

PREPRINT 2005-01

A posteriori error estimates for mixed finite element approximations of elliptic problems

Mats G. Larson and Axel Målqvist

Chalmers Finite Element Center CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg Sweden 2005

CHALMERS FINITE ELEMENT CENTER

Preprint 2005–01

A posteriori error estimates for mixed finite element approximations of elliptic problems

Mats G. Larson and Axel Målqvist

CHALMERS

Chalmers Finite Element Center Chalmers University of Technology SE–412 96 Göteborg Sweden Göteborg, January 2005 A posteriori error estimates for mixed finite element approximations of elliptic problems

Mats G. Larson and Axel Målqvist NO 2005–01 ISSN 1404–4382

Chalmers Finite Element Center Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: +46 (0)31 772 1000 Fax: +46 (0)31 772 3595 www.phi.chalmers.se

Printed in Sweden Chalmers University of Technology Göteborg, Sweden 2005

A posteriori error estimates for mixed finite element approximations of elliptic problems

Mats G. Larson^{*} and Axel Målqvist[†]

January 25, 2005

Abstract

We derive residual based a posteriori error estimates of the L^2 -norm of the error in the flux for a general class of mixed methods for elliptic problem. The estimate is applicable to standard mixed methods such as the Raviart-Thomas-Nedelec and Taylor-Hood elements, as well as stabilized methods such as the Galerkin-Least squares method. The element residual in the estimate employs an elementwise computable postprocessed approximation of the pressure which gives optimal order.

1 Introduction

The Model Problem. We consider the mixed formulation of the Poisson equation with Neumann boundary conditions:

$$\begin{cases} \boldsymbol{\sigma} - \nabla u = 0 & \text{in } \Omega, \\ -\nabla \cdot \boldsymbol{\sigma} = f & \text{in } \Omega, \\ \boldsymbol{n} \cdot \boldsymbol{\sigma} = 0 & \text{on } \Gamma, \end{cases}$$
(1.1)

Here Ω is a polygonal domain in \mathbf{R}^n with boundary Γ . Assuming that $\int_{\Omega} f \, dx = 0$, we get a well posed problem with a solution $u \in H^1(\Omega)/\mathbf{R}$ and $\boldsymbol{\sigma} \in \mathbf{V} = \{ \boldsymbol{v} \in H(\operatorname{div}; \Omega) : \boldsymbol{n} \cdot \boldsymbol{v} = 0 \text{ on } \Gamma \}$. See [9] for definitions of these function spaces.

Previous Work. Several works present a posteriori error estimates for mixed methods. In Carstensen [10] an error estimate in the $H(\text{div}; \Omega)$ norm of the flux is presented. The $H(\text{div}; \Omega)$ norm may be dominated by the div-part which is also directly computable. When it comes to error estimates in the of the flux in the L^2 norm of methods using richer

^{*}Corresponding author, Department of Mathematics, Umeå University, S-901 87 Umeå, mgl@math.chalmers.se.

[†]Department of Mathematics, Chalmers University of Technology, S-412 96 Göteborg, axel@math.chalmers.se.

spaces for the flux $\boldsymbol{\sigma}$ than the displacement u, such as Raviart-Thomas-Nedelec (RTN) elements, there are known difficulties. Braess and Verfürth presents a suboptimal estimate in [4]. The reason for the suboptimality is that the natural residual that arises from the first equation $\boldsymbol{\sigma} - \nabla u = 0$ in problem (1.1) may be large if the flux space is richer than the displacement space. In a recent paper Lovadina and Stenberg [13] derive an a posteriori error estimate of the L^2 -norm of the flux for the RTN based methods which employs a particular postprocessed approximation of U. The proof is based on a posteriori error analysis of an equivalent method which involves the postprocessed approximation of U.

New Contributions. We derive a general a posteriori of the energy norm which is applicable to most mixed methods including the classical inf-sup stable elements, Raviart-Thomas elements, the BDM-elements and the Taylor-Hood. Our estimate is closely related to the estimate presented by Lovadina and Stenberg [13], however, our proof is more general and also reveals the fact that one can use any piecewise polynomial approximation of the pressure when computing the residual. By a small adjustment of the argument we finally, derive an estimate for the stabilized mixed method of Masud and Hughes [14]. The same technique applies to other stabilized schemes, for instance the Galerkin least squares method.

