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Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
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A posteriori error estimates for mixed finite

element approximations of elliptic problems

Mats G. Larson∗ and Axel Målqvist†

January 25, 2005

Abstract

We derive residual based a posteriori error estimates of the L
2-norm of the error

in the flux for a general class of mixed methods for elliptic problem. The esti-

mate is applicable to standard mixed methods such as the Raviart-Thomas-Nedelec

and Taylor-Hood elements, as well as stabilized methods such as the Galerkin-Least

squares method. The element residual in the estimate employs an elementwise com-

putable postprocessed approximation of the pressure which gives optimal order.

1 Introduction

The Model Problem. We consider the mixed formulation of the Poisson equation with
Neumann boundary conditions:







σ −∇u = 0 in Ω,
−∇ · σ = f in Ω,

n · σ = 0 on Γ,
(1.1)

Here Ω is a polygonal domain in Rn with boundary Γ. Assuming that
∫

Ω
f dx = 0, we get

a well posed problem with a solution u ∈ H1(Ω)/R and σ ∈ V = {v ∈ H(div; Ω) : n ·v =
0 on Γ}. See [9] for definitions of these function spaces.

Previous Work. Several works present a posteriori error estimates for mixed methods.
In Carstensen [10] an error estimate in the H(div; Ω) norm of the flux is presented. The
H(div; Ω) norm may be dominated by the div-part which is also directly computable.
When it comes to error estimates in the of the flux in the L2 norm of methods using richer
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spaces for the flux σ than the displacement u, such as Raviart-Thomas-Nedelec (RTN)
elements, there are known difficulties. Braess and Verfürth presents a suboptimal estimate
in [4]. The reason for the suboptimality is that the natural residual that arises from the
first equation σ−∇u = 0 in problem (1.1) may be large if the flux space is richer than the
displacement space. In a recent paper Lovadina and Stenberg [13] derive an a posteriori
error estimate of the L2-norm of the flux for the RTN based methods which employs a
particular postprocessed approximation of U . The proof is based on a posteriori error
analysis of an equivalent method which involves the postprocessed approximation of U .

New Contributions. We derive a general a posteriori of the energy norm which is
applicable to most mixed methods including the classical inf-sup stable elements, Raviart-
Thomas elements, the BDM-elements and the Taylor-Hood. Our estimate is closely related
to the estimate presented by Lovadina and Stenberg [13], however, our proof is more
general and also reveals the fact that one can use any piecewise polynomial approximation
of the pressure when computing the residual. By a small adjustment of the argument we
finally, derive an estimate for the stabilized mixed method of Masud and Hughes [14]. The
same technique applies to other stabilized schemes, for instance the Galerkin least squares
method.

Outline. We start by presenting finite elements and the discrete version of equation (1.1)
in Section 2 then we present the a posteriori error estimates in Section 3.

2 Weak Formulation and the Finite Element Method

Weak Formulation. We multiply the first equation in (1.1) by a test function v ∈ V

and integrate by parts. The second equation in (1.1) is multiplied by a test function
w ∈ W = L2(Ω). The weak form reads: find σ ∈ V and u ∈ W such that,

{

(σ, v) + (u,∇ · v) = 0 for all v ∈ V ,
(−∇ · σ, w) = (f, w) for all w ∈ W.

(2.1)

Our aim is to derive a posteriori error estimates of finite element approximations {Σ, U}
of the exact solution {σ, u} in the energy norm ‖σ − Σ‖0, here ‖ · ‖0 denotes the L2(Ω)
norm.

The Mixed Finite Element Method. We let K = {K} be a partition of Ω into shape
regular elements of diameter hK and define the mesh function, h(x) : Ω → R+, by letting
h(x) = hK for x ∈ K.

We seek an approximate solution in discrete spaces V h ⊂ V and Wh ⊂ W defined on
the partition K. It is well known that for finite element methods based on the standard
weak form (2.1) the discrete spaces must be chosen so that the inf-sup condition, see [9],
is satisfied in order to guarantee a stable method. Only rather special constructions of the
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discrete spaces yield stable methods. In Section 3.3 we consider a stabilized mixed finite
element method based on a modified weak formulation which can be based on standard
continuous piecewise polynomials. We summarize some of the most well known choices of
stable discrete spaces on triangles and tetrahedra for a given integer k ≥ 1:

• Raviart-Thomas-Nedelec (RTN) elements, see [16, 15],
V h = {v ∈ H(div; Ω) : v|K ∈ [Pk−1(K)]n ⊕ xP̃k−1(K) for all K ∈ K},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk−1(K) for all K ∈ K}.

