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COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS

JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

Abstract. In this short note, we discuss the basic approach to computational modeling
of dynamical systems. If a dynamical system contains multiple time scales, ranging from
very fast to slow, computational solution of the dynamical system can be very costly. By
resolving the fast time scales in a short time simulation, a model for the effect of the small
time scale variation on large time scales can be determined, making solution possible on a
long time interval. This process of computational modeling can be completely automated.
Two examples are presented, including a simple model problem oscillating at a time scale
of 10−9 computed over the time interval [0, 100], and a lattice consisting of large and small
point masses.

1. Introduction

We consider a dynamical system of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial value, T > 0
a given final time, and f : R

N×(0, T ] → R
N a given function that is Lipschitz-continuous in

u and bounded. We consider a situation where the exact solution u varies on different time
scales, ranging from very fast to slow. Typical examples include meteorological models for
weather prediction, with fast time scales on the range of seconds and slow time scales on
the range of years, protein folding represented by a molecular dynamics model of the form
(1.1), with fast time scales on the range of femtoseconds and slow time scales on the range
of microseconds, or turbulent flow with a wide range of time scales.

To make computation feasible in a situation where computational resolution of the fast
time scales would be prohibitive because of the small time steps required, the given model
(1.1) containing the fast time scales needs to be replaced with a reduced model for the
variation of the solution u of (1.1) on resolvable time scales. As discussed below, the key
step is to correctly model the effect of the variation at the fast time scales on the variation
on slow time scales.
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The problem of model reduction is very general and various approaches have been taken,
see e.g. [8] and [6]. We present below a new approach to model reduction, based on
resolving the fast time scales in a short time simulation and determining a model for the
effect of the small time scale variation on large time scales. This process of computational
modeling can be completely automated and the validity of the reduced model can be
evaluated a posteriori.

2. A simple model problem

We consider a simple example illustrating the basic aspects: Find u = (u1, u2) : [0, T ] →
R

2, such that

ü1 + u1 − u2
2/2 = 0 on (0, T ],

ü2 + κu2 = 0 on (0, T ],

u(0) = (0, 1) u̇(0) = (0, 0),

(2.1)

which models a moving unit point mass M1 connected through a soft spring to another
unit point mass M2, with M2 moving along a line perpendicular to the line of motion of
M1, see Figure 1. The second point mass M2 is connected to a fixed support through a
very stiff spring with spring constant κ = 1018 and oscillates rapidly on a time scale of
size 1/

√
κ = 10−9. The oscillation of M2 creates a force ∼ u2

2 on M1 proportional to the
elongation of the spring connecting M2 to M1 (neglecting terms of order u4

2).
The short time scale of size 10−9 requires time steps of size ∼ 10−10 for full resolution.

With T = 100, this means a total of ∼ 1012 time steps for solution of (2.1). However,
by replacing (2.1) with a reduced model where the fast time scale has been removed, it
is possible to compute the (averaged) solution of (2.1) with time steps of size ∼ 0.1 and
consequently only a total of 103 time steps.

3. Taking averages to obtain the reduced model

Having realized that point-wise resolution of the fast time scales of the exact solution
u of (1.1) may sometimes be computationally very expensive or even impossible, we seek
instead to compute a time average ū of u, defined by

(3.1) ū(t) =
1

τ

∫ τ/2

−τ/2

u(t+ s) ds, t ∈ [τ/2, T − τ/2],

where τ > 0 is the size of the average. The average ū can be extended to [0, T ] in various
ways. We consider here a constant extension, i.e., we let ū(t) = ū(τ/2) for t ∈ [0, τ/2),
and let ū(t) = ū(T − τ/2) for t ∈ (T − τ/2, T ].

We now seek a dynamical system satisfied by the average ū by taking the average of
(1.1). We obtain

˙̄u(t) = ¯̇u(t) = f(u, ·)(t) = f(ū(t), t) + (f(u, ·)(t) − f(ū(t), t)),

or

(3.2) ˙̄u(t) = f(ū(t), t) + ḡ(u, t),
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Figure 1. A simple mechanical system with large time scale ∼ 1 and small
time scale ∼ 1/

√
κ.

where the variance ḡ(u, t) = f(u, ·)(t)− f(ū(t), t) accounts for the effect of small scales on
time scales larger than τ . (Note that we may extend (3.2) to (0, T ] by defining ḡ(u, t) =
−f(ū(t), t) on (0, τ/2] ∪ (T − τ/2, T ].)

We now seek to model the variance ḡ(u, t) in the form ḡ(u, t) ≈ g̃(ū(t), t) and replace
(3.2) and thus (1.1) by

˙̃u(t) = f(ũ(t), t) + g̃(ũ(t), t), t ∈ (0, T ],

ũ(0) = ū0,
(3.3)

where ū0 = ū(0) = ū(τ/2). We refer to this system as the reduced model with subgrid

model g̃ corresponding to (1.1).
To summarize, if the solution u of the full dynamical system (1.1) is computationally

unresolvable, we aim at computing the average ū of u. However, since the variance ḡ in the
averaged dynamical system (3.2) is unknown, we need to solve the reduced model (3.3) for
ũ ≈ ū with an approximate subgrid model g̃ ≈ ḡ. Solving the reduced model (3.3) using
e.g. a Galerkin finite element method, we obtain an approximate solution U ≈ ũ ≈ ū.
Note that we may not expect U to be close to u point-wise in time, while we hope that U
is close to ū point-wise.