Outline. We start by presenting finite elements and the discrete version of equation (1.1) in Section 2 then we present the a posteriori error estimates in Section 3.

2 Weak Formulation and the Finite Element Method

Weak Formulation. We multiply the first equation in (1.1) by a test function $v \in V$ and integrate by parts. The second equation in (1.1) is multiplied by a test function $w \in W = L^2(\Omega)$. The weak form reads: find $\sigma \in V$ and $u \in W$ such that,

$$\begin{cases} (\boldsymbol{\sigma}, \boldsymbol{v}) + (u, \nabla \cdot \boldsymbol{v}) = 0 & \text{for all } \boldsymbol{v} \in \boldsymbol{V}, \\ (-\nabla \cdot \boldsymbol{\sigma}, w) = (f, w) & \text{for all } w \in W. \end{cases}$$
(2.1)

Our aim is to derive a posteriori error estimates of finite element approximations $\{\Sigma, U\}$ of the exact solution $\{\sigma, u\}$ in the energy norm $\|\sigma - \Sigma\|_0$, here $\|\cdot\|_0$ denotes the $L^2(\Omega)$ norm.

The Mixed Finite Element Method. We let $\mathcal{K} = \{K\}$ be a partition of Ω into shape regular elements of diameter h_K and define the mesh function, $h(x) : \Omega \to \mathbb{R}^+$, by letting $h(x) = h_K$ for $x \in K$.

We seek an approximate solution in discrete spaces $\mathbf{V}_h \subset \mathbf{V}$ and $W_h \subset W$ defined on the partition \mathcal{K} . It is well known that for finite element methods based on the standard weak form (2.1) the discrete spaces must be chosen so that the inf-sup condition, see [9], is satisfied in order to guarantee a stable method. Only rather special constructions of the discrete spaces yield stable methods. In Section 3.3 we consider a stabilized mixed finite element method based on a modified weak formulation which can be based on standard continuous piecewise polynomials. We summarize some of the most well known choices of stable discrete spaces on triangles and tetrahedra for a given integer $k \ge 1$:

- Raviart-Thomas-Nedelec (RTN) elements, see [16, 15], $\boldsymbol{V}_h = \{ \boldsymbol{v} \in H(\operatorname{div}; \Omega) : \boldsymbol{v}|_K \in [P_{k-1}(K)]^n \oplus \boldsymbol{x}\tilde{P}_{k-1}(K) \text{ for all } K \in \mathcal{K} \},$ $W_h = \{ w \in L^2(\Omega) : w|_K \in P_{k-1}(K) \text{ for all } K \in \mathcal{K} \}.$
- Brezzi-Douglas-Marini (BDM) elements, see [8, 7], $\boldsymbol{V}_h = \{ \boldsymbol{v} \in H(\operatorname{div}; \Omega) : \boldsymbol{v}|_K \in [P_k(K)]^n \text{ for all } K \in \mathcal{K} \},$ $W_h = \{ w \in L^2(\Omega) : w|_K \in P_{k-1}(K) \text{ for all } K \in \mathcal{K} \}.$
- Taylor-Hood (TH), see [12], $\boldsymbol{V}_h = \{ \boldsymbol{v} \in C(\Omega) : \boldsymbol{v}|_K \in [P_{k+1}(K)]^n \text{ for all } K \in \mathcal{K} \},$ $W_h = \{ w \in C(\Omega) : w|_K \in P_k(K) \text{ for all } K \in \mathcal{K} \}.$

For a more complete account of inf-sup stable spaces we refer to Brezzi-Fortin, [9]. Here $C(\Omega)$ denotes the space of continuous functions on Ω , $P_k(K)$ the space of polynomials of degree k on element K, and $\tilde{P}_k(K)$ the set of homogeneous polynomials of degree k. The norms used in this paper are standard Sobolev norms following the notation, $\|\cdot\|_{s,\omega} = \|\cdot\|_{H^s(\omega)} = \|\cdot\|_{W_2^s(\omega)}$, see [1].

