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ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING

JOHAN JANSSON AND ANDERS LOGG

Abstract. Multi-adaptive Galerkin methods are extensions of the standard continuous
and discontinuous Galerkin methods for the numerical solution of initial value problems
for ordinary or partial differential equations. In particular, the multi-adaptive methods
allow individual time steps to be used for different components or in different regions of
space. We present algorithms for multi-adaptive time-stepping, including the recursive
construction of time slabs, regulation of the individual time steps, adaptive fixed point
iteration on time slabs, and the automatic generation of dual problems. An example is
given for the solution of a nonlinear partial differential equation in three dimensions.

1. Introduction

We have earlier in a sequence of papers [14, 15, 16, 17, 13] introduced the multi-adaptive
Galerkin methods mcG(q) and mdG(q) for the approximate (numerical) solution of ODEs
of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u : [0, T ]→ R
N is the solution to be computed, u0 ∈ R

N a given initial value, T > 0
a given final time, and f : R

N × (0, T ]→ R
N a given function that is Lipschitz-continuous

in u and bounded.
In the current paper, we discuss important aspects of the implementation of multi-

adaptive Galerkin methods. Some of these aspects are discussed in [15] and [13], but with
technical details left out. We now provide these details.

1.1. Implementation. The algorithms presented in this paper are implemented in the
multi-adaptive ODE-solver of DOLFIN [11, 12], which is the C++ implementation of

the new open-source software project FEniCS [3] for the automation of Computational
Mathematical Modeling (CMM). The multi-adaptive solver in DOLFIN is based on the
original implementation Tanganyika, presented in [15], but has been completely rewritten
for DOLFIN.
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Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE, continuous
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2 JOHAN JANSSON AND ANDERS LOGG

The multi-adaptive solver is actively developed by the authors, with the intention of
providing the next standard for the solution of initial value problems. This will be made
possible through the combination of an efficient forward integrator, automatic and reliable
error control, and a simple and intuitive user interface.

1.2. Obtaining the software. DOLFIN is licensed under the GNU General Public Li-
cense [8], which means that anyone is free to use or modify the software, provided these
rights are preserved.

The source code of DOLFIN, including numerous example programs, is available at
the DOLFIN web page, http://www.phi.chalmers.se/dolfin/, and each new release
is announced on freshmeat.net. Alternatively, the source code can be obtained through
anonymous CVS as explained on the web page. Comments and contributions are welcome.

1.3. Notation. For a detailed description of the multi-adaptive Galerkin methods, we refer
the reader to [14, 15, 16, 17, 13]. In particular, we refer to [14] or [16] for the definition of
the methods.

The following notation is used throughout this paper: Each component Ui(t), i =
1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is a piecewise polyno-
mial on a partition of (0, T ] into Mi subintervals. Subinterval j for component i is de-
noted by Iij = (ti,j−1, tij], and the length of the subinterval is given by the local time

step kij = tij − ti,j−1. This is illustrated in Figure 1. On each subinterval Iij, Ui|Iij
is a

polynomial of degree qij and we refer to (Iij, Ui|Iij
) as an element.

Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks between
certain synchronized time levels 0 = T0 < T1 < . . . < TM = T . We refer to the set of
intervals Tn between two synchronized time levels Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1.

1.4. Outline of the paper. We first present the user interface of the multi-adaptive solver
in Section 2, before we discuss the algorithms of multi-adaptive time-stepping in Section 3.
In Section 4, we present numerical results for the bistable equation as an example of multi-
adaptive time-stepping for a partial differential equation.

2. User interface

Potential usage of the multi-adaptive solver ranges from a student or teacher wanting
to solve a fixed ODE in an educational setting, to a PDE package using it as an internal
solver module. The user interface of the multi-adaptive solver is specified in terms of an
ODE base class consisting of a right hand side f , a time interval [0, T ], and initial value
u0, as shown in Figure 2.

