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Göteborg, Sweden 2004



Adaptive variational multiscale methods

based on a posteriori error estimation:

Duality techniques for elliptic problems

Mats G. Larson ∗ Axel Målqvist †

May 18, 2004

Abstract

The variational multiscale method (VMM) provides a general framework for con-
struction of multiscale finite element methods. In this paper we propose a method for
parallel solution of the fine scale problem based on localized Dirichlet problems which
are solved numerically. Next we present a posteriori error representation formulas for
VMM which relates the error in linear functionals to the discretization errors, reso-
lution and size of patches in the localized problems, in the fine scale approximation.
These formulas are derived by using duality techniques. Based on the a posteriori
error representation formula we propose an adaptive VMM with automatic tuning
of the critical parameters. We primary study elliptic second order partial differential
equations with highly oscillating coefficients or localized singularities.

1 Introduction

Many problems in science and engineering involve models of physical systems on many
scales. For instance, models of materials with microstructure such as composites and flow
in porous media. In such problems it is in general not feasible to seek for a numerical
solution which resolves all scales. Instead we may seek to develop algorithms based on a
suitable combination with a global problem capturing the main features of the solution
and localized problems which resolves the fine scales. Since the fine scale problems are
localized the computation on the fine scales is parallel in nature.

∗Corresponding author, Department of Computational Mathematics, Chalmers University of Technol-
ogy, Göteborg, S-412 96, Sweden, mgl@math.chalmers.se

†Department Computational Mathematics, Chalmers University of Technology, Göteborg, S-412 96,
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Previous work. The Variational Multiscale Method (VMM) is a general framework for
derivation of basic multiscale method in a variational context, see Hughes [7] and [9]. The
basic idea is to decompose the solution into fine and coarse scale contributions, solve the
fine scale equation in terms of the residual of the coarse scale solution, and finally eliminate
the fine scale solution from the coarse scale equation. This procedure leads to a modified
coarse scale equation where the modification accounts for the effect of fine scale behavior
on the coarse scales. In practice it is necessary to approximate the fine scale equation
to make the method realistic. In several works various ways of analytical modeling are
investigated often based on bubbles or element Green’s functions, see Oberai and Pinsky,
[11] and Arbogast [1]. In [6] Hou and Wu present a different approach. Here the fine scale
equations are solved numerically on a finer mesh. The fine scale equations are solved inside
coarse elements and are thus totally decoupled.

New contributions. In this work we present a simple technique for numerical approx-
imation of the fine scale equation in the variational multiscale method. The basic idea is
to split the fine scale residual into localized contributions using a partition of unity and
solving corresponding decoupled localized problems on patches with homogeneous Dirich-
let boundary conditions. The fine scale solution is approximated by the sum Uf =

∑
i Uf,i

of the solutions Uf,i to the localized problems. The accuracy of Uf depends on the fine
scale mesh size h and the size of the patches. We note that the fine scale computation is
naturally parallel.

To optimize performance we seek to construct an adaptive algorithm for automatic
control of the coarse mesh size H, the fine mesh size h, and the size of patches. Our
algorithm is based on the following a posteriori estimate of the error e = u− Uc − Uf for
the Poisson equation with variable coefficients a:

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf) +
∑

i∈F

((ϕiR(Uc), φf)ωi
− a(Uf,i, φf)ωi

) , (1.1)

where ψ ∈ H−1(Ω), C refers to nodes where no local problems have been solved, F to
nodes where local problems are solved, Uc is the coarse scale solution, U = Uc + Uf ,
R(U) = f +∇ · a∇U is the residual, and φf is the fine scale part of a dual solution driven
by ψ.

If no fine scale equations are solved only we obtain the first term in the estimate. The
second term relates the fine scale mesh parameter h to the patch size ωi on which the local
problems are solved. We have derived a similar estimate for the error in energy norm, see
[10].

The framework is fairly general and may be extended to other types of multiscale
methods, for instance, based on localized Neumann problems.

Outline. First we introduce the model problem and the variational multiscale formu-
lation of this problem, we also discuss the split of the coarse and fine scale spaces. In
the following section we present a posteriori estimates of the error. These results leads
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to an adaptive algorithm. We present numerical results and finally we present concluding
remarks and suggestions on future work.