4. Modeling the variance

There are two basic approaches to the modeling of the variance ḡ(u, t) in the form
g̃(ũ(t), t); (i) scale-extrapolation or (ii) local resolution. In (i), a sequence of solutions is
computed with increasingly fine resolution, but without resolving the fastest time scales.



4 JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

A model for the effects of the fast unresolvable scales is then determined by extrapolation
from the sequence of computed solutions, see e.g. [3]. In (ii), the approach followed below,
the solution u is computed accurately over a short time period, resolving the fastest time
scales. The reduced model is then obtained by computing the variance

(4.1) ḡ(u, t) = f(u, ·)(t) − f(ū(t), t)

and then determining g̃ for the remainder of the time interval such that g̃(ũ(t), t) ≈ ḡ(u, t).
For the simple model problem (2.1), which we can write in the form (1.1) by introducing

the two new variables u3 = u̇1 and u4 = u̇2 with

f(u, ·) = (u3, u4,−u1 + u2
2/2,−κu2),

we note that ū2 ≈ 0 (for
√
κτ large) while u2

2 ≈ 1/2. By the linearity of f1, f2, and f4, the
(approximate) reduced model takes the form

¨̃u1 + ũ1 − 1/4 = 0 on (0, T ],

¨̃u2 + κũ2 = 0 on (0, T ],

ũ(0) = (0, 0), ˙̃u(0) = (0, 0),

(4.2)

with solution ũ(t) = ( 1
4
(1 − cos t), 0).

In general, the reduced model is constructed with subgrid model g̃ varying on resolvable
time scales. In the simplest case, it is enough to model g̃ with a constant and repeatedly
checking the validity of the model by comparing the reduced model (3.3) with the full
model (1.1) in a short time simulation. Another possibility is to use a piecewise polynomial
representation for the subgrid model g̃.

5. Solving the reduced system

Although the presence of small scales has been decreased in the reduced system (3.3),
the small scale variation may still be present. This is not evident in the reduced system
(4.2) for the simple model problem (2.1), where we made the approximation ũ2(0) = 0. In
practice, however, we compute ũ2(0) = 1

τ

∫ τ

0
u2(t) dt = 1

τ

∫ τ

0
cos(

√
κt) dt ∼ 1/(

√
κτ) and so

ũ2 oscillates at the fast time scale 1/
√
κ with amplitude 1/(

√
κτ).

To remove these oscillations, the reduced system needs to be stabilized by introducing
damping of high frequencies. Following the general approach presented in [5], a least
squares stabilization is added in the Galerkin formulation of the reduced system (3.3) in
the form of a modified test function. As a result, damping is introduced for high frequencies
without affecting low frequencies.

Alternatively, components such as u2 in (4.2) may be inactivated, corresponding to a
subgrid model of the form g̃2(ũ, ·) = −f2(ũ, ·). We take this simple approach for the
example problems presented below.
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6. Error analysis

The validity of a proposed subgrid model may be checked a posteriori. To analyze the
modeling error introduced by approximating the variance ḡ with the subgrid model g̃, we
introduce the dual problem

−φ̇(t) = J(ū, U, t)>φ(t), t ∈ [0, T ),

φ(T ) = ψ,
(6.1)

where J denotes the Jacobian of the right-hand side of the dynamical system (1.1) evaluated
at a mean value of the average ū and the computed numerical (finite element) solution
U ≈ ũ of the reduced system (3.3),

(6.2) J(ū, U, t) =

∫ 1

0

∂f

∂u
(sū(t) + (1 − s)U(t), t) ds,

and where ψ is initial data for the backward dual problem.
To estimate the error ē = U−ū at final time, we note that ē(0) = 0 and φ̇+J(ū, U, ·)>φ =

0, and write

(ē(T ), ψ) = (ē(T ), ψ) −
∫ T

0

(φ̇+ J(ū, U, ·)>φ, ē) dt

=

∫ T

0

(φ, ˙̄e− Jē) dt =

∫ T

0

(φ, U̇ − ˙̄u− f(U, ·) + f(ū, ·)) dt

=

∫ T

0

(φ, U̇ − f(U, ·) − g̃(U, ·)) dt+
∫ T

0

(φ, g̃(U, ·) − ḡ(u, ·)) dt

=

∫ T

0

(φ, R̃(U, ·)) dt+
∫ T

0

(φ, g̃(U, ·) − ḡ(u, ·)) dt.

