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STABILIZED LAGRANGE MULTIPLIER METHODS FOR ELASTIC

CONTACT WITH FRICTION

PER HEINTZ AND PETER HANSBO

Abstract. In most finite element (FE) codes contact is checked only at the nodes, corre-
sponding to the use of pointwise constraints. However, this approach might not be stable
in case the bodies coming into contact have non-matching grids at the contact interface.
To alleviate this problem, we propose a stabilized Lagrange multiplier method, based on
a global polynomial multiplier, for the finite element solution of (non)linear elastic con-
tact problems with non-matching grids. In particular, our approach allows us to avoid
integrating products of different finite element basis functions on the surface meshes at
the contact zone.

1. Introduction

One basic question in contact problems involving non-matching grids is how to handle the
quadrature problem on the contact interface. The Lagrange multiplier space is, typically,
defined as piecewise polynomials on one side of the bodies that are coming into contact.
Thus, it is necessary to integrate basis functions defined on two different surface grids
which leads to an expensive search problem in locating quadrature points on the boundary
of the neighboring grid. Another issue is the number of degrees of freedom in the discrete
Lagrange multiplier space. If too many constraints are used, the discrete system might be
singular. On the other hand, if there are too few constraints, there might be unphysical
violation of the non-penetration condition. There are, basically, two different possibilities
to obtain a stable discretization. The first approach is to choose discrete spaces that fulfill
the inf–sup condition which guarantees stability (cf. [7]). A well-known example of such
a scheme is the mortar method (which can be given a Lagrange multiplier interpretation),
see [4]. A drawback of the mortar method is that the end points of the contact zone (in two
dimensions) should match, i.e., be nodes on both meshes. The other option is to change
the bilinear form in such a way that stability is ensured, and this is the approach taken in
this paper.

We extend the stabilized Lagrange multiplier method based on a global polynomial dis-
cretization of the multiplier space introduced by Hansbo, Lovadina, Perugia, and Sangalli
[10] to the case of elastic contact, focusing on a symmetric formulation. Unlike previous

Date: November 23, 2004.
Key words and phrases. Lagrange multiplier, stabilization, contact, friction.
Department of Applied Mechanics, Chalmers University of Technology, S–412 96 Göteborg, Sweden,
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2 PER HEINTZ AND PETER HANSBO

stabilization methods proposed in the literature, e.g., [5, 8], as well as the mortar method,
we avoid the integration of products of finite element basis functions on the different surface
meshes.

Although the subsequent material is focused on contact mechanics, a similar approach
could be used for more general interface problems where we do not want to enforce matching
grids at the interface. The rest of the paper is organized as follows. First, we describe the
proposed method. Secondly, we make some comments on the discretization and finally, we
present some numerical results.

2. Problem formulation

Let Ωi, i = 1, 2, be two bounded domains in R
d, d = 2, 3, with boundary Γi = ΓD

i ∪
ΓN

i ∪ ΓC. We consider the case where the domains are subjected to proper Dirichlet and
Neumann boundary conditions and are coming into frictionless contact along an interface
ΓC. Thus, we want to solve the problem

(2.1)

−∇ · σi
T = f i in Ωi,

ui = gi on ΓD
i ,

σi · ni = ti on ΓN
i ,

JuK · n = 0 on ΓC,
Jσ · nK · n = 0 on ΓC,

σi =
E

1 + ν
ε(ui) +

νE

(1 + ν)(1− 2ν)
∇ · uiI,



































where f i , gi and ti are the body load, prescribed displacements and tractions respectively.
ε(u) is the (small) strain tensor with components ε(u) = 1

2
(u⊗∇+∇⊗ u), where (w⊗

v)ij = wivj, E is the modulus of elasticity, ν is Poisson’s ratio, and I is the identity
tensor. We shall assume that E and ν are constant in each domain, but possibly different
between domains. The extension to varying material parameters does not present any
serious difficulties. Concerning the interface conditions, J·K := (·1 − ·2) denotes the jump
in the argument across the interface where n := n1 = −n2 is the outward pointing normal
on the boundary of Ω1 (master surface). The relation JuK · n = 0 corresponds to the non-
penetration condition and Jσ · nK · n = 0 corresponds to equilibrium in normal traction
across the interface. In the following, we shall use the notation σn := n · σ · n for the
normal stress on ΓC.