2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with a highly oscillating coefficient a and homogeneous
Dirichlet boundary conditions: find u ∈ H1

0
(Ω) such that

−∇ · a∇u = f in Ω, (2.1)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ, f ∈ H−1(Ω), and
a ∈ L∞(Ω) such that a(x) ≥ α0 > 0 for all x ∈ Ω. The variational form of (2.1) reads:
find u ∈ V = H1

0
(Ω) such that

a(u, v) = (f, v) for all v ∈ V, (2.2)

with the bilinear form
a(u, v) = (a∇u,∇v) (2.3)

for all u, v ∈ V.

2.2 The Variational Multiscale Method

We employ the variational multiscale scale formulation, proposed by Hughes see [7, 9] for
an overview, and introduce a coarse and a fine scale in the problem. We choose two spaces
Vc ⊂ V and Vf ⊂ V such that

V = Vc ⊕ Vf . (2.4)

Then we may pose (2.2) in the following way: find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uc, vf) + a(uf , vf) = (f, vf ) for all vf ∈ Vf .
(2.5)

Introducing the residual R : V → V ′ defined by

(R(v), w) = (f, w) − a(v, w) for all w ∈ V , (2.6)

the fine scale equation takes the form: find uf ∈ Vf such that

a(uf , vf) = (R(uc), vf) for all vf ∈ Vf . (2.7)

Thus the fine scale solution is driven by the residual of the coarse scale solution. Denoting
the solution uf to (2.7) by uf = TR(uc) we get the modified coarse scale problem

a(uc, vc) + a(TR(uc), vc) = (f, vc) for all vc ∈ Vc. (2.8)

Here the second term on the left hand side accounts for the effects of fine scales on the
coarse scales.
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2.3 A VMM Based on Localized Dirichlet Problems

We introduce a partition K = {K} of the domain Ω into shape regular elements K of
diameter HK and we let N be the set of nodes. Further we let Vc be the space of continuous
piecewise polynomials of degree p defined on K.

We shall now construct an algorithm which approximates the fine scale equation by a
set of decoupled localized problems. We begin by writing uf =

∑
i∈N uf,i where

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf , (2.9)

and {ϕi}i∈N is the set of Lagrange basis functions in Vc. Note that {ϕi}i∈N is a partition
of unity with support on the elements sharing the node i. We call the set of elements
with one corner in node i a mesh star in node i and denote it S i

1
. Thus functions uf,i

correspond to the fine scale effects created by the localized residuals ϕiR(uc). Introducing
this expansion of uf in the right hand side of the fine scale equation (2.5) and get: find
uc ∈ Vc and uf =

∑
i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf and i ∈ N .
(2.10)

We use this fact to construct a finite element method for solving (2.10) approximately in
two steps.

• For each coarse node we define a patch ωi such that supp(ϕi) ⊂ ωi ⊂ Ω. We denote
the boundary of ωi by ∂ωi.

• On these patches we define piecewise polynomial spaces Vh
f (ωi) with respect to a fine

mesh with mesh function h = h(x) defined as a piecewise constant function on the
fine mesh. Functions in Vh

f (ωi) are equal to zero on ∂ωi.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈ Vh
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf) = (ϕiR(Uc), vf ) for all vf ∈ Vh
f (ωi) and i ∈ N .

(2.11)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero on ∂ωi, Uf

and therefore U = Uc + Uf will be continuous.

Remark 2.1 For problems with multiscale phenomena on a part of the domain it is not
necessary to solve local problems for all coarse nodes. We let C ⊂ N refer to nodes where
no local problems are solved and F ⊂ N refer to nodes where local problems are solved.
Obviously C ∪ F = N . We let Uf,i = 0 for i ∈ C.

Remark 2.2 The choice of the subdomains ωi is crucial for the method. We introduce a
notation for extended stars of many layers of coarse elements recursively in the following
way. The extended mesh star Si

L = ∪j∈Si

L−1

S
j
1

for L > 1. We refer to L as layers, see
Figure 1.
In Figure (2) we plot solutions to localized fine scale problems Uf,i on different patches.
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Figure 2: The fine scale solution Uf,i for different patches.
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Figure 3: HB-function and WHB-function with two Jacobi iterations.

2.4 Subspaces

The choice of the fine scale space Vf can be done in different ways. In a paper by Aksoylu
and Holst [4] three suggestions are made.

Hierarchical basis method. The first and perhaps easiest approach is to let Vf = {v ∈
V : v(xj) = 0, j = N}, where {xi}i∈N are the coarse mesh nodes. When Vf is discritized
by the standard piecewise polynomials on the fine mesh this means that the fine scale base
functions will have support on fine scale stars.