• Brezzi-Douglas-Marini (BDM) elements, see [8, 7],
V h = {v ∈ H(div; Ω) : v|K ∈ [Pk(K)]n for all K ∈ K},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk−1(K) for all K ∈ K}.

• Taylor-Hood (TH), see [12],
V h = {v ∈ C(Ω) : v|K ∈ [Pk+1(K)]n for all K ∈ K},
Wh = {w ∈ C(Ω) : w|K ∈ Pk(K) for all K ∈ K}.

For a more complete account of inf-sup stable spaces we refer to Brezzi-Fortin, [9]. Here
C(Ω) denotes the space of continuous functions on Ω, Pk(K) the space of polynomials
of degree k on element K, and P̃k(K) the set of homogeneous polynomials of degree
k. The norms used in this paper are standard Sobolev norms following the notation,
‖ · ‖s,ω = ‖ · ‖Hs(ω) = ‖ · ‖W s

2
(ω), see [1].

The mixed finite element method reads: find Σ ∈ V h and U ∈ Wh such that:

{

(Σ,v) + (U,∇ · v) = 0 for all v ∈ V h,
(−∇ · Σ, w) = (f, w) for all w ∈ Wh.

(2.2)

3 A Posteriori Error Estimates

3.1 Estimate for Standard Mixed Methods

Here we present a general a posteriori estimate of the energy norm error ‖σ−Σ‖0 involving
a piecewise polynomial function Q, which may be obtained by postprocessing of U . The
possibility to replace U by Q is important since it leads to a posteriori error estimates of
optimal order. We are not interested in tracking the constants in the error estimates.

Theorem 3.1 It holds

‖σ − Σ‖2
0 ≤ C

∑

K∈K

(

h2
K‖f + ∇ · Σ‖2

0,K + ‖Σ −∇Q‖2
0,K + h−1

K ‖ [Q] ‖2
0,∂K

)

, (3.1)

for arbitrary Q ∈
⊕

K∈K
Pl(K), with l ≥ 0. The jump denoted [·] is the difference in

function value over an face in the mesh.
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Proof. Starting with the left hand side we have

‖σ − Σ‖2
0 = (σ − Σ, σ −Σ) (3.2)

= (σ, σ − Σ) − (Σ, σ − Σ) (3.3)

= −(u,∇ · (σ − Σ)) − (Σ, σ − Σ) (3.4)

= −(u − Q,∇ · (σ − Σ)) + (Q,−∇ · (σ − Σ)) − (Σ, σ − Σ) (3.5)

= (u − Q, f + ∇ · Σ) +
∑

K∈K

(

(Q,−∇ · (σ −Σ))K − (Σ, σ − Σ)K

)

(3.6)

= I + II. (3.7)

We treat the two terms in equation (3.7) separately, beginning with I. From the second
part of equation (2.2) we have the Galerkin orthogonality property (f + ∇ · Σ, w) = 0 for
all w ∈ Wh. We let Ph denote the standard L2-projection from W to Wh and proceed with
the estimates as follows

I ≤ |(f + ∇ · Σ, u − Q)| (3.8)

≤ ‖h(f + ∇ · Σ)‖0‖h
−1(u − Q − Ph(u − Q))‖0 (3.9)

≤ C‖h(f + ∇ · Σ)‖0‖∇(u − Q)‖0 (3.10)

= C‖h(f + ∇ · Σ)‖0‖σ −Σ + Σ −∇Q‖0 (3.11)

≤
3C2

2
‖h(f + ∇ ·Σ)‖2

0 +
1

4
‖σ − Σ‖2

0 +
1

2
‖Σ −∇Q‖2

0. (3.12)

We now turn to the second term II in equation (3.7) and begin by integration by parts,