To solve an ODE, the user implements a subclass which inherits from the ODE base
class. As an example, we present in Figure 2 and Table 1 the implementation of the
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Figure 1. Individual partitions of the interval (0, T ] for different compo-
nents. Elements between common synchronized time levels are organized in
time slabs. In this example, we have N = 6 and M = 4.

Figure 2. UML class diagram showing the base class interface of the multi-
adaptive ODE-solver together with a subclass representing the ODE (2.1).

harmonic oscillator

u̇1 = u2,

u̇2 = −u1,
(2.1)

on [0, 10] with initial value u(0) = (0, 1).
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Harmonic::Harmonic : ODE(2)

{

T = 10.0;

}

real Harmonic::u0(int i)

{

if (i == 0)

return 0;

if (i == 1)

return 1;

}

real Harmonic::f(Vector u, real t, int i)

{

if (i == 0)

return u(1);

if (i == 1)

return -u(0);

}

Table 1. Sketch of the C++ implementation of the harmonic oscillator
(2.1). Note that C++ indexing starts at 0.

3. Multi-adaptive time-stepping

We present below a collection of the key algorithms for multi-adaptive time-stepping.
The algorithms are given in pseudo-code and where appropriate we give remarks on how
the algorithms have been implemented using C++ in DOLFIN. In most cases, we present
simplified versions of the algorithms with focus on the most essential steps.

3.1. General algorithm. The general multi-adaptive time-stepping algorithm (Algorithm
1) is based on the algorithm CreateTimeSlab (Algorithm 3) and the algorithms for adap-
tive fixed point iteration on time slabs discussed below in Section 3.3. Starting at t = 0,
the algorithm creates a sequence of time slabs until the given end time T is reached. The
end time T is given as an argument to CreateTimeSlab, which creates a time slab covering
an interval [Tn−1, Tn] such that Tn ≤ T . CreateTimeSlab returns the end time Tn of the
created time slab and the integration continues until Tn = T . For each time slab, adaptive
fixed point iteration is performed on the time slab until the discrete equations given by the
mcG(q) or mdG(q) method have converged.

In DOLFIN, Algorithm 1 is implemented by the class TimeStepper, which can be used in
two different ways (see Table 2). In the standard case, the function TimeStepper::solve()

is called to integrate the given ODE on the interval [0, T ]. The class TimeStepper also
provides the alternative interface TimeStepper::step(), that can be used to integrate
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Algorithm 1 U = Integrate(ODE)

t← 0
while t < T do

{time slab, t} ← CreateTimeSlab({1, . . . , N}, t, T )
Iterate(time slab)

end while

class TimeStepper

{

TimeStepper(ODE ode, Function u);

static void solve(ODE ode, Function u);

real step();

}

Table 2. Sketch of the C++ interface of the multi-adaptive time-stepper,
Algorithm 1.

the solution one time slab at a time. This is useful in interactive applications, where the
right-hand side f of (1.1) needs to be modified in each step of the integration.

The basic forward integrator, Algorithm 1, can be used as the main component of an
adaptive algorithm with automated error control of the computed solution (Algorithm 2).
This algorithm first estimates the individual stability factors {Si(T )}Ni=1, which together
with the local residuals determine the multi-adaptive time steps. (See [4, 5, 2] or [14] for
a discussion on duality-based a posteriori error estimation.) The preliminary estimates for
the stability factors can be based on previous experience, i.e., if we have solved a similar
problem before, but usually we take Si(T ) = 1 for i = 1, . . . , N .

In each iteration, the primal problem (1.1) is solved using Algorithm 1. An ODE of the
form (1.1) representing the dual problem is then created, as discussed below in Section 3.7,
and solved using Algorithm 1. It is important to note that both the primal and the dual
problems are solved using the same algorithm, but with different time steps and, possibly,
different tolerances, methods, and orders. When the solution of the dual problem has been
computed, the stability factors {Si(T )}Ni=1 and the error estimate can be computed.