The mixed finite element method reads: find $\Sigma \in V_h$ and $U \in W_h$ such that:

$$\begin{cases} (\boldsymbol{\Sigma}, \mathbf{v}) + (U, \nabla \cdot \mathbf{v}) = 0 & \text{for all } \boldsymbol{v} \in \boldsymbol{V}_h, \\ (-\nabla \cdot \boldsymbol{\Sigma}, w) = (f, w) & \text{for all } w \in W_h. \end{cases}$$
(2.2)

3 A Posteriori Error Estimates

3.1 Estimate for Standard Mixed Methods

Here we present a general a posteriori estimate of the energy norm error $\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0$ involving a piecewise polynomial function Q, which may be obtained by postprocessing of U. The possibility to replace U by Q is important since it leads to a posteriori error estimates of optimal order. We are not interested in tracking the constants in the error estimates.

Theorem 3.1 It holds

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} \leq C \sum_{K \in \mathcal{K}} \left(h_{K}^{2} \| f + \nabla \cdot \boldsymbol{\Sigma} \|_{0,K}^{2} + \|\boldsymbol{\Sigma} - \nabla Q\|_{0,K}^{2} + h_{K}^{-1} \| \left[Q \right] \|_{0,\partial K}^{2} \right), \quad (3.1)$$

for arbitrary $Q \in \bigoplus_{K \in \mathcal{K}} P_l(K)$, with $l \geq 0$. The jump denoted $[\cdot]$ is the difference in function value over an face in the mesh.

Proof. Starting with the left hand side we have

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0^2 = (\boldsymbol{\sigma} - \boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})$$
(3.2)

$$= (\boldsymbol{\sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma}) - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})$$
(3.3)

$$= -(u, \nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})) - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})$$
(3.4)

$$= -(u - Q, \nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})) + (Q, -\nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})) - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})$$
(3.5)

$$= (u - Q, f + \nabla \cdot \Sigma) + \sum_{K \in \mathcal{K}} \left((Q, -\nabla \cdot (\boldsymbol{\sigma} - \Sigma))_K - (\Sigma, \boldsymbol{\sigma} - \Sigma)_K \right)$$
(3.6)

$$=I+II.$$
(3.7)

We treat the two terms in equation (3.7) separately, beginning with I. From the second part of equation (2.2) we have the Galerkin orthogonality property $(f + \nabla \cdot \Sigma, w) = 0$ for all $w \in W_h$. We let P_h denote the standard L^2 -projection from W to W_h and proceed with the estimates as follows

$$I \le |(f + \nabla \cdot \Sigma, u - Q)| \tag{3.8}$$

$$\leq \|h(f + \nabla \cdot \Sigma)\|_0 \|h^{-1}(u - Q - P_h(u - Q))\|_0$$
(3.9)

$$\leq C \|h(f + \nabla \cdot \Sigma)\|_0 \|\nabla (u - Q)\|_0 \tag{3.10}$$

$$= C \|h(f + \nabla \cdot \Sigma)\|_0 \|\boldsymbol{\sigma} - \boldsymbol{\Sigma} + \boldsymbol{\Sigma} - \nabla Q\|_0$$
(3.11)

$$\leq \frac{3C^2}{2} \|h(f + \nabla \cdot \Sigma)\|_0^2 + \frac{1}{4} \|\boldsymbol{\sigma} - \Sigma\|_0^2 + \frac{1}{2} \|\boldsymbol{\Sigma} - \nabla Q\|_0^2.$$
(3.12)

We now turn to the second term II in equation (3.7) and begin by integration by parts,

$$II = \sum_{K \in \mathcal{K}} \left((Q, -\nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_K - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})_K \right)$$
(3.13)

$$=\sum_{K\in\mathcal{K}} \left((\nabla Q, \boldsymbol{\sigma} - \boldsymbol{\Sigma})_K - (Q, \boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_{\partial K} - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})_K \right)$$
(3.14)

$$= (\nabla Q - \Sigma, \boldsymbol{\sigma} - \Sigma) - \sum_{K \in \mathcal{K}} (Q, \boldsymbol{n} \cdot (\boldsymbol{\sigma} - \Sigma))_{\partial K}$$
(3.15)

$$\leq \|\nabla Q - \boldsymbol{\Sigma}\|_{0}^{2} + \frac{1}{4} \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} + \left|\sum_{K \in \mathcal{K}} (Q, \boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_{\partial K}\right|.$$
(3.16)

Using that $\mathbf{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})$ is continuous over element faces we can subtract an arbitrary function $v \in H^1(\Omega)$ in the term $\sum_{K \in \mathcal{K}} (Q, \mathbf{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_{\partial K} = \sum_{K \in \mathcal{K}} (Q - v, \mathbf{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_{\partial K}$. We then have the estimate

$$II \leq \|\nabla Q - \boldsymbol{\Sigma}\|_{0}^{2} + \frac{1}{4} \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} + \left|\inf_{v \in H^{1}(\Omega)} \sum_{K \in \mathcal{K}} (Q - v, \boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_{\partial K}\right|.$$
(3.17)