II =
∑

K∈K

(

(Q,−∇ · (σ − Σ))K − (Σ, σ − Σ)K

)

(3.13)

=
∑

K∈K

(

(∇Q, σ −Σ)K − (Q, n · (σ − Σ))∂K − (Σ, σ −Σ)K

)

(3.14)

= (∇Q − Σ, σ −Σ) −
∑

K∈K

(Q, n · (σ − Σ))∂K (3.15)

≤ ‖∇Q −Σ‖2
0 +

1

4
‖σ − Σ‖2

0 +

∣

∣

∣

∣

∣

∑

K∈K

(Q, n · (σ −Σ))∂K

∣

∣

∣

∣

∣

. (3.16)

Using that n·(σ−Σ) is continuous over element faces we can subtract an arbitrary function
v ∈ H1(Ω) in the term

∑

K∈K
(Q, n · (σ −Σ))∂K =

∑

K∈K
(Q− v, n · (σ −Σ))∂K . We then

have the estimate

II ≤ ‖∇Q − Σ‖2
0 +

1

4
‖σ −Σ‖2

0 +

∣

∣

∣

∣

∣

inf
v∈H1(Ω)

∑

K∈K

(Q − v, n · (σ −Σ))∂K

∣

∣

∣

∣

∣

. (3.17)
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We now use the Cauchy-Schwartz inequality followed by the trace inequality

‖n · w‖−1/2,∂K ≤ C(‖w‖0,K + hK‖∇ · w‖0,K), (3.18)

see [11], to estimate the sum in equation (3.17) as follows

∣

∣

∣

∣

∣

inf
v∈H1(Ω)

∑

K∈K

(Q − v, n · (σ −Σ))∂K

∣

∣

∣

∣

∣

(3.19)

≤ inf
v∈H1(Ω)

∑

K∈K

‖Q − v‖1/2,∂K‖n · (σ − Σ)‖−1/2,∂K (3.20)

≤ inf
v∈H1(Ω)

(

∑

K∈K

‖Q − v‖2
1/2,∂K

)1/2(
∑

K∈K

‖n · (σ − Σ)‖2
−1/2,∂K

)1/2

(3.21)

≤ C inf
v∈H1(Ω)

(

∑

K∈K

‖Q − v‖2
1/2,∂K

)1/2(
∑

K∈K

(

‖σ −Σ‖2
0,K + hK‖∇ · (σ −Σ)‖2

0,K

)

)1/2

(3.22)

≤ C inf
v∈H1(Ω)

(

∑

K∈K

‖Q − v‖2
1/2,∂K

)1/2
(

‖σ −Σ‖2
0 + ‖h(f + ∇ ·Σ)‖2

0

)1/2
(3.23)

≤
3C2

2
inf

v∈H1(Ω)

∑

K∈K

‖Q − v‖2
1/2,∂K +

1

4
‖σ −Σ‖2

0 +
1

2
‖h(f + ∇ · Σ)‖2

0. (3.24)

Together equation (3.17) and equation (3.19-3.23) gives a bound for the second term, II,
in equation (3.7),

II ≤ ‖∇Q−Σ‖2
0 +

1

2
‖σ−Σ‖2

0 +
1

2
‖h(f +∇·Σ)‖2

0 +
3C2

2
inf

v∈H1(Ω)

∑

K∈K

‖Q−v‖2
1/2,∂K . (3.25)

We combine equation (3.8) and equation (3.25) to get,

I+II ≤ C‖∇Q−Σ‖2
0+

3

4
‖σ−Σ‖2

0+C‖h(f+∇·Σ)‖2
0+C inf

v∈H1(Ω)

∑

K∈K

‖Q−v‖2
1/2,∂K . (3.26)

To estimate the last term on the right hand side in inequality equation (3.26) we employ the
technique of Lemma 4 in [3]. For completeness we include the details of the proof. We let
N be the set of nodes in the mesh, {φ}i∈N piecewise linear base functions, ωi = supp(φi),
CPi continuous piecewise polynomials on ωi , and CP = ⊕i∈NφiCPi ∈ H1(Ω).