3.2. Recursive construction of time slabs. In each step of Algorithm 1, a new time slab
is created between two synchronized time levels Tn−1 and Tn. The time slab is organized
recursively as follows. The root time slab covering the interval [Tn−1, Tn] contains a non-
empty list of elements, which we refer to as an element group, and a possibly empty list of
time slabs, which in turn may contain nested groups of elements and time slabs. This is
illustrated in Figure 3.

To create a time slab, we first compute the desired time steps for all components as
discussed below in Section 3.5. A threshold θK is then computed based on the maxi-
mum time step K and a fixed parameter θ controlling the density of the time slab. The
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Algorithm 2 U = Solve(ODE, TOL)

estimate stability factors

repeat

U = Integrate(ODE)
create dual problem ODE∗

Φ = Integrate(ODE∗)
compute stability factors

compute error estimate E
until E ≤ TOL

PSfrag replacements

Tn−1 Tn

Figure 3. The recursive organization of the time slab. Each time slab
contains an element group and a list of recursively nested time slabs. The
root time slab in the figure contains one element group of three elements
and three time slabs. The first of these sub slabs contains an element group
of two elements and two nested time slabs, and so on. The root time slab
recursively contains a total of nine element groups and 35 elements.

components are then partitioned into two sets based on the threshold, see Figure 4. For
each component in the group with large time steps, an element is created and added to
the element group of the time slab. The remaining components with small time steps are
processed by a recursive application of this algorithm for the construction of time slabs.
For a more detailed discussion of the construction, see [13].
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Figure 4. The partition of components into groups of small and large time
steps for θ = 1/2.

We organize the recursive construction of time slabs as described by Algorithms 3, 4, 5,
and 6. The recursive construction simplifies the implementation; each recursively nested
time slab can be considered as a sub system of the ODE. Note that the group of recursively
nested time slabs for components in group I0 is created before the element group containing
elements for components in group I1. The tree of time slabs is thus created recursively
depth-first, which means in particular that the element for the component with the smallest
time step is created first.

Algorithm 4 for the partition of components can be implemented efficiently using the
function std::partition(), which is part of the Standard C++ Library.

3.3. Adaptive fixed point iteration on time slabs. As discussed in [13], the discrete
equations given by the mcG(q) or mdG(q) method on each time slab are solved using
adaptive fixed point iteration. For the fixed point iteration, each time slab is viewed as a
discrete system of equations the form

(3.1) F (x) = 0

for the degrees of freedom x of the solution U on the time slab. This system is partitioned
into coupled sub systems which each take the form (3.1), one for each element group.
Similarly, each element group is naturally partitioned into sub systems, one for each element
within the element group.
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Algorithm 3 {time slab, Tn} = CreateTimeSlab(components, Tn−1, T )

{I0, I1, K} ← Partition(components)
if Tn−1 +K < T then

Tn ← Tn−1 +K
else

Tn ← T
end if

time slabs ← CreateTimeSlabs(I0, Tn−1, Tn)
element group ← CreateElements(I1, Tn−1, Tn)
time slab ← {time slabs, element group}

Algorithm 4 {I0, I1, K} = Partition(components)

I0 ← ∅
I1 ← ∅
K ← maximum time step within components
for each component do

k ← time step of component
if k < θK then

I0 ← I0 ∪ {component}
else

I1 ← I1 ∪ {component}
end if

end for

K̄ ← minimum time step within I1
K ← K̄

Algorithm 5 time slabs = CreateTimeSlabs(components, Tn−1, Tn)

time slabs ← ∅
t← Tn−1

while t < T do

{time slab, t} ← CreateTimeSlab(components, t, Tn)
time slabs ← time slabs ∪ time slab

end while

Algorithm 6 elements = CreateElements(components, Tn−1, Tn)

elements ← ∅
for each component do

create element for component on [Tn−1, Tn]
elements ← elements ∪ element

end for



ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 9

Iterate(time slab)

while condition 3 do

Update(time slab)
end while

Update(time slab)

for each element group do

Iterate(element group)
end for

Iterate(element group)

while condition 2 do

Update(element group)
end while

Update(element group)

for each element do

Iterate(element)
end for

Iterate(element)

while condition 1 do

Update(element)
end while

Update(element)

for each degree of freedom do

Update(degree of freedom)
end for

Table 3. Nested fixed point iteration on the time slab.