BPX preconditioner. The second approach is to let Vf be L2(Ω) orthogonal to Vc. In
this case we will have global support for the fine scale base functions but for the discretized
space we have rapid decay outside fine mesh stars.

Wavelet modified hierarchical basis method. The third choice is a mix of the other
two. The fine scale space Vf is defined as an approximate L2(Ω) orthogonal version of the
Hierarchical basis method. We let Qa

cv ∈ Vc be an approximate solution (a small number
of Jacobi iterations) to

(Qa
cv, w) = (v, w), for all w ∈ Vc. (2.12)

and define the Wavelet modified hierarchical basis function associated with the hierarchical
basis function ϕHB to be,

ϕWHB = (I −Qa
c)ϕHB, (2.13)

see Figure 3.
For an extended description of these methods see [3, 4, 2]. In this paper we focus on

the WHB method.

3 A Posteriori Error Estimates

3.1 The Dual Problem

To derive a posteriori error estimates of the error in a given linear functional (e, ψ) with
e = u−U and ψ ∈ H−1(Ω) a given weight. We introduce the following dual problem: find
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φ ∈ V such that
a(v, φ) = (v, ψ) for all v ∈ V. (3.1)

In the VMM setting this yields: find φc ∈ Vc and φf ∈ Vf such that

a(vc, φc) + a(vc, φf) = (vc, ψ), for all vc ∈ Vc,

a(vf , φf) + a(vf , φc) = (vf,ψ), for all vf ∈ Vf .
(3.2)

3.2 Error Representation Formula

We now derive an error representation formula involving both the coarse scale error ec =
uc − Uc and the fine scale error ef =

∑
i∈N ef,i :=

∑
i∈N (uf,i − Uf,i) that arises from using

our finite element method (2.11).
We use the dual problem (3.2) to derive an a posteriori error estimate for a linear

functional of the error e = ec + ef . If we subtract the coarse part of equation (2.11) from
the coarse part of equation (2.10) we get the Galerkin orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (3.3)

The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf) = (f, ϕivf) − a(ec, ϕivf), for all vf ∈ Vh
f (ωi). (3.4)

We are now ready to state an error representation formula.

Theorem 3.1 If ψ ∈ H−1(Ω) then,

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf) +
∑

i∈F

((ϕiR(Uc), φf)ωi
− a(Uf,i, φf)ωi

) . (3.5)

Proof. Starting from the definition of the dual problem and letting v = e = u− Uc − Uf

we get

(e, ψ) = a(e, φ) (3.6)

= a(e, φf) (3.7)

= a(u− Uc, φf) − a(Uf , φf) (3.8)

= (R(Uc), φf) − a(Uf , φf) (3.9)

= (R(Uc), φf) −
∑

i∈F

a(Uf,i, φf) (3.10)

=
∑

i∈C

(ϕiR(Uc), φf) +
∑

i∈F

(ϕiR(Uc), φf) − a(Uf,i, φf). (3.11)

which proves the theorem.
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Since equation (2.11) holds we can subtract functions vh
f,i ∈ Vh

f (ωi) where i ∈ F from

equation (3.11). For example we choose vh
f,i = πh,iφf , where πh,iφf is the Scott-Zhang

interpolant of φf onto Vh
f (ωi) to get

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf) (3.12)

+
∑

i∈F

((ϕiR(Uc), φf − πh,iφf)ωi
− a(Uf,i, φf − πh,iφf)ωi

) .

Remark 3.1 Since the dual problem defined in equation (3.2) is equally hard to solve as
the primal problem we need to solve it numerically as well. Normally it would not be suf-
ficient to solve the dual problem with the same accuracy as the primal due to the Galerkin
Orthogonality. However in this setting things are a bit different. Calculating φf with the
same accuracy as Uf or even with lower accuracy will not result in an error equal to zero.
The important thing is to only store the part of φf with support on ωi when calculating
term i in the sum of equation (3.5). The entire function φf might be hard to store in the
memory of the computer.