Using that CP ⊂ H1(Ω) followed by the inverse inequality ‖Q− v‖2
1/2,∂K ≤ Ch−1

K ‖Q−

v‖2
0,∂K , which holds since both v and Q are piecewise polynomials, we get

inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K ≤ inf

v∈CP

∑

K∈K

‖Q− v‖2
1/2,∂K ≤ C inf

v∈CP

∑

K∈K

h−1
K ‖Q− v‖2

0,∂K . (3.27)
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We write v =
∑

i∈N φivi ∈ CP and proceed with the estimate as follows

‖Q − v‖2
0,∂K =

∑

i∈N

(Q − v, φi(vi − Q))∂K , (3.28)

≤
∑

i∈N

‖φ1/2
i (Q − v)‖0,∂K‖φ1/2

i (vi − Q)‖0,∂K , (3.29)

≤ ‖Q − v‖0,∂K

(

∑

i∈N

‖φ1/2
i (vi − Q)‖2

0,∂K

)1/2

, (3.30)

where we used that {φi}i∈N is a partition of unity. We have

inf
v∈H1(Ω)

∑

K∈K

‖Q − v‖2
1/2,∂K ≤ inf

v∈CP

∑

i∈N

∑

K∈K

h−1
K ‖φ1/2

i (vi − Q)‖2
0,∂K . (3.31)

Further the following bound holds,

inf
vi∈CPi

∑

K∈K

h−1
K ‖φ1/2

i (vi − Q)‖2
0,∂K ≤ C

∑

K∈K

h−1
K ‖φ1/2

i [Q] ‖2
0,∂K , (3.32)

since the right hand side of equation (3.32) is zero when Q in continuous on ωi so we may
choose vi = Q|ωi

which means that the left hand side is also zero. The estimate follows
from finite dimensionality and scaling. We end up with,

inf
v∈H1(Ω)

∑

K∈K

‖Q − v‖2
1/2,∂K ≤ C

∑

K∈K

∑

i∈N

h−1
K ‖φ1/2

i [Q] ‖2
0,∂K = C

∑

K∈K

h−1
K ‖ [Q] ‖2

0,∂K , (3.33)

again after using that {φi}i∈N is a partition of unity.
Combining equation (3.25) and (3.33) we get,

I + II ≤ C‖∇Q −Σ‖2
0 +

3

4
‖σ − Σ‖2

0 + C‖h(f + ∇ · Σ)‖2
0 + C

∑

K∈K

h−1
K ‖ [Q] ‖2

0,∂K . (3.34)

Since I + II = ‖σ − Σ‖2
0 from equation (3.2-3.7) we just need to subtract 3/4‖σ − Σ‖2

0

from both sides of equation (3.34) to prove the theorem.

3.2 Estimate Based on Postprocessing

We now turn to the question of how to choose Q in Theorem 3.1. We know that choosing
Q = U results in a suboptimal estimate of the energy norm error, [4]. A natural idea
is to choose Q to be a postprocessed version of U . There have been several works [8, 5,
17, 13] following Arnold and Brezzi [2], published in the mid eighties, on postprocessing
methods where information from the calculated flux Σ is used to compute an improved
approximation of u.
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We focus on the method proposed in Lovadina and Stenberg in [13] and show that
Theorem 3.1 directly gives the estimate presented in [13]. We denote the postprocessed
version of U by U∗. To define U∗ we introduce some notations. For all K ∈ K we let
Ph,K : L2(Ω) → Wh,K be the L2 projection onto W ∗

h,K, where W ∗
h,K is defined as W ∗

h,K =
Pk(K) for RTN elements, W ∗

h,K = Pk+1(K) for BDM elements, and W ∗
h,K = Pk+2(K) for

TH elements.

Definition 3.1 (Postprocessing method) Find U∗ =
⊕

K∈K
U∗

K ∈
⊕

K∈K
W ∗

h,K such that

Ph,KU∗
K = UK , (3.35)

and
(∇U∗,∇v)K = (Σ,∇v)K for all v ∈ (I − Ph,K)W ∗

h,K. (3.36)

Proposition 3.1 It holds,

‖σ −Σ‖2
0 ≤ C

∑

K∈K

(

h2
K‖f + ∇ · Σ‖2

0,K + ‖Σ −∇U∗‖2
0,K + h−1

K ‖ [U∗] ‖2
0,∂K

)

, (3.37)

where U∗ is taken from Definition 3.1.

