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ON THE NUMERICAL MODELING OF QUASI-STATIC CRACK

GROWTH IN LINEAR ELASTIC FRACTURE MECHANICS

PER HEINTZ

Abstract. In this paper we present a strategy for the simulation of a propagating crack
under mixed mode linear elastic conditions using a discontinuous finite element method.
A key issue is to accurately compute the incremental change in the kink angle of the
propagating crack during subsequent steps. We have chosen to work with a domain
formulation of the material force vector as a criteria for the propagation direction. We
describe the theoretical background together with the numerical implementation in detail
and show some results for different loading conditions.

1. Introduction

In crack propagation simulations, one basic question is how to incorporate the discon-
tinuity of the displacement field into the FE model. One straightforward method is to
enforce mesh lines along the crack, i.e., to create a new mesh at each propagation step as
the crack propagates with time. A drawback with the re-meshing technique is the com-
putational cost, since repeated re-meshing of the domain to obtain fitted meshes is costly.
Other methods have been proposed in the literature to model discontinuities without any
need for re-meshing. For instance, in the extended finite element method (XFEM) the
approximation of the displacement field is enriched in the vicinity of the crack by incorpo-
rating additional basis functions using a partition of unity approach [12], see [13] and [14]
for a description of the implementation.

In this paper we will use a discontinuous Galerkin method introduced in [6] and [8] by
Hansbo and Hansbo. They proposed a new discontinuous finite element method for the
simulation of strong and weak discontinuities in linear and nonlinear elasticity that allows
for discontinuities internal to the elements in the approximation across the interface. They
also showed optimal order of convergence in simple model cases.

In crack growth simulations, the accuracy of the crack path depends directly on the
accuracy of the crack propagation and crack kinking criteria. In the paper by Bouchard
et. al. [9] three different crack growth criteria and their prediction of the crack path for
several test cases are compared: the maximal circumferential stress criterion, the strain
energy density fracture criterion and the maximal strain energy release rate criterion. The
maximal strain energy release rate criteria is the most complex method to implement
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but seems to give the best results in their examples. In their paper a re-meshing of the
computational domain is done at each propagating step.

We have chosen to use the concept of material, or configurational, forces as the crack
kinking criteria. The material forces are fictious forces that corresponds to the change
in potential energy with respect to a variation of the position of the defect. Due to the
properties of this force, with a magnitude corresponding to the J-integral and a direction
of maximum energy release, it seems natural to exploit its properties in a crack growth
simulation. For recent developments in this field see the work by Maugin et. al [15], [16]
who considers the elastic force on singularities and inhomogeneities. For a computational
framework see the work by Steinmann et. al [3], [4] and Mueller [5]. For an error control
algorithm for computing the material forces in linear elasticity, based on duality arguments,
see [11].

2. Problem description

Let Ω be a bounded domain in ℜd, d = 2, 3 with boundary ∂Ω = ∂ΩD∪∂ΩN. We consider
a linearly elastic specimen with an internal crack ΓC that forms an interior boundary in
Ω. For simplicity we will not consider the case in which we will have self contact between
the parts in Ω separated by ΓC. For the jump in the argument across an interface, here
ΓC, we use the notation [w] := w+ − w−. Thus, we want to solve the following problem:

find the displacement u = [ui]
d

i=1
and the symmetric stress tensor σ = [σij]

d

i,j=1
such that















−∇ · σ = f in Ω
σ = λ(∇ · u)I + 2µε(u) in Ω
u = g on ∂ΩD

σ · n = t on ∂ΩN

(2.1)

where f , g, t and n are the body load, prescribed displacements, prescribed tractions and
the outward pointing normal to ∂Ω respectively. λ and µ are the Lame material constants

and ε is the symmetric strain tensor with components εij = 1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

. Furthermore, I

is the identity tensor with components Iij = 1 if i = j and Iij = 0 if i 6= j. A straightforward
way to solve (2.1) using the finite element method is to create a FE mesh in which ΓC is
taken into account for by letting an internal boundary of the mesh coincide with ΓC. In
a simulation where the crack moves with time it is thus necessary to create a new mesh
fulfilling that condition at each crack increment. In the following sections we will explain
how to circumvent this difficulty using the discontinuous Galerkin method introduced by
Hansbo and Hansbo in [6] and [8]. Though there is nothing in principle precluding the use
of the method in ℜ3, we will in this paper focus on the technically simpler 2D case.

