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Adaptive Variational Multiscale Methods

Based on A Posteriori Error Estimation:

Energy Norm Estimates for Elliptic

Problems

Mats G. Larson ∗ Axel Målqvist †

October 8, 2004

Abstract

The variational multiscale method provides a framework for construction of adap-

tive multiscale finite element methods. We develop a new adaptive finite element

method based on the variational multiscale method and we derive an a posteriori er-

ror estimate in energy norm. The estimate captures crucial parameters of the method

and shows how they are related. We present an adaptive algorithm that tunes these

parameters automatically according to the a posteriori error estimate. Finally, we

show how the method works in practice by presenting various numerical examples.

1 Introduction

The application of multiscale problems are numerous. They appear in all branches of
the engineering sciences e.g. composites materials, flow in porous media, fluid mechanics,
and quantum physics. A common feature for all these applications is that they are very
computationally challenging and often impossible to solve to an acceptable tolerance with
standard one mesh methods. New methods needs to be found and together with new
method we need new error estimates to ensure the accuracy of the methods.

Previous work. The Variational Multiscale Method (VMM) serves as a general frame-
work for the solution of multiscale problems, see [7, 9]. The idea is to decompose the
solution into fine and coarse scale contributions, solve fine scale equation in terms of the
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coarse scale residual, and finally eliminate the fine scale solution from the coarse scale
equation. This procedure leads to a modified coarse scale equation where the modification
accounts for the effect of fine scale behavior on the coarse scales. In several works various
ways of analytical modeling are investigated often based on bubbles or element Green’s
functions, see Hughes [7], Oberai and Pinsky, [12], and Arbogast [1]. In [6] Hou and Wu
present a different approach. Here the fine scale equations are solved numerically on a
finer mesh. The fine scale equations are solved inside coarse elements and are thus totally
decoupled.

In the adaptive variational multiscale method (AVMM), introduced in [11, 10] the
fine scale equations are decoupled and solved approximately on patches. In [10] an error
estimate is presented for control of a linear functional of the error. The method is adaptive
in the sense that both the areas where local problems are solved and the accuracy of the
solution of the local problems are chosen automatically.

New contributions. The focus of this paper is to present an a posteriori error estimate
of AVMM in the energy norm. The basic idea of AVMM is to split the fine scale residual
into localized contributions using a partition of unity and solving corresponding decoupled
localized problems on patches with homogeneous Dirichlet boundary conditions. The fine
scale solution is approximated by the sum Uf =

∑

i Uf,i of the solutions Uf,i to the localized
problems associated with coarse node i. The accuracy of Uf depends on the fine scale mesh
size h and the size of the patches. We note that the fine scale computation is naturally
parallel.

To optimize performance we want to construct an adaptive algorithm for automatic
control of the coarse mesh size H, the fine mesh size h, and the size of patches. The
algorithm is based on the following a posteriori estimate of the error e = u − Uc − Uf in
the energy norm for the Poisson equation with variable coefficient a:

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(1.1)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

where

(−Σ(Uf,i), vf)∂ωi
= (f + ∇ · a∇Uc, ϕivf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i), (1.2)

C refers to nodes where no local problems have been solved, F to nodes where local problems
are solved, Uc is the coarse scale solution, U = Uc + Uf , {ϕi}i∈C∪F is a partition of unity,
R(U) is a computable bound of the residual f + ∇ · a∇U , Ri(Uf,i) is a bound of the fine
scale residual ϕi(f +∇ · a∇Uc) +∇ · a∇Uf,i, Σ(Uf,i) is related to the normal derivative of
the fine scale solution Uf,i and measures the effect of restriction to patches. If no fine scale
equations are solved we obtain the first term in the estimate; the first part of the second
sum measures the effect of restriction to patches; and finally the second part measures the
influence of the fine scale mesh parameter h.
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The framework of AVMM is fairly general and may be extended to other types of
multiscale methods, for instance, based on localized Neumann problems.

Outline. In Section 2 we introduce the model problem and the adaptive variational
multiscale formulation. In Section 3 we present a posteriori error estimates. We study the
special case of periodic coefficient in Section 4 and present an adaptive algorithm based on
the error analysis in Section 5. Finally, in section Section 6 we present numerical results.