Proof. The proof follows directly from Theorem 3.1 with Q = U∗.

3.3 Estimate for Stabilized Methods

Here we extend our estimate to stabilized mixed methods, in particular, we consider the
recent method presented in Masud and Hughes [14]. Stabilized methods are based on a
modified weak formulation which yields a stable method for standard continuous piecewise
polynomial, of equal or different order, approximation of the pressure and flux.

The stabilized method of Masud and Hughes reads: find Σ ∈ V h and U ∈ Wh such
that,

(−∇ · Σ, w) + (Σ, v) + (U,∇ · v) −
1

2
(Σ −∇U, v + ∇w) = (f, w), (3.38)

for all v ∈ V h and w ∈ Wh. Applying the same ideas as in Theorem 3.1 to this stabilized
method we obtain the following a posteriori error estimate. The argument may be modified
to cover other stabilized methods such as the Galerkin least squares method.

Proposition 3.2 For the approximate solution of equation (3.38) using continuous piece-
wise polynomials it holds,

‖σ − Σ‖2
0 ≤ C

∑

K∈K

(

h2
K‖f + ∇ · Σ‖2

0,K + ‖Σ −∇U‖2
0,K

)

. (3.39)
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Proof. Using the same arguments as in equations (3.2-3.7) in the proof of Theorem 3.1,
we obtain the following error representation formula,

‖σ − Σ‖2
0 = (p − Q, f + ∇ · Σ) + (Q,−∇ · (σ − Σ)) − (Σ, σ − Σ). (3.40)

Next, setting v = 0 in (3.38) we have the Galerkin orthogonality property

(f + ∇ ·Σ, w) = −
1

2
(Σ −∇U,∇w), (3.41)

for all w ∈ Wh. Subtracting the Scott-Zhang interpolant [6], πh(p − Q), of p − Q, using
(3.41) followed by an interpolation estimate we get

‖σ −Σ‖2
0 = (p − Q − πh(p − Q), f + ∇ · Σ) −

1

2
(∇πh(p − Q),Σ −∇U) (3.42)

+ (Q,−∇ · (σ − Σ)) − (Σ, σ − Σ) (3.43)

≤ C
∑

K∈K

(

h2
K‖f + ∇ · Σ‖2

0,K + h−1
K ‖ [Q] ‖2

0,∂K

)

+ C‖Σ −∇Q‖2
0 (3.44)

+
1

2
‖σ −Σ‖2

0 + ‖Σ−∇U‖0‖∇πh(p − Q)‖0. (3.45)

To get this estimate we also use arguments that are identical with the ones in the proof of
Theorem 3.1. We choose Q = U . Since U is continuous the jump terms will vanish. We
also use the stability of the interpolant πh in H1(Ω),

‖σ − Σ‖2
0 ≤ C

∑

K∈K

h2
K‖f + ∇ ·Σ‖2

0,K + C‖Σ−∇U‖2
0 (3.46)

+
1

2
‖σ − Σ‖2

0 + C‖Σ −∇U‖0‖σ −∇U‖0 (3.47)

≤ C
∑

K∈K

h2
K‖f + ∇ ·Σ‖2

0,K + C‖Σ−∇U‖2
0 (3.48)

+
1

2
‖σ − Σ‖2

0 +
1

4
‖σ −∇U‖2

0 (3.49)

But since ‖σ −∇U‖0 ≤ ‖σ − Σ‖0 + ‖Σ −∇U‖0 we have,

‖σ −Σ‖2
0 ≤ C

∑

K∈K

h2
K‖f + ∇ · Σ‖2

0,K + C‖Σ −∇U‖2
0 +

3

4
‖σ − Σ‖2

0, (3.50)

so the proposition follows immediately after subtracting 3/4‖σ −Σ‖2
0 from both sides.
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2004–17 Ultraconvergence of an interpolated finite element method for some fourth-order
elliptic problems
Andrey B. Andreev and Milena R. Racheva

2004–18 Adaptive variational multiscale methods based on a posteriori error estimation:
energy norm estimates for elliptic problems
Mats G. Larson and Axel Målqvist
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