We shall in the following assume that the contact zone ΓC is known. The method for
the case of varying contact zone follows easily and is explained in the section on imple-
mentation.

A weak form of (2.1), using the Lagrange multiplier method, can be formulated as
follows: find

u ∈ ~Vg := {vi : vi ∈
[

H1(Ωi)
]d

,vi = gi on ΓD
i }

and λ ∈ H−1/2(ΓC) such that

B(u, λ,v) = L(v) ∀v ∈ ~V0(2.2)

C(u, µ) = 0 ∀µ ∈ H−1/2(ΓC)(2.3)
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where

B(u, λ,v) =
∑

i

(
∫

Ωi

σ(ui) : ε(vi) dx

)

+

∫

ΓC

λ Jv · nK ds,

L(v) =
∑

i

(
∫

Ωi

f i · vi dx

)

+
∑

i

∫

ΓN
i

ti · vi ds,

and

C(u, µ) =

∫

ΓC

Ju · nKµ ds.

This formulation forms the starting point for our finite element approximation.

3. Finite element methods

Assume that we are given triangular meshes T h
i of the domains Ωi, i = 1, 2. We denote

by hi the meshsize of T h
i . Obviously, T h = T h

1 ∪T h
2 provides a mesh for Ω, whose mesh-size

is h = max{h1, h2}. We introduce the (family of) finite element spaces

~V h
g = {vi : vi ∈

[

H1(Ωi)
]d

, : vi|K ∈ [P k(K)]d, ∀K ∈ T h, vi = πhg on ΓD
i },

where P k(K) denotes the space of polynomials of degree at most k on K, with k ≥ 1 and πh

is the nodal interpolant. On ΓC we introduce a family of spaces Λp of discrete multipliers.
As a particular case, we will consider the space Λp of global polynomials defined as follows:
the interface ΓC is decomposed as the union Γ =

⋃

ΓC
j of nΓC straight lines ΓC

j of length `j;

we associate with each ΓC
j the non-negative integer pj and define p := [p1, . . . , pn

ΓC
]; then

our particular choice is

(3.1) Λp = {µ ∈ Λ : µ|ΓC
j
∈ P pj(ΓC

j ), j = 1, . . . , nΓC},

with P pj(ΓC
j ) denoting the space of polynomials of degree at most pj on ΓC

j with respect
to a local coordinate. In this particular case the elements of Λp can be discontinuous at
the endpoints of the ΓC

j ’s.
Now, when using stable Lagrange multiplier methods with locally defined multipliers on

one of the trace meshes (or associated projections, cf. [4]), as well as when using most
stabilized methods (e.g., [8, 5]) there still remains the practical problem of how to evaluate
integrals of the type

∫

ΓC

vi · n µ ds,(3.2)

where the discrete space for vi and µ are defined on different grids. If quadrature is used,
we have an expensive search problem in locating elements on one side of the interface
containing quadrature points on the other side of the interface. Using globally defined
polynomials allows us to take an alternative route that simplifies the implementation.
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3.1. An inconsistent penalty method. In order to handle the quadrature on the in-
terface, we consider first a perturbed Lagrangian method and seek uh ∈ ~V h

g and λp ∈ Λp

such that

B(uh, λp,v) = L(v) ∀v ∈ ~V 0
h(3.3)

CP(uh, µ) = 0 ∀µ ∈ Λp(3.4)

where

CP(u, µ) :=

∫

ΓC

Ju · nKµ ds−
∫

ΓC

1

γ
λµ ds.

Now, as γ → ∞ this will coincide with a standard Lagrange multiplier method which
requires balancing between the discrete spaces for λ and u which have to fulfill a BB condi-
tion. It is possible to let γ = Ch−α such that the problem of balancing the discrete spaces
is alleviated, see Barret and Elliot [6]. Furthermore, the product of basis functions and
global polynomials can (at least for simplicial elements) easily be integrated exactly. How-
ever, for optimal convergence, the number α must be tied to the polynomial approximation
used in ~V h, affecting the condition number of the resulting system matrix.