3. The finite element method

Consider a subdivision Th = {Ki}i=1,nel
of a bounded domain Ω in ℜ2 with convex

polygonal boundary ∂Ω consisting of nel triangles with an internal polygonal interface
(crack) ΓC interior to Ω . Denote the set of triangles intersected by ΓC by Gh = {Ki ∈ Th :
Ki∩ΓC 6= ∅} see Figure 1. Since u is discontinuous over the interface ΓC there is no relation
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Figure 1. Left: The domain Ω with boundary conditions. Right: The FE
mesh associated to Gh and the element ahead of the cracktip (shaded).

between the degrees of freedom associated with u+ and u−. In the section considering the
implementation we will describe in detail how to create a FE mesh satisfying this condition.
As to the continuity of the solution across the last cracked element and the element ahead
of the cracktip (denoted ΓH), see Figure 2, we use a Nitsche [10] term to glue the FE mesh
together across ΓH. Alternatively, the jump at the cracktip can be set identical to zero by
changing the approximation as in Mergheim et. al [18].

The method reads: Find uh ∈ Vh such that

aN(uh,v) = L(v), ∀v ∈ Vh,(3.1)

where

aN(uh,v) =

∫

Ω

σ(uh) : ε(v) dx −
∫

ΓH

{σ(uh) · n} · [v] ds

−
∫

ΓH

[uh] · {σ(v) · n} ds +

∫

ΓH

δ

h
[uh] · [v] ds(3.2)

and

L(v) =

∫

Ω

f · v dx +

∫

ΓN

t · v ds(3.3)

As mentioned before, [w] represents the jump and {w} denotes a convex combination of
the argument across the considered interface, i.e. {w} = αw+ + (1−α)w− with α ∈ [0, 1]
Thus, in (3.2), we use a mesh dependent penalty method with added terms involving the
normal traction across ΓH to enforce continuity across ΓH. In contrast to the pure penalty
method, e.g. without the terms involving the normal tractions across ΓH, Nitsche’s method
is consistent and preserves the convergence rate for the underlying discretization. δ is a
penalty like term that is chosen such that the discrete system is positive definite. The
explicit values for δ and α is explained in the section considering the numerical examples.
Moreover, h is a mesh dependent parameter that is defined as in [7] but it is possible to
define the parameter different, for instance as the length of the edge, assuming a quasi-
uniform mesh.
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Figure 2. The cracktip intersects with ΓH (dotted). The mesh is ‘glued’
across ΓH using a Nitsche approach

4. The material forces in fracture mechanics

In the absence of material volume forces and inhomogeneities, the material (Newton-

Eshelby) stress Σ̃ is self-equilibrating

∇ · Σ̃ = 0 in Ω(4.1)

where the Newton-Eshelby stress is defined as

Σ̃ = W eI − HT · σ(4.2)

In (4.2) W e is the strain energy and H and σ are the displacement gradient tensor with
components Hij = ∂ui

∂xj
and the Cauchy stress tensor, respectively. Consider now an arbi-

trary subdomain A ⊂ Ω with boundary ΓA that surrounds the crack tip. We decompose
ΓA into its regular and singular parts, i.e., ΓA = Γr1 + Γr2+ + Γr2− + Γs, see Figure 3.
Starting from (4.1), we can single out the resultant material force acting on the crack tip
from the associated weak format

Fmat(w) =

∫

Γr

(Σ̃ · n) · w ds −
∫

A

H(w) : Σ̃ dx(4.3)

where Fmat is the material force associated to the test function w, see [11]. The material
force vector F mat, associated with the crack tip, is now obtained by using a w with first
x2-component equal to zero and then with x1-component equal to zero. Alternatively, one
can replace the virtual displacement vector w into a scalar function q, corresponding to
testing in the two directions at the same time. For a straight traction free crack that is
tested for a unit extension parallel to the cracktip we then recover the J-integral, see [11].