We now use the Cauchy-Schwartz inequality followed by the trace inequality

$$\|\boldsymbol{n}\cdot\boldsymbol{w}\|_{-1/2,\partial K} \le C(\|\boldsymbol{w}\|_{0,K} + h_K\|\nabla\cdot\boldsymbol{w}\|_{0,K}), \qquad (3.18)$$

see [11], to estimate the sum in equation (3.17) as follows

$$\inf_{v \in H^1(\Omega)} \sum_{K \in \mathcal{K}} (Q - v, \boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma}))_{\partial K}$$
(3.19)

$$\leq \inf_{v \in H^{1}(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2, \partial K} \|\boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})\|_{-1/2, \partial K}$$
(3.20)

$$\leq \inf_{v \in H^1(\Omega)} \left(\sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2 \right)^{1/2} \left(\sum_{K \in \mathcal{K}} \|\boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})\|_{-1/2,\partial K}^2 \right)^{1/2}$$
(3.21)

$$\leq C \inf_{v \in H^{1}(\Omega)} \left(\sum_{K \in \mathcal{K}} \|Q - v\|_{1/2, \partial K}^{2} \right)^{1/2} \left(\sum_{K \in \mathcal{K}} \left(\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0, K}^{2} + h_{K} \|\nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})\|_{0, K}^{2} \right) \right)^{1/2}$$
(3.22)

$$\leq C \inf_{v \in H^{1}(\Omega)} \left(\sum_{K \in \mathcal{K}} \|Q - v\|_{1/2, \partial K}^{2} \right)^{1/2} \left(\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} + \|h(f + \nabla \cdot \boldsymbol{\Sigma})\|_{0}^{2} \right)^{1/2}$$
(3.23)

$$\leq \frac{3C^2}{2} \inf_{v \in H^1(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2 + \frac{1}{4} \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0^2 + \frac{1}{2} \|h(f + \nabla \cdot \boldsymbol{\Sigma})\|_0^2.$$
(3.24)

Together equation (3.17) and equation (3.19-3.23) gives a bound for the second term, II, in equation (3.7),

$$II \le \|\nabla Q - \Sigma\|_0^2 + \frac{1}{2} \|\boldsymbol{\sigma} - \Sigma\|_0^2 + \frac{1}{2} \|h(f + \nabla \cdot \Sigma)\|_0^2 + \frac{3C^2}{2} \inf_{v \in H^1(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2.$$
(3.25)

We combine equation (3.8) and equation (3.25) to get,

$$I + II \le C \|\nabla Q - \mathbf{\Sigma}\|_{0}^{2} + \frac{3}{4} \|\boldsymbol{\sigma} - \mathbf{\Sigma}\|_{0}^{2} + C \|h(f + \nabla \cdot \mathbf{\Sigma})\|_{0}^{2} + C \inf_{v \in H^{1}(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2, \partial K}^{2}.$$
(3.26)

To estimate the last term on the right hand side in inequality equation (3.26) we employ the technique of Lemma 4 in [3]. For completeness we include the details of the proof. We let \mathcal{N} be the set of nodes in the mesh, $\{\phi\}_{i\in\mathcal{N}}$ piecewise linear base functions, $\omega_i = \operatorname{supp}(\phi_i)$, CP_i continuous piecewise polynomials on ω_i , and $CP = \bigoplus_{i\in\mathcal{N}} \phi_i CP_i \in H^1(\Omega)$.