3.2. Consistent methods. In [8], Becker, Hansbo and Stenberg extended the classical
method of Nitsche [11] for handling Dirichlet boundary conditions to include domain de-
composition with non-matching grids. The problem of having to integrate products of
functions on one side of the interface with functions on the other is present also in their
method. However, Nitsche-type methods are consistent and thus optimally convergent
with a mesh dependent penalty parameter of O(h−1). We wish to retain the optimality
of convergence with a fixed penalty–like parameter while removing the need to integrate
products of functions on unrelated meshes. Using the notation

(3.5) {u} := αu1 + (1− α)u2, α ∈ [0, 1] ,

we therefore propose the following method: find uh ∈ ~V h
g and λp ∈ Λp such that

B(uh, λp,v) = L(v) ∀v ∈ ~V h
0(3.6)

CC(uh, µ) = 0 ∀µ ∈ Λp(3.7)

where

CC(u, µ) :=

∫

ΓC

Ju · nKµ ds−
∫

ΓC

1

γ
{σn(u)}µ ds−

∫

ΓC

1

γ
λµ ds.

This is a consistent method: the Galerkin orthogonality gives, since formally λ =
−σn(u), that

B(u− uh, λ− λp,v) = 0 ∀v ∈ ~V h
0

CC(u− uh, µ) = 0 ∀µ ∈ P k(ΓC)

The resulting matrix system will however not be symmetric. In order to restore symmetry,
we follow [10] and add further interface terms. We seek uh ∈ ~Vg and λp ∈ Λp such that
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BS(u
h, λp,v) = L(v) ∀v ∈ ~V h

0(3.8)

CC(uh, µ) = 0 ∀µ ∈ Λp(3.9)

where

BS(u, λ,v) :=
∑

i

(
∫

Ωi

σ(ui) : ε(vi) dx

)

+

∫

ΓC

λ Jv · nK ds

−
∫

ΓC

1

γ
λ{σn(v)} ds−

∫

ΓC

1

γ
{σn(u)}{σn(v)} ds.

Note that as long as α = 0 or α = 1, the integration of cross terms on the interface is still
avoided.

4. Stability of the consistent symmetric method

In this section, we will show that our method is stable for any combination of approx-
imating spaces ~V h and Λp, on condition that γ is chosen appropriately. For simplicity,
we will assume that gi = 0 and that ΓD

i has nonzero measure for i = 1, 2, so that Korn’s
inequality holds. The problem of “floaters”, e.g., Ω1 enclosed by Ω2 or vice versa, can be
dealt with following [10]. For definiteness, we assume that α = 1 in the following, and thus
we have {σn(u)} = σn(u1). We define the mesh-dependent parameter γ as follows. Set
κ := E/(1− 2ν) and define

γ := γ0 κ1h
−1
K1

,

with γ0 constant independent on the mesh-size and the material properties, to be further
specified below. For simplicity, we will also assume that the meshsize h := hK1

is constant
on the surface mesh of Ω1.

As a shorthand notation, we define

Bh(u, λ; v, µ) :=
∑

i

∫

Ωi

σ(ui) : ε(vi) dx +

∫

ΓC

λ Jv · nK ds−
∫

ΓC

Ju · nKµ ds

+

∫

ΓC

1

γ
{σn(u)}µ ds +

∫

ΓC

1

γ
λµ ds

−
∫

ΓC

1

γ
λ{σn(v)} ds−

∫

ΓC

1

γ
{σn(u)}{σn(v)} ds,

and we have the following consistency relation:

(4.1) Bh(u− uh, λ− λp; v, µ) = 0,

for all v ∈ ~V h
0 and µ ∈ Λp.

Introducing the norms

‖u‖B :=

(

∑

i

∫

Ωi

σ(ui) : ε(ui) dx

)1/2
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and

9(u, λ)9 :=

(

‖u‖2B +

∫

ΓC

1

γ
λ2 ds

)1/2

,

we can also show coercivity of the discrete problem with respect to 9 · 9, in the following
sense.
PROPOSITION There holds the inf-sup condition

(4.2) sup
(v,µ)∈~V h

0
×Λp

Bh(uh, λp; v, µ)

9(v, µ)9
≥ C 9 (uh, λp)9, ∀(uh, λp) ∈ ~V h

0 × Λp,

for some C independent of the meshsize.
PROOF The proof follows the lines of [10] where the corresponding result for the unsym-
metric method applied to Poisson’s equation was shown. We make the particular choice
v = uh and µ = µ1 + δµ2, with µ1 = λp and µ2 = −h−1πpJu

h · nK, where πp is the
L2(Γ

C)–projection operator onto Λp and δ is a free positive parameter to be determined.
Then we have