2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with a coefficient a and homogeneous Dirichlet boundary
conditions: find u ∈ H1

0 (Ω) such that

−∇ · a∇u = f in Ω, (2.1)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ, f ∈ L2(Ω), and
a ∈ L∞(Ω) such that a(x) > 0 for all x ∈ Ω. The variational form of (2.1) reads: find
u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V, (2.2)

with the bilinear form
a(u, v) = (a∇u,∇v), (2.3)

for all u, v ∈ V.

2.2 The Variational Multiscale Method

We focus on two scales and employ the variational multiscale scale formulation, proposed
by Hughes see [7, 9] for an overview. We choose two spaces Vc ⊂ V and Vf ⊂ V such that

V = Vc ⊕ Vf , (2.4)

where Vc is associated with the coarse scale and Vf is associated with the fine scale.
Introducing these spaces in (2.2) gives us the following weak formulation: find uc ∈ Vc and
uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uc, vf) + a(uf , vf) = (f, vf ) for all vf ∈ Vf .

(2.5)

We let R : V → V ′ denote the residual defined by

(R(v), w) = (f, w) − a(v, w) for all w ∈ V . (2.6)
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The fine scale equation now takes the form: find uf ∈ Vf such that

a(uf , vf) = (R(uc), vf) for all vf ∈ Vf . (2.7)

Thus the fine scale solution is driven by the residual of the coarse scale solution. Denoting
the solution uf to (2.7) by uf = T R(uc) we get the modified coarse scale problem

a(uc, vc) + a(T R(uc), vc) = (f, vc) for all vc ∈ Vc. (2.8)

Here the second term on the left hand side accounts for the effects of fine scales on the
coarse scales.

In terms of matrices this gives us a modified stiffness matrix and a modified right hand
side since a(T R(φi), φj) = Tij + dj for some matrix T and vector d. Note that (R(v), w)
defined in equation (2.6) is affine in v. If we denote the standard Galerkin stiffness matrix
by A and the right hand side by b we would get AUG = b for the standard Galerkin but

(A + T )Uc = b − d, (2.9)

for the modified version.
Another approach is to solve equation (2.5) iteratively with the Galerkin solution as an

initial guess.

2.3 Approximation of Fine Scale Equations Based on Localized

Dirichlet Problems

We use the method described in our earlier work [10, 11] for the approximate solution
of the fine scale equations. The idea is to decouple the fine scale equations by including
a partition of unity in the right hand side and then to solve the resulting problems on
patches. We start with some preliminary notations.

We introduce a partition K = {K} of the domain Ω into coarse shape regular elements
K of diameter HK and we let N be the set of coarse nodes. Further we let Vc be the space
of continuous piecewise polynomials of degree p defined on K.

We let uf =
∑

i∈N uf,i where

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf , (2.10)

and {ϕi}i∈N is a partition of unity e. g. the set of Lagrange basis functions in Vc, be the
solution to the decoupled fine scale equations. We note that the right hand side has the
same support as ϕi and a small support compared to Ω.

We introduce this expansion of uf in the right hand side of the fine scale equation (2.5)
and get: find uc ∈ Vc and uf =

∑

i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf and i ∈ N .

(2.11)
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Figure 1: Two (left) and one (right) layer stars.

The next step is to solve the fine scale equations approximately. For each element in the
partition of unity we associate a domain ωi on which we solve Dirichlet problems. The local
domain ωi contains the support of the element in the partition of unity and is large enough
to give a good approximate solution. The quality of the solution is controlled by error
estimates. We now define the local finite element space Vh

f (ωi) associated with node i. We

refine the coarse mesh on the patch ωi and let Vh
f (ωi) be the fine part of the hierarchical

basis on this mesh. Figure 1 shows patches and the mesh.
The resulting method reads: find Uc ∈ Vc and Uf =

∑n
i Uf,i where Uf,i ∈ Vh

f (ωi) such
that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,
a(Uf,i, vf) = (ϕiR(Uc), vf ) for all vf ∈ Vh

f (ωi) and i ∈ N .
(2.12)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero on ∂ωi, Uf

and therefore U will be continuous.