The general algorithm for nested fixed point iteration on the sub systems of a time
slab is based on the principle that each iteration on a given system consists of fixed point
iteration on each sub system, as outlined in Table 3. By modifying the condition (1, 2,
or 3 ) for fixed point iteration on each level of iteration, different versions of the overall
iterative algorithm are obtained. In [13], four different strategies for the adaptive fixed
point iteration are discussed: non-stiff iteration, adaptive level 1 iteration, adaptive level

2 iteration, and adaptive level 3 iteration. By monitoring the convergence at the different
levels of iteration, the appropriate version of the adaptive fixed point iteration is chosen,
depending on the stiffness of the problem.

Table 3 shows a simplified version of the fixed point iteration. The full algorithm also
needs to monitor the convergence rate, stabilize the iterations, and (possibly) change strat-
egy, as shown in Algorithm 7 (Iterate) and Algorithm 8 (Update). Both algorithms return
the increment d for the degrees of freedom of the current (sub) system. In the case of Algo-
rithm 7, the increment is computed as the maximum increment over the iterations for the
system, and in Algorithm 8, the increment is computed as the l2-norm of the increments
for the set of sub systems.

Since we sometimes need to change the strategy for the fixed point iteration depending
on the stiffness of the problem, the fixed point iteration is naturally implemented as a state

machine, where each state has different versions of the algorithms Converged, Diverged,
Stabilize, and Update.

In DOLFIN, the state machine is implemented as shown in Figure 5, following the
design pattern for a state machine suggested in [9]. The class FixedPointIteration im-
plements Algorithm 7 and the class Iteration serves as a base class (interface) for the
subclasses NonStiffIteration, AdaptiveIterationLevel1, AdaptiveIterationLevel2,
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Algorithm 7 d = Iterate(system)

d← 0
loop

for n = 1, . . . , nmax do

if Converged(system) then

return

end if

if Diverged(system) then

ChangeState()
break

end if

Stabilize(system)
d← max(d, Update(system))

end for

end loop

Algorithm 8 d = Update(system)

d← 0
for each sub system do

di ← Iterate(sub system)
d← d+ d2

i

end for

d←
√
d

and AdaptiveIterationLevel3. Each of these subclasses implement the interface speci-
fied by the base class Iteration, in particular the functions Iteration::converged(),
Iteration::diverged(), Iteration::stabilize(), and Iteration::update() for each
level of iteration (element level, element group level, and time slab level). To change the
state, the object pointed to by the pointer state is deleted and a new object is allo-
cated to the pointer, with the type of the new object determined by the new state. This
simplifies the implementation of the state machine and makes it possible to separate the
implementation of the different states.

3.4. Cumulative power iteration. In each iteration of Algorithm 7, the amount of
damping for the fixed point iteration is determined by the algorithm Stabilize. If the
convergence rate of the iterations is not satisfactory, then the appropriate damping factor
α and the number of stabilizing iterations m are determined by cumulative power iteration,
as discussed in [13]; the divergence rate ρ is first determined by Algorithm 9, and then α
and m are determined according to

(3.2) α =
1/
√

2

1 + ρ
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Figure 5. UML class diagram showing the implementation of the state
machine for adaptive fixed point iteration in DOLFIN.

and

(3.3) m = log ρ.

The iteration continues until the divergence rate ρ has converged to within some tolerance
tol, typically tol = 10%.