Bh(uh, λp; v, µ1) = ‖uh‖2B − ‖γ−1/2{σn(uh)}‖2L2(ΓC) + ‖γ−1/2λp‖2L2(ΓC),

and by the inverse inequality (see [9])

(4.3) ‖κ−1/2
1 h1/2σn(w1)‖2L2(ΓC) ≤ CI‖w‖2B, ∀w ∈ ~V h

0 ,

we obtain, provided that γ0 > CI ,

(4.4) Bh(uh, λp; v, µ1) ≥ C 9 (uh, λp)92

where C depends on γ0 and CI but is independent of the mesh-size.
Next, we see that

Bh(uh, λp; 0, µ2) =

∫

ΓC

Juh · nK

h
πpJu

h · nK ds−
∫

ΓC

{σn(uh)}
γ h

πpJu
h · nK ds

−
∫

ΓC

λp

γ h
πpJu

h · nK ds

= ‖h−1/2πpJu
h · nK‖2L2(ΓC) −

∫

ΓC

{σn(uh)}
γ h

πpJu
h · nK ds

−
∫

ΓC

λp

γ h
πpJu

h · nK ds.

Since
∫

ΓC

{σn(uh)}
γ h

πpJu
h · nK ds ≤ ‖κ

−1/2
1 h1/2{σn(uh)}‖L2(ΓC)

γ0κ
1/2
1

‖h−1/2πpJu
h · nK‖L2(ΓC)

and
∫

ΓC

λp

γ h
πpJu

h · nK ds ≤ ‖γ
−1/2λp‖L2(ΓC)

γ
1/2
0 κ

1/2
1

‖h−1/2πpJu
h · nK‖L2(ΓC)
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we can use the arithmetic-geometric mean inequality for the last two integrals, followed by
the inverse inequality (4.3), to obtain

(4.5)
Bh(uh, λp; 0, µ2) ≥

1

2
‖h−1/2πpJu

h · nK‖2L2(ΓC) −
CI

κ1γ2
0

‖uh‖2B

− 1

κ1γ0

‖γ−1/2λp‖2L2(ΓC).

By adding together (4.4) and (4.5) multiplied by δ, taking δ small enough, we obtain

Bh(uh, λp; v, µ) ≥ c
(

9(uh, λp) 92 +‖h−1/2πpJu
h · nK‖2L2(ΓC)

)

,

with a positive constant c only depending on κ1, CI , and γ0, therefore independent of the
mesh-size. Consequently,

(4.6) Bh(uh, λp; v, µ) ≥ C0 9 (uh, λp) 92 .

Finally, by a trace inequality and Korn’s inequality,

‖πpJu
h · nK‖L2(ΓC) ≤ C‖uh‖B,

with C depending on Ωi, i = 1, 2, so that

(4.7) 9(v, µ)9 = 9(uh, λp − h−1πpJu
h · nK)9 ≤ C1 9 (uh, λp) 9 .

Thus, from (4.6) and (4.7),

Bh(uh, λp; v, µ)

9(v, µ)9
≥ C0

C1

9 (uh, λp)9

which proves the proposition.
We refer to [10] for convergence proofs, using the stability and consistency, in a setting
similar to ours.

5. Incorporating a Coulomb friction law

We will also give some details about our implementation of a simple Coulomb friction
law in the present setting.

Consider the tangential stress vector σt := σ · n − σnn. A simple friction model, cf.
Wriggers [13], is to define the elastic zone (of no slip) as

E = {σt : ‖σt‖ − µσn < 0} ,

where ‖ · ‖ is the Euclidean vector norm and µ is the friction coefficient, assumed known
and constant. When ‖σt‖ = µσn, we have slip and the magnitude of the tangential stress
vector is given implicitly. Thus, in a nonlinear iteration scheme, we can use the simple
approach of scaling the tangential stress. Splitting the contact boundary into a slip part,
ΓC

S , and a no-slip part, ΓC
N, so that ΓC = ΓC

S ∪ ΓC
N and ΓC

S ∩ ΓC
N = ∅, and introducing a

vector-valued multiplier, we seek uh ∈ ~V h
g and λp ∈ [Λp]d such that
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∑

i

(
∫

Ωi

σ(uh
i ) : ε(vi) dx

)