Remark 2.1 For problems with multiscale phenomena on a part of the domain it is not
necessary to solve local problems for all coarse nodes. We let C ⊂ N refer to nodes where
no local problems are solved and F ⊂ N refer to nodes where local problems are solved.
Obviously C ∪ F = N . We let Uf,i = 0 for i ∈ C.

Remark 2.2 The choice of the subdomains ωi is crucial for the method. We introduce
a notation for mesh stars of many layers of coarse elements recursively in the following
way. Let S1

i be the support of the coarse scale Lagrangian base function in node i. The
extended mesh star Si

L = ∪j∈Si

L−1

Sj
1 for L > 1. We refer to L as the numbers of layers, see

Figure 1.

To get an idea of how the localized solution Uf,i behaves when the domain ωi increases
we plot different solutions Uf,i in a smooth region of the solution u in Figure 2. Since Uf,i

is solved in the slice space Vf and since the right hand side of the fine scale equations of
(2.12) has the same support as ϕi, Uf,i will decay rapidly towards the boundary of ωi, this
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Figure 2: A typical localized solution Uf,i of the fine scale equations in a smooth region
using one, two, three layer stars, and the entire domain.
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can also be seen in Figure 2. We can see that one layer stars appears to give bad accuracy
while two and more layer stars captures the features of the correct solution.

3 A Posteriori Error Estimate in the Energy Norm

We start by introducing notations for bounds of the residual. Let R(U) be a bound of the
residual defined in the following way, see [5]:

R(U) = |f + ∇ · a∇U | + 1

2
max
∂K\Γ

h−1
K |[a∂nU ]| on K ∈ K, (3.1)

where K is the set of elements in the mesh and [·] is the difference in function value over
the current interior edge. We note that |(R(U), v)| ≤ ‖hsR(U)‖‖h−sv‖ for s ∈ R. We
define Ri(Uf,i) in the same way as R(U) on the local mesh but with U replaced by Uf,i

and f replaced by ϕiR(Uc).
We also define a new space on the patches ωi. Let Vh

f (ω̄i) be the space of piecewise

polynomials of degree p defined on the mesh on ωi. This space is identical to Vh
f (ωi) with

the difference that Vh
f (ω̄i) is not necessarily zero on the boundary ∂ωi. This means that

Vh
f (ωi) ⊂ Vh

f (ω̄i).
We derive an error estimate involving both the coarse scale error ec = uc − Uc and the

fine scale error ef =
∑

i∈N ef,i :=
∑

i∈N (uf,i−Uf,i) that arises from using our finite element
method (2.12).

If we subtract the coarse part of equation (2.12) from the coarse part of equation (2.11)
we get the Galerkin orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (3.2)

The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf) = (f, ϕivf) − a(ec, ϕivf), for all vf ∈ Vh
f (ωi). (3.3)

We state the following estimate for the error in the energy norm, ‖e‖a = a(e, e)1/2.

Theorem 3.1 It holds,

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(3.4)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

where

(−Σ(Uf,i), vf)∂ωi
= (ϕiR(Uc), vf)ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i). (3.5)
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Proof. We use the error equation (3.2) with vc as the Scott-Zhang interpolant πce onto
the coarse space Vc, see [2], to get,

‖e‖2
a = a(e, e) (3.6)

= a(e, e − πce) (3.7)

= a(u − Uc, e − πce) − a(Uf , e − πce) (3.8)

= (R(Uc), e − πce) − a(Uf , e − πce) (3.9)

=
∑

i∈C

(ϕiR(Uc), e − πce) (3.10)

+
∑

i∈F

(ϕiR(Uc), e − πce) − a(Uf,i, e − πce)

=
∑

i∈C

(ϕiR(Uc), e − πce) (3.11)

+
∑

i∈F

(ϕiR(Uc), πf,i(e − πce)) − a(Uf,i, πf,i(e − πce))

+
∑

i∈F

(ϕiR(Uc), e − πce − πf,i(e − πce))

−
∑

i∈F

a(Uf,i, e − πce − πf,i(e − πce))

= I + II + III (3.12)

where πf,i is the Scott-Zhang interpolant onto Vh
f (ω̄i). We start by estimating the first

term of equation (3.12), I. From interpolation theory [2] we have,

∑

i∈C

(ϕiR(Uc), e − πce) ≤
∑

i∈C

‖ϕiR(Uc)‖ωi
‖e − πce‖ωi

(3.13)