3.5. Controlling the individual time steps. The individual and adaptive time steps
kij are determined during the recursive construction of time slabs based on an a posteriori
error estimate for the global error ‖e(T )‖l2 at final time, as described in [14, 15]. The a
posteriori error estimate is expressed in terms of the individual stability factors {Si(T )}Ni=1,

the local time steps {kij}Mi,N
j=1,i=1, and the local residuals {rij}Mi,N

j=1,i=1. The a posteriori error
estimate takes the form

(3.4) ‖e(T )‖l2 ≤
N

∑

i=1

Si(T ) max
j=1,...,Mi

k
pij

ij rij,
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Algorithm 9 ρ = ComputeDivergence(system)

d1 ← Update(system)
d2 ← Update(system)
ρ2 ← d2/d1

n← 2
repeat

d1 ← d2

d2 ← Update(system)
ρ1 ← ρ2

ρ2 ← ρ
(n−1)/n
2 · (d2/d1)

1/n

n← n + 1
until |ρ2 − ρ1| < tol · ρ1

ρ← ρ2

with pij = qij for the mcG(q) method and pij = qij + 1 for the mdG(q) method.
Basing the time step for interval Iij on the residual of the previous interval Ii,j−1, since

the residual of interval Iij is unknown until the solution on that interval has been computed,
we should thus choose the local time step kij according to

(3.5) kij =

(

TOL

N Si(T )ri,j−1

)1/pij

, j = 2, . . . ,Mi, i = 1, . . . , N,

where TOL is a given tolerance.
However, the time steps can not be based directly on (3.5), since that leads to oscillations

in the time steps. If ri,j−1 is small, then kij will be large, and as a result rij will also be
large. Consequently, ki,j+1 and ri,j+1 will be small, and so on. To avoid these oscillations, we
adjust the time step knew = kij according to Algorithm 10, which determines the new time
step as the harmonic mean value of the previous time step and the time step determined
by (3.5).

Alternatively, the time steps can be determined using control theory, as suggested in
[10, 18]. Typically, a standard PID controller is used to determine the time steps with the
goal of satisfying k

pij

ij rij = TOL/(N Si(T )) on [0, T ] for i = 1, . . . , N . However, since multi-
adaptive time-stepping requires an individual controller for each component, the current
implementation of DOLFIN determines the time steps according to Algorithm 10.

Algorithm 10 k = Controller(knew, kold, kmax)

k ← 2koldknew/(kold + knew)
k ← min(k, kmax)

The initial time steps k11 = · · · = kN1 = K1 are chosen equal for all components and
are determined iteratively for the first time slab. The size K1 of the first time slab is first
initialized to some default value, possibly based on the length T of the time interval, and
then adjusted until the local residuals are sufficiently small for all components.
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3.6. Implementation of general elements. As described in [15], the system of equa-
tions to be solved for the degrees of freedom {ξijm} on each element takes the form

(3.6) ξijm = ξij0 +

∫

Iij

w[qij ]
m (τij(t))fi(U(t), t) dt, m = 1, . . . , qij,

for the mcG(q) method, with τij(t) = (t − ti,j−1)/(tij − ti,j−1) and where {w[qij ]
m }qij

m=1 ⊂
P [qij−1]([0, 1]) are polynomial weight functions. For the mdG(q) method, the system of
equations on each element has a similar form, with m = 0, . . . , qij.

The integral in (3.6) is computed using quadrature, and thus the weight functions

{w[qij ]
m }qij

m=1 need to be evaluated at a set of quadrature points {sn} ⊂ [0, 1]. In DOLFIN,
these values are computed and tabulated each time a new type of element is created. If
the same method is used for all components throughout the computation, then this com-
putation is carried out only once.

For the mcG(q) method, Lobatto quadrature with n = q + 1 quadrature points is used.
The n ≥ 2 Lobatto quadrature points are defined on [−1, 1] as the two end-points together
with the roots of the derivative P ′

n−1 of the (n − 1)th-order Legendre polynomial. The
quadrature points are computed in DOLFIN using Newton’s method to find the roots of
P ′

n−1 on [−1, 1], and are then rescaled to the interval [0, 1].
Similarly, Radau quadrature with n = q + 1 quadrature points is used for the mdG(q)

method. The n ≥ 1 Radau points are defined on [−1, 1] as the roots of Qn = Pn−1 + Pn,
where Pn−1 and Pn are Legendre polynomials. Note that the left end-point is always a
quadrature point. As for the mcG(q) method, Newton’s method is used to find the roots
of Qn on [−1, 1]. The quadrature points are then rescaled to [0, 1], with time reversed to
include the right end-point.