5. Implementation

At every step in the simulation process the following steps are carried out:

(1) Solve the governing equilibrium equations (2.1) using (3.1).
(2) Check if the crack propagation criteria are fulfilled and if so, compute the kink

angle and the increment in crack length.
(3) Update the FE structures and proceed to step 1
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Figure 3. Subdomain with regular (Γr = Γr1 + Γr2+ + Γr2−)
and singular Γs boundary.

For simplicity we will assume that the crack trajectory is well resolved by the mesh
density and at each crack increment, we let the crack propagate through the whole element
ahead of the cracktip.

5.1. Crack propagation algorithm. To handle the crack efficiently it is convenient to
store some kind of data structure that defines the crack properly. We have chosen to keep
track of the following data

(1) The crack polygon, i.e., material coordinates of the crack where the crack polygon
intersects with element boundaries.

(2) The elements that are cracked, i.e., all K ∈ Gh.
(3) The mapping of new degrees of freedom, to be further specified below.

5.1.1. Cutting elements and mapping degrees of freedom. A crucial step is to handle the
cracked elements properly such that new degrees of freedom are setup correctly. We will
in the following section describe the process in detail for a linear approximation on tri-
angles, the extension to higher order elements is straightforward using the same strategy.
Assume that we are given a crack polygon consisting of a set of material coordinates
xc = {xi}i=1,nc+1

where nc is the number of cracked elements in the mesh, see Figure 4.
We assume that the coordinates in xc are ordered so that x1 defines the current position
of the cracktip and pi is the vector through element i in Gh starting from xi+1 and ending
at xi. In case the crack is fully embedded in Ω and xnc+1

is also a cracktip coordinate the
following strategy also holds.
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Figure 4. Small FE mesh with three cracked elements (shaded) and the
corresponding crack polygon.

We now introduce a discontinuity over the crack polygon by splitting the shaded elements
into two subelements, geometrically composed by a triangle and a quadrilateral, as follows.
For each K ∈ Gh (loop over index i)

(1) Extract the degrees of freedom and the associated material coordinates for the
current cracked element.

(2) For each vertex vj, j = 1, nelementdofs in the current element, with the associated
material coordinates xv,j, decide if the vertex vj lies to the left or to the right of the
vector pi by computing the signed area as follows. Define the vector rj = xv,j−xi+1

and compute a(j) = 1

2
(p⊥r) where

v⊥w =

∣

∣

∣

∣

v1 w1

v2 w2

∣

∣

∣

∣

• a(j) > 0.0, vj is to the left of the vector pi.
• a(j) < 0.0, vj is to the right of the vector pi.
• a(j) = 0.0, vj is parallel to the vector pi.

(3) Introduce new degrees of freedom associated with the vertex that have not already
been taken care of (if i = 1, three vertices have to be considered).

(4) Finally, setup new degrees of freedom for the two subelements such that the conti-
nuity is preserved on both sides of the interface using the new degrees of freedom
and the degrees of freedom for previously cracked elements.

The final result can be seen in Figure 5 where we have introduced new degrees of freedom
at the cracked element vertices (denoted with i, j, k, l, m). The filled blacked vertices are
those where continuity is preserved whereas the black circles corresponds to the degrees of
freedom that must be created in order to obtain a linear approximation on each subelement.
Thus, each cracked element has got twice as many degrees of freedom as an uncracked
element.

5.1.2. The assembly process. The assembly process is carried out in three steps. First, we
integrate the elements K ∈ Ω \ Gh using the proper quadrature for the element approxi-
mation order. Next, we integrate the stiffness associated with elements K ∈ Gh as follows.
For each K ∈ Gh we have already subdivided the cracked element into two disjoint parts
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Figure 5. The final result obtained after splitting the elements and intro-
ducing new degrees of freedom.

K1 and K2, see Figure 6. The element stiffness associated with each cracked element is thus
assembled in two steps. For linear elements we simply multiply the subarea with the basis
functions evaluated at the geometrical midpoint. For higher order elements it is convenient
to use a quadrature rule and the integration is carried out based on the quadrature points
and weights associated with the chosen quadrature rule.