 CP_i continuous piecewise polynomials on ω_i , and $CP = \bigoplus_{i \in \mathcal{N}} \phi_i CP_i \in H^1(\Omega)$. Using that $CP \subset H^1(\Omega)$ followed by the inverse inequality $\|Q - v\|_{1/2,\partial K}^2 \leq Ch_K^{-1} \|Q - v\|_{0,\partial K}^2$, which holds since both v and Q are piecewise polynomials, we get

$$\inf_{v \in H^1(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2 \le \inf_{v \in CP} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2 \le C \inf_{v \in CP} \sum_{K \in \mathcal{K}} h_K^{-1} \|Q - v\|_{0,\partial K}^2.$$
(3.27)

We write $v = \sum_{i \in \mathcal{N}} \phi_i v_i \in CP$ and proceed with the estimate as follows

$$||Q - v||_{0,\partial K}^2 = \sum_{i \in \mathcal{N}} (Q - v, \phi_i(v_i - Q))_{\partial K},$$
(3.28)

$$\leq \sum_{i \in \mathcal{N}} \|\phi_i^{1/2} (Q - v)\|_{0,\partial K} \|\phi_i^{1/2} (v_i - Q)\|_{0,\partial K},$$
(3.29)

$$\leq \|Q - v\|_{0,\partial K} \left(\sum_{i \in \mathcal{N}} \|\phi_i^{1/2} (v_i - Q)\|_{0,\partial K}^2 \right)^{1/2}, \qquad (3.30)$$

where we used that $\{\phi_i\}_{i\in\mathcal{N}}$ is a partition of unity. We have

$$\inf_{v \in H^1(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2 \le \inf_{v \in CP} \sum_{i \in \mathcal{N}} \sum_{K \in \mathcal{K}} h_K^{-1} \|\phi_i^{1/2}(v_i - Q)\|_{0,\partial K}^2.$$
(3.31)

Further the following bound holds,

$$\inf_{v_i \in CP_i} \sum_{K \in \mathcal{K}} h_K^{-1} \|\phi_i^{1/2}(v_i - Q)\|_{0,\partial K}^2 \le C \sum_{K \in \mathcal{K}} h_K^{-1} \|\phi_i^{1/2}[Q]\|_{0,\partial K}^2,$$
(3.32)

since the right hand side of equation (3.32) is zero when Q in continuous on ω_i so we may choose $v_i = Q|_{\omega_i}$ which means that the left hand side is also zero. The estimate follows from finite dimensionality and scaling. We end up with,

$$\inf_{v \in H^1(\Omega)} \sum_{K \in \mathcal{K}} \|Q - v\|_{1/2,\partial K}^2 \le C \sum_{K \in \mathcal{K}} \sum_{i \in \mathcal{N}} h_K^{-1} \|\phi_i^{1/2}[Q]\|_{0,\partial K}^2 = C \sum_{K \in \mathcal{K}} h_K^{-1} \|[Q]\|_{0,\partial K}^2, \quad (3.33)$$

again after using that $\{\phi_i\}_{i\in\mathcal{N}}$ is a partition of unity.

Combining equation (3.25) and (3.33) we get,

$$I + II \le C \|\nabla Q - \Sigma\|_0^2 + \frac{3}{4} \|\boldsymbol{\sigma} - \Sigma\|_0^2 + C \|h(f + \nabla \cdot \Sigma)\|_0^2 + C \sum_{K \in \mathcal{K}} h_K^{-1} \|[Q]\|_{0,\partial K}^2.$$
(3.34)

Since $I + II = \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0^2$ from equation (3.2-3.7) we just need to subtract $3/4\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0^2$ from both sides of equation (3.34) to prove the theorem.

3.2 Estimate Based on Postprocessing

We now turn to the question of how to choose Q in Theorem 3.1. We know that choosing Q = U results in a suboptimal estimate of the energy norm error, [4]. A natural idea is to choose Q to be a postprocessed version of U. There have been several works [8, 5, 17, 13] following Arnold and Brezzi [2], published in the mid eighties, on postprocessing methods where information from the calculated flux Σ is used to compute an improved approximation of u.

We focus on the method proposed in Lovadina and Stenberg in [13] and show that Theorem 3.1 directly gives the estimate presented in [13]. We denote the postprocessed version of U by U^* . To define U^* we introduce some notations. For all $K \in \mathcal{K}$ we let $P_{h,K}: L^2(\Omega) \to W_{h,K}$ be the L^2 projection onto $W^*_{h,K}$, where $W^*_{h,K}$ is defined as $W^*_{h,K} = P_k(K)$ for RTN elements, $W^*_{h,K} = P_{k+1}(K)$ for BDM elements, and $W^*_{h,K} = P_{k+2}(K)$ for TH elements.