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

. (3.14)

Next we turn our attention to the second term of equation (3.12), II. We introduce Σ(Uf,i)
as the piecewise polynomial defined on ∂ωi that uniquely solves,

(−Σ(Uf,i), vf)∂ωi
= (R(Uc), ϕivf )ωi

− a(Uf,i, vf)ωi
, for all vf ∈ V h

f (ω̄i). (3.15)

With this definition we get the following estimate for the second term,

II =
∑

i∈F

(−Σ(Uf,i), πf,i(e − πce))∂ωi
(3.16)

≤
∑

i∈F

‖
√

HΣ(Uf,i)‖∂ωi
‖ 1√

H
πf,i(e − πce)‖∂ωi

. (3.17)
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We use the the following trace inequality from [2],

‖πf,i(e − πce)‖2
∂ωi

≤ C

(

1

H
‖πf,i(e − πce)‖2

ωi
+ H‖∇πf,i(e − πce)‖2

ωi

)

. (3.18)

Next we use that the Scott-Zhang interpolant is both L2 and H1 stable on shape-regular
meshes from [4, 3] to get,

‖πf,i(e − πce)‖2
∂ωi

≤ C

(

1

H
‖e − πce‖2

ωi
+ H‖∇(e − πce)‖2

ωi

)

(3.19)

≤ CH‖∇e‖2
ωi

. (3.20)

We conclude
II ≤ C

∑

i∈F

‖
√

HΣ(Uf,i)‖∂ωi
‖∇e‖ωi

. (3.21)

We now take on the third term in equation (3.12),
∑

i∈F(ϕiR(Uc), e−πce−πf,i(e−πce))−
a(Uf,i, e − πce − πf,i(e − πce)),

III ≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇(e − πce)‖ωi

(3.22)

≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

. (3.23)

We need to do the following simple observation,

‖∇e‖ωi
≤ ‖ 1√

a
‖L∞(ωi)‖

√
a∇e‖ωi

, (3.24)

by Hölder’s inequality. We go back to equation (3.6) and use the estimates of the three
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terms together with equation (3.24)

‖e‖2
a ≤

∑

i∈C

(ϕiR(Uc), e − πce) (3.25)

+
∑

i∈F

(ϕiR(Uc), πf,i(e − πce)) − a(Uf,i, πf,i(e − πce))

+
∑

i∈F

(ϕiR(Uc), e − πce − πf,i(e − πce))

−
∑

i∈F

a(Uf,i, e − πce − πf,i(e − πce))

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

(3.26)

+ C
∑

i∈F

‖
√

HΣ(Uf,i)‖∂ωi
‖∇e‖ωi

+ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

≤ C

(

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)

)1/2

‖e‖a (3.27)

+ C

(

∑

i∈F

‖
√

HΣ(Uf,i)‖2
∂ωi

‖ 1√
a
‖2

L∞(ωi)

)1/2

‖e‖a

+ C

(

∑

i∈F

‖hRi(Uf,i)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)

)1/2

‖e‖a

Finally we get

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(3.28)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

which proves the theorem.

Remark 3.1 We need to motivate the definition of Σ(Uf,i):

(−Σ(Uf,i), vf )∂ωi
= (ϕiR(Uc), vf)ωi

− (a∇Uf,i,∇vf)ωi
, for all vf ∈ Vh

f (ω̄i), (3.29)

in equation (3.5). The function Σ(Uf,i) is a piecewise polynomial defined on the boundary
of patch ωi. Remember that

(ϕiR(Uc), vf)ωi
− (a∇Uf,i,∇vf)ωi

= 0, for all vf ∈ Vh
f (ωi), (3.30)
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This means that have the same number of unknowns and equations and in practice calcu-
lating Σ(Uf,i) will come down to solving a linear system with a mass matrix defined on the
boundary of the patch. The function Σ(Uf,i) is a variational approximation of n · a∇Uf,i.
This is further discussed in [8].

4 Periodic Coefficient

Many multiscale applications features periodic fine scale structure. In this special case we
can get more information out of our calculations. We assume that we have local scale of
size ε and a global scale of size 1. Further we assume a = a(x/ε) to be smooth. If we
discretize Poisson’s equation with a mesh parameter H > ε using the standard Galerkin
finite element method we have the following estimate from [6].