+

∫

ΓC

N

λp · JvK ds−
∫

ΓC

N

1

γ
λp · {n · σ(v)} ds

−
∫

ΓC

N

1

γ
{n · σ(uh)}{n · σ(v)} ds +

∫

ΓC

S

n · λpJn · vK ds−
∫

ΓC

S

1

γ
n · λp{σn(v)} ds

−
∫

ΓC

S

1

γ
{σn(uh)}{σn(v)} ds = L(v) +

∫

ΓC

S

t∗ · J(I − n⊗ n)vK ds

for all v ∈ ~V h
0 , and

∫

ΓC

N

JuhK · µ ds−
∫

ΓC

N

1

γ
{n · σ(uh)} · µ ds−

∫

ΓC

N

1

γ
λp · µ ds

+

∫

ΓC

S

Jn · uhKn · µ ds−
∫

ΓC

S

1

γ
{σn(uh)}n · µ ds−

∫

ΓC

S

1

γ
n · λpn · µ ds = 0

for all µ ∈ [Λp]d. Defining the discrete tangential and normal stresses as

σ
p
t := −(I − n⊗ n)λp, σp

n := −n · λp,

we denote by t∗the closest point projection of the (trial) stress onto the surface

∂E
p = {σp

t : ‖σp
t‖ − µσp

n = 0} .

6. Discretization - Implementation

In order to achieve as good accuracy as possible for a given grid, the number of Lagrange
multipliers should, in general, be of the order max number of nodes on one side of the
interface (if the solution is smooth enough, it was however shown in [10] that the number
of multipliers can be chosen significantly smaller). With stabilization one can use even
more multipliers, but the method then becomes unnecessarily expensive.

An advantage of the present method, using global polynomials for λ, is that the number
of active Lagrange multipliers is constant between each iteration. It is not necessary to
add or remove rows and columns in the system matrix in case the contact zone shrinks or
expands over element boundaries.

We also remark that it is possible to decouple the equation system such that it can be
solved in parallel, as in [12].

6.1. The symmetric and consistent coefficient matrix - with and without fric-

tion. The discrete coefficient matrix for the symmetric, consistent method with or without
friction will have the following structure





B1 + α2S11 α(1− α)S12 C1 + αS1

α(1− α)S21 B2 + (1− α)2S22 C2 + (1− α)S2

CT
1 + αST

1 CT
2 + (1− α)ST

2 S









u1

u2

Λ



 ,(6.1)

where the subscript refers to the involved bodies in the integrands. In particular, if we
choose α = 0 or α = 1, i.e., the corresponding terms are evaluated on one side of the
interface, we do not have to integrate basis functions defined on different sides of the



RUNNING TITLE 9

interface. In (6.1), for the non-friction case, the submatrices correspond to the terms in
the weak formulation as follows.

Bi ←→
∫

Ωi

σ(uh
i ) : ε(vi) dx(6.2)

Ci ←→
∫

ΓC

λp vi · n ds, CT
i ←→

∫

ΓC

uh
i · nµ ds(6.3)

S ←→
∫

ΓC

1

γ
λpµ ds(6.4)

Si ←→
∫

ΓC

1

γ
λpσn(vi) ds, ST

i ←→
∫

ΓC

1

γ
σn(uh

i )µ ds(6.5)

Sij ←→
∫

ΓC

1

γ
σn(uh

i ) · σn(vj) ds.(6.6)

Incorporating the Coulomb friction formulation, using vector valued multipliers, the con-
tact zone will be subdivided into a stick region, ΓC

S , and a non-stick region, ΓC
N, and the

matrices will correspond to the weak terms as follows.