Definition 3.1 (Postprocessing method) Find $U^* = \bigoplus_{K \in \mathcal{K}} U_K^* \in \bigoplus_{K \in \mathcal{K}} W_{h,K}^*$ such that

$$P_{h,K}U_K^* = U_K, (3.35)$$

and

$$(\nabla U^*, \nabla v)_K = (\mathbf{\Sigma}, \nabla v)_K \quad \text{for all } v \in (I - P_{h,K}) W^*_{h,K}.$$
(3.36)

Proposition 3.1 It holds,

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} \leq C \sum_{K \in \mathcal{K}} \left(h_{K}^{2} \| f + \nabla \cdot \boldsymbol{\Sigma} \|_{0,K}^{2} + \|\boldsymbol{\Sigma} - \nabla U^{*}\|_{0,K}^{2} + h_{K}^{-1} \| \left[U^{*} \right] \|_{0,\partial K}^{2} \right), \quad (3.37)$$

where U^* is taken from Definition 3.1.

Proof. The proof follows directly from Theorem 3.1 with $Q = U^*$.

3.3 Estimate for Stabilized Methods

Here we extend our estimate to stabilized mixed methods, in particular, we consider the recent method presented in Masud and Hughes [14]. Stabilized methods are based on a modified weak formulation which yields a stable method for standard continuous piecewise polynomial, of equal or different order, approximation of the pressure and flux.

The stabilized method of Masud and Hughes reads: find $\Sigma \in V_h$ and $U \in W_h$ such that,

$$(-\nabla \cdot \boldsymbol{\Sigma}, w) + (\boldsymbol{\Sigma}, \boldsymbol{v}) + (U, \nabla \cdot \boldsymbol{v}) - \frac{1}{2}(\boldsymbol{\Sigma} - \nabla U, \boldsymbol{v} + \nabla w) = (f, w), \quad (3.38)$$

for all $\boldsymbol{v} \in \boldsymbol{V}_h$ and $w \in W_h$. Applying the same ideas as in Theorem 3.1 to this stabilized method we obtain the following a posteriori error estimate. The argument may be modified to cover other stabilized methods such as the Galerkin least squares method.

Proposition 3.2 For the approximate solution of equation (3.38) using continuous piecewise polynomials it holds,

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0^2 \le C \sum_{K \in \mathcal{K}} \left(h_K^2 \|f + \nabla \cdot \boldsymbol{\Sigma}\|_{0,K}^2 + \|\boldsymbol{\Sigma} - \nabla U\|_{0,K}^2 \right).$$
(3.39)

Proof. Using the same arguments as in equations (3.2-3.7) in the proof of Theorem 3.1, we obtain the following error representation formula,

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} = (p - Q, f + \nabla \cdot \boldsymbol{\Sigma}) + (Q, -\nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})) - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma}).$$
(3.40)

Next, setting $\boldsymbol{v} = 0$ in (3.38) we have the Galerkin orthogonality property

$$(f + \nabla \cdot \boldsymbol{\Sigma}, w) = -\frac{1}{2} (\boldsymbol{\Sigma} - \nabla U, \nabla w), \qquad (3.41)$$

for all $w \in W_h$. Subtracting the Scott-Zhang interpolant [6], $\pi_h(p-Q)$, of p-Q, using (3.41) followed by an interpolation estimate we get

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0^2 = (p - Q - \pi_h(p - Q), f + \nabla \cdot \boldsymbol{\Sigma}) - \frac{1}{2}(\nabla \pi_h(p - Q), \boldsymbol{\Sigma} - \nabla U)$$
(3.42)

$$+ (Q, -\nabla \cdot (\boldsymbol{\sigma} - \boldsymbol{\Sigma})) - (\boldsymbol{\Sigma}, \boldsymbol{\sigma} - \boldsymbol{\Sigma})$$
(3.43)

$$\leq C \sum_{K \in \mathcal{K}} \left(h_K^2 \| f + \nabla \cdot \Sigma \|_{0,K}^2 + h_K^{-1} \| [Q] \|_{0,\partial K}^2 \right) + C \| \Sigma - \nabla Q \|_0^2$$
(3.44)

$$+\frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\Sigma}\|_{0}^{2}+\|\boldsymbol{\Sigma}-\nabla U\|_{0}\|\nabla \pi_{h}(p-Q)\|_{0}.$$
(3.45)

To get this estimate we also use arguments that are identical with the ones in the proof of Theorem 3.1. We choose Q = U. Since U is continuous the jump terms will vanish. We also use the stability of the interpolant π_h in $H^1(\Omega)$,