Figure 6. Quadrature on subelements

Remark: The FE approximation still relies on the initial triangulation and the geo-
metrical subelement will only influence the choice of quadrature rule. The geometrical
subelements can be 3 triangles and/or 1 triangle and 1 quad.

Finally, in order to obtain a continuous solution between the last cracked element and
the element ahead of the cracktip we use a standard approach due to Nitsche (3.1) to glue
the mesh together across ΓH, as mentioned earlier.
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5.1.3. Evaluation of the direction of crack propagation. After each solution step the crack
growth criteria and, if the crack should propagate, the kink angle must be determined.

Due to the discontinuity some care has to be taken in order to compute the material
force accurately. In the finite element setting we choose the subdomain A to coincide
with a few elements around the cracktip. We then choose the scalar function such that
q(x) = qh(x) = Σnq

nNn(x), where Nn is the basis function associated with the node at
x = xn. Hence, we obtain

F n
mat =

∫

Γr2+∪Γr2−

(Σ̃ · n)q ds −
∫

A

H(q) : Σ̃ dx(5.1)

Here, we let q(x) = 1 in a small neighborhood of the cracktip and let q decay within the
chosen domain until q = 0 at Γr1 .

The scalar function q associated with the chosen subdomain must be re-defined at each

Figure 7. Element indicators for the integration

step since the subdomain moves with the cracktip. To handle the moving subdomain we
use the following strategy:

(1) The nodes of the element ahead of the cracktip (marked with filled black circles in
Figure 7) are found.

(2) The neighboring elements that support these nodes are marked with indicator 1.
Within these elements we keep q constant.

(3) The next layer of neighboring nodes (marked with filled grey circles) are found
(4) The neighboring elements that supports these nodes, but are not already labeled

with indicator 1, are marked with indicator 2. Within this layer we let q decay to
zero.

The final result can be seen in Figure 7. Thus, for an efficient computation it is necessary
to have the coupling between neighboring nodes in the computational mesh. However,
since this information is also used for the graph of the sparse coefficient matrix there is no
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extra work. Alternatively, a similar approach can be used if only the element to element
neighboring information is at hand.

An obvious difference compared to the J-integral is that the contribution from the crack
faces cannot be neglected in case the crack faces is not parallel to the anticipated direction
of crack extension. Since the purpose is to have no pre-defined direction of crackgrowth
we always compute the contribution from the crack faces.

5.1.4. Crack increment. The final step is to propagate the crack through the element ahead
of the cracktip given a (normalized) direction of crack extension r.

(1) Compute the point of intersection (x1) between the vector C · r and the edges of
the triangle. C is a simple scaling factor such that there is an intersection.

(2) Update the crack data structure.

Figure 8. The intersection between the former cracktip x2 and the new
cracktip x1.

l
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6. Numerical examples

In this section we present three numerical examples that demonstrate the crack prop-
agation algorithm, implemented as described in the previous sections. First, we consider
a simple model problem of a single edged crack for which we compute and compare the
energy release rate with the analytical value. Secondly, a weak and a stiff inclusion problem
are considered. The final example demonstrates a more complicated loading case, taken
from the litterature, where a simply supported beam is subjected to a pointload.

In all examples, the parameter α is chosen such that the normal tractions are evaluated
from the uncracked element ahead of the cracktip. The parameter δ must be chosen high
enough to ensure stability of the method. In all examples δ was set to δ = C · (2µ + 3λ)
where C depends on the approximation order of the basis functions. For linear triangles
C = 2 was sufficient in all examples. If the material properties are different between the
last cracked element and the element ahead of the cracktip, we simply use the highest value
obtained from the two different materials. For an in depth discussion and mathematical
proofs concerning the choice of the parameter δ see [6], [8] and references therein. The
elastic properties are given in terms of Youngs modulus E and poissons ratio ν and we use
the relations

λ =
Eν

(1 + ν)(1 − 2ν)
(6.1)

λ =
Eν

1 − ν2
(6.2)

µ =
E

2(1 + ν)
(6.3)

where (6.1) and (6.2) are for plane strain and plain stress problems respectivily.
In example 2 and 3 we use a simple mesh refinement algorithm to increase the accuracy

of the computed kink angle. The elements that are marked with indicator 1, see Figure
7, are subdivided into four new triangles in two steps. Thus the original elements with
indicator 1 are subdivided into 16 new triangles. Due to the properties of the refinement
algorithm, the refinement is diffused through the grid such that no hanging nodes and no
sharp corners are obtained.