4 Adaptive Algorithm

We use the error representation formula in Theorem 3.1 to construct an adaptive algorithm.
We remember the result,

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf) +
∑

i∈F

((ϕiR(Uc), φf)ωi
− a(Uf,i, φf)ωi

) . (4.1)

The first sum of the error representation formula is very similar to what we would get from
using standard Galerkin on the coarse mesh. The function φf = φ − φc ∼ H∇φ which is
exactly what we would expect. For the second sum we have an extra orthogonality namely
that from equation (3.12). We have φf − πh,iφf ∼ h∇φ if the patches ωi = Ω i.e. we get
the fine scale convergence. But in practice the patches are much smaller so we end up
somewhere in between h and H convergence. To sum up this discussion there are three
parameters of interest that need to be considered in an adaptive algorithm, H, h, and the
size of the patches.

Adaptive Algorithm.

• Start with no nodes in F .

• Calculate the primal Uc.

• Calculate the dual solution locally φf with low accuracy for all coarse nodes. (ψf

does not need to be solved very accurately to point out the correct nodes for local
calculations.)
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Figure 4: Geometry (left) and Reference solution (right).

• Calculate the contributions to the error for each coarse node, Ci = (ϕiR(Uc), φf).

• Solve local problems where Ci is large to get a new Uc.

• Calculate Ci and Fi = ((ϕiR(Uc), φf)ωi
− a(Uf,i, φf)ωi

), for large values in Ci solve
more local problems and for large values in Fi either increase the number of layers or
decrease the fine scale mesh size h for local problem i. Stop if the desired tolerance
is reached or calculate a new Uc and new error indicators etc. .

5 Numerical Examples

We solve two dimensional model problems with linear base functions defined on a uniform
triangular mesh.

Example 1. In this example we demonstrate how we can get highly improves accuracy
in one part of the domain by choosing the load in the dual problem ψ equal to the indicator
function for this domain. We consider the unit square with a crack in the form of a plus
sign on which the solution is forced to be zero, see Figure 5 (left). We let ψ be equal to one
in the lower left quadrant (marked with a thin lattice in the figure) and zero in the rest of
the domain. To the right in Figure 5 we see a reference solution to the Poisson equation
with a = f = 1 and homogeneous Dirichlet boundary conditions on this geometry. The
idea is to use the adaptive algorithm to choose which areas that needs to be solved with
higher accuracy. In Figure 5 we plot the dual solution, with ψ chosen as described above,
to the left and the fine scale part of the dual solution to the right. After two iterations
in the adaptive algorithm we see clearly that local problems have only nodes in the lower
left corner. In Figure 5 the small circles refers to fine scale problems solved with two
layer stars and the bigger circles refers to fine scale problems solved three layer stars. The
improvement in the solution after two iteration in the adaptive algorithm is very clear.
In Figure 5 we compare the standard Galerkin solution and the adaptive solution to a
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Figure 5: Dual solution (left) and fine scale part of the dual solution (right) calculated
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reference solution on this geometry (right).

reference solution. We see how the error in the lower left quadrant is much smaller but the
error in the rest of the domain is very similar to the standard Galerkin error.

Example 2. Next we turn our attention to a model problem with oscillating coefficient
a in a part of the domain, see Figure 5. In this example we choose f = ψ = 1 which makes
the primal and the dual equivalent. In Figure 5 we note that the adaptive algorithm
automatically picks nodes in the left part of the domain for local problems to increase
accuracy. In the first example we want to refine a certain part of the domain and therefore
we choose ψ in order to do so, here we want good accuracy on the whole domain and
the adaptive algorithm chooses where to refine automatically. Again we compare standard
Galerkin and our solution to a reference solution calculated on a finer mesh. The result can
be seen in Figure 5. Again we see a nice improvement compared to the standard Galerkin
error. The choice ψ = 1 indicates control of the mean of the error over the domain.
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6 Conclusions and Future Work

We have presented a method for parallel solution of the fine scale equations in the varia-
tional multiscale method based on solution of localized Dirichlet problems on patches and
developed an a posteriori error analysis for the method. Based on the estimates we design
a basic adaptive algorithm for automatic tuning of the critical parameters: resolution and
size of patches in the fine scale problems. It is also possible to decide whether a fine scale
computation is necessary or not and thus the proposed scheme may be combined with
a standard adaptive algorithm on the coarse scales. The method is thus very general in
nature and may be applied to any problem where adaptivity is needed.

In this paper we have focused on two scales in two spatial dimensions. A natural
extension would be to solve three dimensional problems with multiple scales. It is also
natural to extend this theory to other equations modeling for instance flow and materials.
We also intend to study non-linear and time dependent equations using this approach.
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2004–11 Adaptive variational multiscale methods based on a posteriori error estimation
Mats G. Larson and Axel Målqvist
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