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} \leq C \sum_{K \in \mathcal{K}} h_{K}^{2} \|f + \nabla \cdot \boldsymbol{\Sigma}\|_{0,K}^{2} + C \|\boldsymbol{\Sigma} - \nabla U\|_{0}^{2}$$
(3.46)

$$+\frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\Sigma}\|_{0}^{2}+C\|\boldsymbol{\Sigma}-\nabla U\|_{0}\|\boldsymbol{\sigma}-\nabla U\|_{0}$$
(3.47)

$$\leq C \sum_{K \in \mathcal{K}} h_K^2 \| f + \nabla \cdot \mathbf{\Sigma} \|_{0,K}^2 + C \| \mathbf{\Sigma} - \nabla U \|_0^2$$
(3.48)

$$+\frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\Sigma}\|_{0}^{2}+\frac{1}{4}\|\boldsymbol{\sigma}-\nabla U\|_{0}^{2}$$
(3.49)

But since $\|\boldsymbol{\sigma} - \nabla U\|_0 \leq \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_0 + \|\boldsymbol{\Sigma} - \nabla U\|_0$ we have,

$$\|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2} \leq C \sum_{K \in \mathcal{K}} h_{K}^{2} \|f + \nabla \cdot \boldsymbol{\Sigma}\|_{0,K}^{2} + C \|\boldsymbol{\Sigma} - \nabla U\|_{0}^{2} + \frac{3}{4} \|\boldsymbol{\sigma} - \boldsymbol{\Sigma}\|_{0}^{2},$$
(3.50)

so the proposition follows immediately after subtracting $3/4 \| \boldsymbol{\sigma} - \boldsymbol{\Sigma} \|_0^2$ from both sides. \Box

References

- R. A. Adams, *Sobolev spaces*, volume 65 of Pure and Applied Mathematics, Academic Press, New York, 1975.
- [2] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19, 7-32, 1985.
- [3] R. Becker, P. Hansbo, and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192, 723-733, 2003.
- [4] D. Braess and R. Verfürt, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal., 33, 2431-2444, 1996.
- [5] J. H. Bramble and J. Xu, A local post-processing technique for improving the accuracy in mixed finite-element approximations, SIAM J. Numer. Anal., 26, 1267-1275, 1989.
- [6] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer Verlag, 1994.
- [7] F. Brezzi, J. Douglas JR., R. Durán, and M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51, 237-250, 1987.
- [8] F. Brezzi, J. Douglar JR., and L. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235, 1985.
- [9] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Verlag, 1991.
- [10] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp., 66, 465-476, 1997.
- [11] V. Girault, P.-A. Raviart, Finite element approximation of the Navier-Stokes equation, Springer Verlag, Berlin, 1979.
- [12] P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element techniques, Comp. and Fluids, 1, 73-100, 1973.
- [13] C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Helsinki University of Technology. Research Report A473. September 2004.
- [14] A. Masud and T. J. R. Hughes, A stabilized finite element method for Darcy flow, Comput. Methods Appl. Mech. Engrg., 191, 4341-4370, 2002.

- [15] J.-C. Nédélec, A new family of mixed finite elements in \mathbb{R}^3 , Numer. Math., 50, 57-81, 1986.
- [16] P. Raviart and J. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lecture Notes in Math. 606, Springer-Verlag, 292-315, 1977.
- [17] R. Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér., 25, 151-167, 1991.

Chalmers Finite Element Center Preprints

2003–01	A hybrid method for elastic waves Larisa Beilina
2003–02	Application of the local nonobtuse tetrahedral refinement techniques near Fichera-like corners L. Beilina, S. Korotov and M. Křížek
2003–03	Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems Peter Hansbo and Joakim Hermansson
2003–04	Crouzeix–Raviart and Raviart–Thomas elements for acoustic fluid–structure interaction Joakim Hermansson
2003–05	Smoothing properties and approximation of time derivatives in multistep back- ward difference methods for linear parabolic equations Yubin Yan
2003–06	Postprocessing the finite element method for semilinear parabolic problems Yubin Yan
2003–07	The finite element method for a linear stochastic parabolic partial differential equation driven by additive noise Yubin Yan
2003–08	A finite element method for a nonlinear stochastic parabolic equation Yubin Yan
2003–09	A finite element method for the simulation of strong and weak discontinuities in elasticity Anita Hansbo and Peter Hansbo
2003–10	Generalized Green's functions and the effective domain of influence Donald Estep, Michael Holst, and Mats G. Larson
2003–11	Adaptive finite element/difference method for inverse elastic scattering waves Larisa Beilina
2003–12	A Lagrange multiplier method for the finite element solution of elliptic domain decomposition problems using non-matching meshes Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli
2003–13	A reduced P ¹ -discontinuous Galerkin method R. Becker, E. Burman, P. Hansbo, and M.G. Larson
2003–14	Nitsche's method combined with space-time finite elements for ALE fluid- structure interaction problems Peter Hansbo, Joakim Hermansson, and Thomas Svedberg
2003 - 15	Stabilized Crouzeix–Raviart element for the Darcy-Stokes problem Erik Burman and Peter Hansbo