6.1. Single edged crack. Consider the single edged crack in Figure 9 subjected to a
modus I load with n · σ · n = σ0 = 1. The body is in plane stress and the elastic
parameters are E = 1.0 Pa and ν = 0.3. The dimensions of the body are W = 1.0 m and
h = 2.0 m. The stress intensity factor KI, representing the strength of the singularity at
the cracktip, is now obtained from

KI =
√

πa · f(a,W ),(6.4)

where f(a,W ) is a geometry factor. The relation between the stress intensity and the
energy release rate is

J =
K2

I

E
(6.5)
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The crack is initiated at x = (0.0, 1.0) and the initial crack length is set to a = 0.125
m. The energy release rate is evaluated, i.e. the material force vector projected in the
direction parallel to the crack, at each crack propagation step. In this example we consider
a straight traction free crack, thus σ · n = 0 on Γr2+ ∪ Γr2− and the contribution to the
energy release rate from the crack faces vanishes since the normal vector of the crack faces
is perpendicular to the anticipated direction of crack extension.

The results can be found in Figure 10 where the crack length a is plotted against the
analytic and computed value of the energy release rate from eq. (6.4) and (6.5).

s
0

s
0

2h

a

W

Figure 9. A single edged crack subjected to a modus I load.
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Figure 10. The computed value compared with the analytical value for the
energy release rate at crackgrowth.

Figure 11. The computational mesh for example 1.
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6.2. Stiff vs weak inclusion. As before, the single edge crack is initiated at the left
boundary and a weak (or stiff) inclusion with radius 0.1m is inserted at x = (0.75, 1.0) m.
The dimensions of the body are the same as in example 1 with W = 1.0 m and h = 2.0
m. The elastic modulus of the bulk body was set to E = 1000 Pa, the weak inclusion to
E = 1 Pa and the stiff inclusion to E = 1000000 Pa. The resulting crack trajectories can
be seen in Figure 12 and Figure 13. As seen in the figures, the crack tends towards the
weak inclusion and away from the stiff inclusion.

Figure 12. Crack trajectory for the weak inclusion.
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Figure 13. Crack trajectory for the stiff inclusion.
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6.3. Mixed mode conditions. The described strategy is applied to model the propaga-
tion of a crack initiated at the lower boundary of a beam, see Figure 14. The three holes
disturb the stress/strain field and give rise to curvilinear crack trajectories. This problem
has also been used by other researchers, see [1] and [2], who compared their computational
results with experiments. The crack paths were found to be highly dependent on the po-
sition of the initial crack. Therefore two different initial configurations were selected for
the two examples considered here. The plate is simply supported near the lower corners
and subjected to a concentrated load at the center of the upper edge. As in example 1,
the material parameters where set to E = 1 and ν = 0.3. A pointload P = (0,−1) was
applied at the center of the upper boundary.

Figure 14. Crack propagation trajectories for two different starting posi-
tions of the crack

Figure 14 shows the crack trajectories for two different starting positions of the crack.
The crack was initiated as a straight line cutting through five elemets before the simulation
started. The trajectories shows similar results as in [2]. However, the material parameters
in their paper was not presented.
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7. Concluding remarks and outlook

In this paper we have presented a FE method for the simulation of a propagating crack
under linear elastic conditions. We have described the implementation of the method in
detail and presented two model problems where the strategy seems to give accurate results.
The next step would be to incorporate a mixed FE method for the approximation of the
traction, i.e., contact (normal traction) and friction (tangential traction) between the crack
faces. The mathematical framework for incorporating a cohesive zone model has already
been considered by Hansbo and Hansbo in [8] where debonding of the interface, using
a linear elastic spring-type model, was implemented. For related work we also refer to
Mergheim et. al [18].
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