Since Lobatto quadrature with n quadrature points is exact for polynomials of degree
p ≤ 2n − 3 and Radau quadrature with n quadrature points is exact for polynomials of
degree p ≤ 2n − 2, both quadrature rules are exact for polynomials of degree n − 1 for
n ≥ 2 and n ≥ 1, respectively. With both quadrature rules, the integral of the Legendre
polynomial Pp on [−1, 1] should thus be zero for p = 0, . . . , n − 1. This defines a linear
system, which is solved to obtain the quadrature weights.

After the quadrature points {sn}qij

n=0 have been determined, the polynomial weight func-

tions {w[qij ]
m }qij

m=1 are computed as described in [14] (again by solving a linear system) and
then evaluated at the quadrature points. Multiplying these values with the quadrature
weights, we rewrite (3.6) in the form

(3.7) ξijm = ξij0 + kij

qij
∑

n=0

w[qij ]
mn fi(U(ti,j−1 + snkij), ti,j−1 + snkij), m = 1, . . . , qij.

General order mcG(q) and mdG(q) have been implemented in DOLFIN. The two meth-
ods are implemented by the two classes cGqElement and dGqElement, implementing the
interface specified by the common base class Element. Both classes take the order q as an
argument to its constructor and implement the appropriate version of (3.7).
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Figure 6. The dual problem is implemented as a subclass of the common
base class for ODEs of the form (1.1).

3.7. Automatic generation of the dual problem. The dual problem of (1.1) for φ =
φ(t) that is solved to obtain stability factors and error estimates is given by

−φ̇(t) = J(U, t)>φ(t), t ∈ [0, T ),

φ(T ) = ψ,
(3.8)

where J(U, t) denotes the Jacobian of the right-hand side f of (1.1) at time t. Note that
we need to linearize around the computed solution U , since the exact solution u of (1.1)
is not known. To solve this backward problem over [0, T ) using the forward integrator
Algorithm 1, we rewrite (3.8) as a forward problem. With w(t) = φ(T − t), we have

ẇ = −φ̇(T − t) = J>(U, T − t)w(t), and so (3.8) can be written as a forward problem for
w in the form

ẇ(t) = f ∗(w(t), t) ≡ J(U, T − t)>w(t), t ∈ (0, T ],

w(0) = ψ.
(3.9)

In DOLFIN, the initial value problem for w is implemented as a subclass of the ODE base
class, as shown in Figure 6, which makes it possible to solve the dual problem using the
same algorithm as the primal problem.

The constructor of the dual problem takes as arguments the primal problem (1.1) and
the computed solution U of the primal problem. The right-hand side f ∗ of the dual problem
is automatically generated by numerical differentiation of the right-hand side of the primal
problem.

3.8. Interpolation of the solution. To update the degrees of freedom for an element
according to (3.7), the appropriate component fi of the right-hand side of (1.1) needs to be
evaluated at the set of quadrature points. In order for fi to be evaluated, each component
Uj of the computed solution U on which fi depends has to be evaluated at the quadrature
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points. We let Si ⊆ {1, . . . , N} denote the sparsity pattern of component Ui, i.e., the set
of components on which fi depend,

(3.10) Si = {j ∈ {1, . . . , N} : ∂fi/∂uj 6= 0}.

Thus, to evaluate fi at a given time t, only the components Uj for j ∈ Si need to be
evaluated at t, see Algorithm 11. This is of particular importance for problems of sparse
structure and makes it possible to use the multi-adaptive solver for the integration of time-
dependent PDEs, see Section 4. The sparsity pattern Si is automatically detected by the
solver. Alternatively, the sparsity pattern can be specified by a (sparse) matrix.