2003–16	Edge stabilization for the generalized Stokes problem: a continuous interior penalty method Erik Burman and Peter Hansbo
2003–17	A conservative flux for the continuous Galerkin method based on discontinuous enrichment Mats G. Larson and A. Jonas Niklasson
2003–18	CAD-to-CAE integration through automated model simplification and adaptive modelling K.Y. Lee, M.A. Price, C.G. Armstrong, M.G. Larson, and K. Samuelsson
2003 – 19	Multi-adaptive time integration Anders Logg
2003–20	Adaptive computational methods for parabolic problems Kenneth Eriksson, Claes Johnson, and Anders Logg
2003–21	The FEniCS project T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg, and R. Scott
2003–22	Adaptive finite element methods for LES: Computation of the mean drag coef- ficient in a turbulent flow around a surface mounted cube using adaptive mesh refinement Johan Hoffman
2003–23	Adaptive DNS/LES: a new agenda in CFD Johan Hoffman and Claes Johnson
2003 - 24	Multiscale convergence and reiterated homogenization of parabolic problem Anders Holmbom, Nils Svanstedt, and Niklas Wellander
2003–25	On the relationship between some weak compactnesses with different numbers of scales Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander
2003–26	A posteriori error estimation in computational inverse scattering Larisa Beilina and Claes Johnson
2004–01	Computability and adaptivity in CFD Johan Hoffman och Claes Johnson
2004–02	Interpolation estimates for piecewise smooth functions in one dimension Anders Logg
2004–03	Estimates of derivatives and jumps across element boundaries for multi- adaptive Galerkin solutions of ODEs Anders Logg
2004–04	Multi-adaptive Galerkin methods for ODEs III: Existence and stability Anders Logg
2004 – 05	Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates Anders Logg
2004–06	A stabilized non-conforming finite element method for incompressible flow Erik Burman and Peter Hansbo

2004–07	On the uniqueness of weak solutions of Navier-Stokes equations: Remarks on a Clay Institute prize problem Johan Hoffman and Claes Johnson
2004–08	A new approach to computational turbulence modeling Johan Hoffman and Claes Johnson
2004–09	A posteriori error analysis of the boundary penalty method Kenneth Eriksson, Mats G. Larson, and Axel Målqvist
2004–10	A posteriori error analysis of stabilized finite element approximations of the helmholtz equation on unstructured grids Mats G. Larson and Axel Målqvist
2004–11	Adaptive variational multiscale methods based on a posteriori error estimation Mats G. Larson and Axel Målqvist
2004 - 12	Multi-adaptive Galerkin methods for ODEs V: Stiff problems Johan Jansson and Anders Logg
2004 - 13	Algorithms for multi-adaptive time-stepping Johan Jansson and Anders Logg
2004 - 14	Simulation of mechanical systems with individual time steps Johan Jansson and Anders Logg
2004 - 15	Computational modeling of dynamical systems Johan Jansson, Claes Johnson, and Anders Logg
2004–16	Adaptive variational multiscale methods based on a posteriori error estimation: Duality techniques for elliptic problems Mats G. Larson and Axel Målqvist
2004–17	Ultraconvergence of an interpolated finite element method for some fourth-order elliptic problems Andrey B. Andreev and Milena R. Racheva
2004–18	Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems Mats G. Larson and Axel Målqvist
2004–19	Stabilized Lagrange multiplier methods for elastic contact with friction Per Heintz and Peter Hansbo
2005–01	A posteriori error estimates for mixed finite element approximations of elliptic problems Mats G. Larson and Axel Målqvist

These preprints can be obtained from

www.phi.chalmers.se/preprints