Proposition 4.1 It holds

‖e‖a ≤ C
H

ε
‖f‖. (4.1)

Here f ∈ L2(Ω). From this estimate it is clear that we can not hope to get a good
approximation without resolving the fine scales. If we make a similar calculation for the
variational multiscale approach presented in this paper we get the following.

Theorem 4.1 It holds

‖e‖2
a ≤ C

(

h

ε

)2

‖f‖2 + C
∑

K∈K

‖
√

HΣ(Uf,i)‖2
∂ωi

‖ 1√
a
‖2

L∞(ωi)
. (4.2)

Proof. We use a global Scott-Zhang interpolant of v on the fine mesh associated with h,
πv, in the following calculation,

‖e‖2
a = a(e, e) (4.3)

= a(e, e − πe) + a(e, π(e − πce)) (4.4)

= a(e, uf − πuf) +
∑

i∈N

a(ec, ϕiπf,i(e − ec)) + a(ef,i, π(e − πce)) (4.5)

= a(e, uf − πuf) +
∑

i∈N

(Σ(Uf,i), πf,i(e − πce))∂ωi
(4.6)

= I + II. (4.7)

The first part, I in equation (4.3), is standard and can be estimated as follows,

I ≤ 1

4
‖e‖2

a + ‖uf − πuf‖2
a ≤ 1

4
‖e‖2

a + C

(

h

ε

)2

‖f‖2. (4.8)
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For the second part, II in equation (4.3), we use Cauchy-Schwarz for sums, the H 1-stability
of π, see [4, 3], and uf = u − uc to get,

II ≤
∑

i∈N

√
H‖ΣUf,i‖∂ωi

‖ 1√
H

πf,i(e − πce)‖ωi
(4.9)

≤
∑

i∈N

√
H‖ΣUf,i‖∂ωi

‖ 1√
H

πf,i(e − πce)‖ωi
. (4.10)

We use Cauchy-Schwarz for sums, equation (3.20), and (3.24) to get,

II ≤ C

(

∑

i∈N

‖
√

HΣUf,i‖2‖ 1√
a
‖2

L∞(ωi)

)1/2

‖e‖a (4.11)

≤ C
∑

i∈N

‖
√

HΣUf,i‖2‖ 1√
a
‖2

L∞(ωi)
+

1

4
‖e‖2

a. (4.12)

We combine equation (4.7), (4.8), and (4.12) to prove the theorem.

When solving problems with periodic coefficients it is very reasonable to choose struc-
tured meshes if possible aligned with the oscillations. It is also natural to put in equal
computational effort in all parts of the domain which means that no adaptivity in terms of
where the fine scale should be solved is necessary. However, it is still important to choose
the relation between the parameters h and L adaptively.

If the mesh is aligned with the oscillations local problems solved inside the domain
will differ only in the right hand side which means that the computational effort is almost
nothing. If f is also periodic we would get identical contributions to the modifying matrix
T in equation (2.9) from the local calculations.

Patches including parts of the boundary will also appear repeatedly in the calculations.

5 Adaptive Algorithm

We use the energy norm estimate in Theorem 3.1 to construct an adaptive algorithm.
Recall the result,

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(5.1)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

These contributions to the error can easily be understood. The first term is the standard
a posteriori error estimate for a Galerkin solution on the coarse mesh i.e. this is what we
get if we do not solve any local problems. The first part of the second sum represents the
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Figure 3: Unit square with slits between (0.25, 0.5) and (0.75, 0.5) and between (0.5, 0.25)
and (0.5, 0.75).

error arising from the fact that we solve the local problems on patches ωi instead of the
whole domain. Remember that Σ(Uf,i) is closely related to the normal derivative of the
fine scale solution on the boundary of the patches. Finally, the second part of the second
sum represents the fine scale resolution. The two contributions to the second sum clearly
points out the parameters of interest when using our method. The first one is the patch
size, increasing patch size will decrease ‖

√
HΣi(Uf,i)‖∂ωi

, the second one is the fine scale
mesh size h.

From equation (5.1) we now state the following adaptive algorithm:

Adaptive Algorithm.