Algorithm 11 y = EvaluateRightHandSide(i,t)

for j ∈ Si do

x(j)← Uj(t)
end for

y ← fi(x, t)

The key part of Algorithm 11 is the evaluation of a given component Ui at a given time
t. To evaluate Ui(t), the solver first needs to find the element (Iij, Ui|Iij

) satisfying t ∈ Iij.
The local polynomial Ui|Iij

is then evaluated (interpolated) at the given time t. During the
construction of a time slab, an element such that t ∈ Iij might not exists, in which case
the last element of component Ui is used and extrapolated to the given time t.

To find the element (Iij, Ui|Iij
) such that t ∈ Iij, the function std::upper bound() is

used. This function is part of the Standard C++ Library and uses binary search to find
the appropriate element from the ordered sequence of elements for component Ui, which
means that the complexity of finding the element is logarithmic. In addition, the speed of
the evaluation is increased by caching the latest used element and each time checking this
element before the binary search is performed.

3.9. Storing the solution. Since the computed solution U of the primal problem (1.1)
is needed for the computation of the discrete solution Φ of the dual problem (3.8), the
solution needs to be stored to allow U to be evaluated at any given t ∈ [0, T ].

The solution is stored on disk in a temporary file created by the function tmpfile(),
which is part of the C standard I/O library. The solution is written in blocks to the file in
binary format. During the computation, a cache of blocks is kept in main memory to allow
efficient evaluation of the solution. The number of blocks kept in memory depends on the
amount of memory available. For a sufficiently large problem, only one block will be kept
in memory. Each time a value is requested which is not in one of the available blocks, one
of these blocks is dropped and the appropriate block is fetched from file.
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4. Solving the bistable equation

As an example of multi-adaptive time-stepping, we solve the bistable equation on the
unit cube,

u̇− ε∆u = u(1− u2) in Ω× (0, T ],

∂nu = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω,

(4.1)

with Ω = (0, 1) × (0, 1) × (0, 1), ε = 0.0001, final time T = 100, and with random initial
data u0 = u0(x) distributed uniformly on [−1, 1].

The bistable equation has been studied extensively before [7, 6] and has interesting
stability properties. In particular, it has two stable steady-state solutions, u = 1 and
u = −1, and one unstable steady-state solution, u = 0. From (4.1), it is clear that
the solution increases in regions where it is positive and decreases in regions where it
is negative. Because of the diffusion, neighboring regions will compete until finally the
solution has reached one of the two stable steady states. Since this action is local on the
interface between positive and negative regions, the bistable equation is an ideal example
for multi-adaptive time-stepping.

To solve the bistable equation (4.1) using multi-adaptive time-stepping, we discretize in
space using the standard cG(1) method [5]. Lumping the mass matrix, we obtain an ODE
initial value problem of the form (1.1), which we solve using the multi-adaptive mcG(1)
method. We refer to the overall method thus obtained as the cG(1)mcG(1) method.

The solution was computed on a uniformly refined tetrahedral mesh with mesh size
h = 1/64. This mesh consists of 1, 572, 864 tetrahedrons and has N = 274, 625 nodes. In
Figure 7, we plot the initial value used for the computation, and in Figure 8 the solution
at final time T = 100. We also plot the solution and the multi-adaptive time steps at time
t = 10 in Figure 9 and Figure 10, and note that the time steps are small in regions where
there is strong competition between the two stable steady-state solutions, in particular in
regions with where the curvature of the interface is small.

The computation was carried out using DOLFIN version 0.4.9, which includes the
bistable equation as one of numerous multi-adaptive test problems. The visualization
of the solution was made using OpenDX [1] version 4.3.2. Animations of the solution and
the multi-adaptive time steps are available in the gallery on the DOLFIN web page [11].
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Figure 7. Initial data for the solution of the bistable equation (4.1).

Figure 8. Solution of the bistable equation (4.1) at final time T = 100.
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Figure 9. Solution of the bistable equation (4.1) at time t = 10.

Figure 10. Multi-adaptive time steps at time t = 10 for the solution of the
bistable equation (4.1).
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2004–11 Adaptive variational multiscale methods based on a posteriori error estimation
Mats G. Larson and Axel Målqvist
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