Bi ←→
∫

Ωi

σ(uh
i ) : ε(vi) dx(6.7)

Ci ←→
∫

ΓC

S

λp · vi ds +

∫

ΓC

N

(λp · n)(vi · n) ds(6.8)

CT
i ←→

∫

ΓC

S

uh
i · µ ds +

∫

ΓC

N

(uh
i · n)(µ · n) ds(6.9)

S ←→
∫

ΓC

S

1

γ
λp · µ ds +

∫

ΓC

N

1

γ
(λp · n)(µ · n) ds(6.10)

Si ←→
∫

ΓC

S

1

γ
λp · (σ(vi) · n) ds +

∫

ΓC

N

1

γ
(λp · n)σn(vi) ds(6.11)

ST
i ←→

∫

ΓC

S

1

γ
(σ(uh

i ) · n) · µ ds +

∫

ΓC

N

1

γ
σn(uh

i )(µ · n) ds(6.12)

Sij ←→
∫

ΓC

S

1

γ
(σ(uh

i ) · n) · (σ(vj) · n) ds.(6.13)

The actual stick-slip region must be checked in the solution process in such a way that new
integration limits ΓC

S (and ΓC
N) are set up in each iteration step in case the magnitude of

the tangential traction in the stick region exceeds µσn.

7. Numerical examples

7.1. Hertz contact - no friction - global and local multipliers. In this section we
solve the contact problem of two bodies, a cylinder and a plane, that are coming into
frictionless contact due to a compressive force P = 100 per unit length, see Figure 1. The
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width of the contact zone b and the distribution of the normal traction σn due to P are
given by the Hertz theory [1]

σn(x) = σmax
n

√

1−
(x

b

)2

,(7.1)

where

b = 1.52

√

PR

E
,(7.2)

and

σmax
n = 0.418

√

PE

R
,(7.3)

where x is measured from the in-plane symmetry line. R is the radius of the cylinder and
E is the constant elastic modulus of both bodies where R = 1 and E = 7000. Equations
(7.2) and (7.3) are valid in the case ν = 0.3 for both bodies.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

Figure 1. Hertz contact - Cylinder and a plane.

As to the support of the multiplier space, we let the global polynomials be defined on the
surface of the plane within the zone −a ≤ x ≤ a with a = 0.2. We have, as in [10], used
global Legendre polynomials to avoid ill-conditioning of the polynomial approximation.
Using global polynomials, the number of active multipliers is determined in advance and
we do not change the coefficient matrix within the iteration. For the local multipliers we
use piecewise constant multipliers defined on the surface of the plane.
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7.2. The Cattaneo-Mindlin problem - partial slip - local multipliers. The method
of solution to the problem of partial slip was first introduced by Cattaneo [2] and later
also considered by Mindlin in [3]. Referring to Figure 3, two half cylinders are coming into
contact by a compressive normal force P =

∫

p(x) ds per unit length, to which a tangential
force Q =

∫

q(x) ds is subsequently applied. The width of the contact zone b and the
pressure distribution due to P are given by the Hertz theory [1]

b =
P (k1 + k2)R1R2

R1 + R2
(7.4)

σn(x) = σmax
n

√

1−
(x

b

)2

(7.5)

where R1 and R2 are the radii of the cylinders and k1 and k2 are material parameters
defined by

ki =
1− ν2

i

πEi

.(7.6)

and

σmax
n =

√

P (R1 + R2)

π2(k1 − k2)R1R2

.(7.7)

Both cylinders are of isotropic linear elastic material with modulus E = 7000, poisons
ratio v = 0.3 and the Coulomb friction coefficient is µ = 0.2. The radii of both cylinders
are R = 1. As to the boundary conditions, the upper cylinder is subjected to a constant
traction vector t with components t = (p, q) = (50, 5).

Keeping p constant, and increasing q from zero, micro-slip evolves starting from the
edges of the contact zone. The contact zone is thus divided into a stick part −c ≤ x ≤ c
and two areas of slip c ≤ |x| ≤ b. The size of the stick region is given by

c = b

(

1− Q

µP

)1/2

.(7.8)

Within the contact zone, we have the following expressions for the tangential traction

σt(x) =
µσmax

n

b

(√
b2 − x2 −

√
c2 − x2

)

(7.9)

which is everywhere below the maximum tangential traction µσn. In Figure 4 the numerical
solution is plotted against the analytical expressions given by eq.(7.5) and (7.9). The
maximal tangential traction force σt(x) = µσn(x) is also plotted in the figure.
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7.3. Conclusions and further development. In this paper, a new stabilized Lagrange
multiplier method for elastic contact with Coulomb friction was presented. In the non-
frictional case, the method has been proved to be stable independently of the discretization
of the bodies that are coming into contact. Finally two examples that illustrates the
performance of the method was presented. Further development would be to consider large
deformations with inelastic material behavior and to incorporate an adaptive algorithm.
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