The first term,
∫ T

0
(φ, R̃(U, ·)) dt, in this error representation corresponds to the discretiza-

tion error U − ũ for the numerical solution of (3.3). If a Galerkin finite element method
is used (see [1, 2]), the Galerkin orthogonality expressing the orthogonality of the residual
R̃(U, ·) = U̇ − f(U, ·) − g̃(U, ·) to a space of test functions can be used to subtract a test
space interpolant πφ of the dual solution φ. In the simplest case of the cG(1) method
for a partition of the interval (0, T ] into M subintervals Ij = (tj−1, tj], each of length
kj = tj − tj−1, we subtract a piecewise constant interpolant to obtain

∫ T

0

(φ, R̃(U, ·)) dt =

∫ T

0

(φ− πφ, R̃(U, ·)) dt ≤
M∑

j=1

kj max
Ij

‖R̃(U, ·)‖l2

∫
Ij

‖φ̇‖l2 dt

≤ S [1](T ) max
[0,T ]

‖kR̃(U, ·)‖l2,

where the stability factor S [1](T ) =
∫ T

0
‖φ̇‖l2 dt measures the sensitivity to discretization

errors for the given output quantity (ē(T ), ψ).
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The second term,
∫ T

0
(φ, g̃(U, ·) − ḡ(u, ·)) dt, in the error representation corresponds to

the modeling error ũ− ū. The sensitivity to modeling errors is measured by the stability

factor S [0](T ) =
∫ T

0
‖φ‖l2 dt. We notice in particular that if the stability factor S [0](T ) is

of moderate size, a reduced model of the form (3.3) for ũ ≈ ū may be constructed.
We thus obtain the error estimate

(6.3) |(ē(T ), ψ)| ≤ S [1](T ) max
[0,T ]

‖kR̃(U, ·)‖l2 + S [0](T ) max
[0,T ]

‖g̃(U, ·) − ḡ(u, ·)‖l2,

including both discretization and modeling errors. The initial data ψ for the dual problem
(6.1) is chosen to reflect the desired output quantity, e.g. ψ = (1, 0, . . . , 0) to measure the
error in the first component of U .

To estimate the modeling error, we need to estimate the quantity g̃ − ḡ. This estimate
is obtained by repeatedly solving the full dynamical system (1.1) at a number of control
points and comparing the subgrid model g̃ with the computed variance ḡ. As initial data
for the full system at a control point, we take the computed solution U ≈ ū at the control
point and add a perturbation of appropriate size, with the size of the perturbation chosen
to reflect the initial oscillation at the fastest time scale.

7. Numerical results

We present numerical results for two model problems, including the simple model prob-
lem (2.1), computed with DOLFIN version 0.4.10 [4]. With the option automatic modeling

set, DOLFIN automatically creates the reduced model (3.3) for a given dynamical system
of the form (1.1) by resolving the full system in a short time simulation and then determin-
ing a constant subgrid model ḡ. Components with constant average, such as u2 in (2.1), are
automatically marked as inactive and are kept constant throughout the simulation. The
automatic modeling implemented in DOLFIN is rudimentary and many improvements are
possible, but it represents a first attempt at the automation of modeling, following the
directions for the automation of computational mathematical modeling presented in [7].

7.1. The simple model problem. The solution for the two components of the simple
model problem (2.1) is shown in Figure 2 for κ = 1018 and τ = 10−7. The value of the
subgrid model ḡ1 is automatically determined to 0.2495 ≈ 1/4.

7.2. A lattice with internal vibrations. The second example is a lattice consisting of
a set of p2 large and (p − 1)2 small point masses connected by springs of equal stiffness
κ = 1, as shown in Figure 3 and Figure 4. Each large point mass is of size M = 100 and
each small point mass is of size m = 10−12, giving a large time scale of size ∼ 10 and a
small time scale of size ∼ 10−6.

The fast oscillations of the small point masses make the initially stationary structure
of large point masses contract. Without resolving the fast time scales and ignoring the
subgrid model, the distance D between the lower left large point mass at x = (0, 0) and
the upper right large point mass at x = (1, 1) remains constant, D =

√
2. In Figure 6,

we show the computed solution with τ = 10−4, which manages to correctly capture the
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Figure 2. The solution of the simple model problem (2.1) on [0, 100]
(above) and on [0, 4 · 10−7] (below). The automatic modeling is activated
at time t = 2τ = 2 · 10−7.
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oscillation in the diameter D of the lattice as a consequence of the internal vibrations at
time scale 10−6.

With a constant subgrid model ḡ as in the example, the reduced model stays accurate
until the configuration of the lattice has changed sufficiently. When the change becomes
too large, the reduced model can no longer give an accurate representation of the full
system, as shown in Figure 5. At this point, the reduced model needs to be reconstructed
in a new short time simulation.
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Figure 3. Detail of the lattice. The arrows indicate the direction of vi-
bration perpendicular to the springs connecting the small mass to the large
masses.
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Figure 4. Lattice consisting of p2 large masses and (p− 1)2 small masses.
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