yubin Yan

2003–06 Postprocessing the finite element method for semilinear parabolic problems
Yubin Yan

2003–07 The finite element method for a linear stochastic parabolic partial differential
equation driven by additive noise
Yubin Yan

2003–08 A finite element method for a nonlinear stochastic parabolic equation
Yubin Yan

2003–09 A finite element method for the simulation of strong and weak discontinuities
in elasticity
Anita Hansbo and Peter Hansbo

2003–10 Generalized Green’s functions and the effective domain of influence
Donald Estep, Michael Holst, and Mats G. Larson

2003–11 Adaptive finite element/difference method for inverse elastic scattering waves
Larisa Beilina

2003–12 A Lagrange multiplier method for the finite element solution of elliptic domain
decomposition problems using non-matching meshes
Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli

2003–13 A reduced P
1–discontinuous Galerkin method

R. Becker, E. Burman, P. Hansbo, and M. G. Larson

2003–14 Nitsche’s method combined with space–time finite elements for ALE fluid–
structure interaction problems
Peter Hansbo, Joakim Hermansson, and Thomas Svedberg

2003–15 Stabilized Crouzeix–Raviart element for the Darcy-Stokes problem
Erik Burman and Peter Hansbo

2003–16 Edge stabilization for the generalized Stokes problem: a continuous interior
penalty method
Erik Burman and Peter Hansbo

2003–17 A conservative flux for the continuous Galerkin method based on discontinuous
enrichment
Mats G. Larson and A. Jonas Niklasson

2003–18 CAD–to–CAE integration through automated model simplification and adaptive
modelling
K.Y. Lee, M.A. Price, C.G. Armstrong, M.G. Larson, and K. Samuelsson

2003–19 Multi-adaptive time integration
Anders Logg

2003–20 Adaptive computational methods for parabolic problems
Kenneth Eriksson, Claes Johnson, and Anders Logg

2003–21 The FEniCS project
T. Dupont, J. Hoffman, C. Johnson, R. Kirby, M. Larson, A. Logg, and R. Scott

2003–22 Adaptive finite element methods for LES: Computation of the mean drag coef-
ficient in a turbulent flow around a surface mounted cube using adaptive mesh
refinement
Johan Hoffman

2003–23 Adaptive DNS/LES: a new agenda in CFD
Johan Hoffman and Claes Johnson

2003–24 Multiscale convergence and reiterated homogenization of parabolic problem
Anders Holmbom, Nils Svanstedt, and Niklas Wellander

2003–25 On the relationship between some weak compactnesses with different numbers
of scales
Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander

2003–26 A posteriori error estimation in computational inverse scattering
Larisa Beilina and Claes Johnson

2004–01 Computability and adaptivity in CFD
Johan Hoffman och Claes Johnson

2004–02 Interpolation estimates for piecewise smooth functions in one dimension
Anders Logg

2004–03 Estimates of derivatives and jumps across element boundaries for multi-
adaptive Galerkin solutions of ODEs
Anders Logg

2004–04 Multi-adaptive Galerkin methods for ODEs III: Existence and stability
Anders Logg

2004–05 Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates
Anders Logg

2004–06 A stabilized non-conforming finite element method for incompressible flow
Erik Burman and Peter Hansbo

2004–07 On the uniqueness of weak solutions of Navier-Stokes equations: Remarks on
a Clay Institute prize problem
Johan Hoffman and Claes Johnson

2004–08 A new approach to computational turbulence modeling
Johan Hoffman and Claes Johnson

2004–09 A posteriori error analysis of the boundary penalty method
Kenneth Eriksson, Mats G. Larson, and Axel Målqvist

2004–10 A posteriori error analysis of stabilized finite element approximations of the
helmholtz equation on unstructured grids
Mats G. Larson and Axel Målqvist

2004–11 Adaptive variational multiscale methods based on a posteriori error estimation
Mats G. Larson and Axel Målqvist

2004–12 Multi-adaptive Galerkin methods for ODEs V: Stiff problems
Johan Jansson and Anders Logg

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 29

These preprints can be obtained from

www.phi.chalmers.se/preprints