1. Start with no nodes in F .

2. Calculate a solution Uc on the coarse mesh by solving (2.12).

3. For all i ∈ C calculate the residuals for each coarse node, Ri = ‖HR(Uc)‖2
ωi

.

4. For all i ∈ F calculate the contributions from the first term of the local problems,
Si = ‖

√
HΣ(Uf,i)‖2

∂ωi
and the second term, Wi = ‖hRi(Uf,i)‖2

ωi
.

5. For large values in Ri add i to F , for large values in Si or Wi either increase the
number of layers or decrease the fine scale mesh size h for local problem i. Return
to 2 or stop if the desired tolerance is reached.

6 Numerical Examples

We solve two dimensional model problems with linear base functions defined on a uniform
triangular mesh.

Example 1. In the first example we let a = 1, f = 1, and Ω be the unit square with
a crack that forms a plus sign, see Figure 3. The solution u is forced to be zero on the
boundary including the slits, see Figure 4. We solve the problem by using the adaptive
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Figure 4: The solution calculated using 1089 nodes.
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Figure 5: Refinement level, h = H · 2−k, and number of layers L for each coarse node after
the first (left) and second (right) iteration. We have k = 1 and L = 1 (left) and L = 2
(right).

algorithm above with a refinement level of 8 % in each iteration. We start with one
refinement and one layer stars for the local problems. Figure 5 (left) shown the adaptive
choice of coarse nodes for which local problems needs to be solved.

After the second iteration no more local problems are added but the number of layers is
increased to two, see Figure 5 (right). As seen the algorithm decides to increase the number
of layers for all coarse nodes. This indicates that the normal derivative of Uf,i is not small
on the boundary of the patches. This is exactly what we get if we study a specific choice of
Uf,i with center close to the cracks, see Figure 6. These solutions looks quite different from
the ones that origins from a smooth region found in Figure 2. The local contribution has
a constant sign which indicates a constant signed error in the Galerkin solution. In Figure
7 we study the error compared to a reference solution of the standard Galerkin solution
and the solutions after one and two iterations. The Galerkin solution has large errors in
the singularities and that the error is positive. We see that the local problems decreases
the error in each iteration.

Example 2. In this example we use a simple geometry, the unit square, but we let the
coefficient a oscillate rapidly according to Figure 8. We calculate a reference solution on
the fine space and compare it to standard Galerkin calculated using quadrature on the
coarse mesh with and without solving local problems. We see that standard Galerkin on
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Figure 6: Localized solution Uf,i to the fine scale equations in a rough region using one,
two, three layer stars, and the entire domain.
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Figure 7: The error in the Galerkin solution (left), after one step in the adaptive algorithm
(middle), and after two steps (right).
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Figure 8: The coefficient is discontinuous with the values a = 1 on the white areas and
a = 0.05 on the dark areas.
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Figure 9: Reference solution (left), standard Galerkin on coarse mesh (middle), and solu-
tion with local problems using two layer stars (right).
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Figure 10: Error for standard Galerkin (left) and for the solution with local problems using
two layer stars (right).

a coarse mesh performs badly for this problem, Figure 9. This is not surprising. From
equation (4.1) we see that we have no control of the error what so ever when using Galerkin
on a coarse mesh. The solution calculated using two layer stars other hand gives a very
nice improvement of the solution. The magnitude is now correct and if we study the error
between this solution and the reference solution we get a ten times smaller error, see Figure
10. The coarse mesh is aligned to the oscillations in a so this nice solution can be calculated
by solving extremely few small localized problems to very low cost.

As mentioned before calculating a modified stiffness matrix rather than using an it-
erative approach is very efficient in the periodic setting. To understand the method it is
interesting to know how the method actually modifies the stiffness matrix. We do this by
studying the spectrum of the resulting matrix A+T for different number of layers in Figure
11. We study the twenty lowest and most significant eigenvalues. The first thing we note
is that the eigenvalues of A + T always is smaller than the ones of A. This is natural since
the discretization increases eigenvalues of the operator. We also see that already after two
layers we get very nice agreement with the correct spectrum we like to approximate.

Our experience form using this method is that one layer stars almost never is enough to
get good accuracy but already two layer stars gives very nice improvement of the Galerkin
solution.
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