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IRREVERSIBILITY IN REVERSIBLE SYSTEMS I:THE COMPRESSIBLE EULER EQUATIONS IN 1DJOHAN HOFFMAN AND CLAES JOHNSONAbstra
t. This is the �rst part of a series, where we present a new approa
h to resolv-ing the 
lassi
al paradox of irreversibility in reversible Hamiltonian systems. We base oursolution on �nite pre
ision 
omputation in the form of General Galerkin G2, instead ofstatisti
al me
hani
s. In the present Part I we 
onsider as Hamiltonian model the Eulerequations for an invis
id 
ompressible perfe
t gas with fo
us on model problems in onespa
e dimension. We show that the irreversibility arsises be
ause G2 rea
ts by intro-du
ing a dissipative weighted least squares 
ontrol of the residual if the Euler equationsla
k solutions with pointwise vanishing residual, whi
h is the general 
ase be
ause of theappearan
e of sho
ks and/or turbulen
e. In parti
ular, we prove that the Se
ond Law ofThermodynami
s is a 
onsequen
e of the First Law of Thermodynami
s 
ombined withG2 �nite pre
ision 
omputation. 1. Introdu
tionThere are great physi
ists who have not understood it.(Einstein about Boltzmann's statisti
al me
hani
s)This is the �rst part of a series, where we present a new approa
h to resolving the 
lassi
alparadox of irreversibility in reversible Hamiltonian systems. We base our solution on �nitepre
ision 
omputation instead of statisti
al me
hani
s, whi
h is the standard approa
h.We thus stay within a deterministi
 Hamiltonian framework and only add a restri
tion of�nite pre
ision 
omputation, and we do not use any form of statisti
s. A World governedby Hamiltonian me
hani
s 
ombined with �nite pre
ision 
omputation, follows the laws ofme
hani
s as far as possible taking the �nite pre
ision into a

ount, but is not a game ofroulette as in statisti
al me
hani
s. The di�eren
e of s
ienti�
 paradigm is fundamental.Einstein expresses his reservation to statisti
al me
hani
s in: God does not play di
e. Weseek to follow this devi
e ourselves.In the present Part I we 
hoose as Hamiltonian model the Euler equations for an invis
id
ompressible perfe
t gas with fo
us on model problems in one spa
e dimension. In PartII we 
onsider the Euler equations for in
ompressible invis
id 
ow in three dimensions,Date: May 4, 2005.Key words and phrases. Irreversibility, The Se
ond Law of Thermodynami
s, Euler equations, GeneralGalerkin G2, turbulen
e, sho
k solution, Burger's equation.Johan Ho�man, Department of Applied Me
hani
s, Chalmers University of Te
hnology, S{412 96G�oteborg, Sweden, email : ho�man�math.
halmers.seClaes Johnson, Department of Applied Me
hani
s, Chalmers University of Te
hnology, S{412 96G�oteborg, Sweden, email : 
laes�math.
halmers.se. 1



2 JOHAN HOFFMAN AND CLAES JOHNSONand expand to 
ompressible 
ow in Part III. We 
ontinue in Part IV with a study ofthe kineti
 theory of gases. We hope to ultimately approa
h also quantuum me
hani
susing the same 
omputational deterministi
 point of view, again avoiding the 
onventionalstatisti
al interpretation. In the present introdu
tory Part I, we expose the basi
 ideas,with a 
ertain amount of repetion, from di�erent perspe
tives with the hope of this wayrea
hing a broader audien
e also outside 
omputational mathemati
s.The origins of irreversibility in reversible systems is a main unsolved mystery of me-
hani
s and physi
s. A Hamiltonian system is reversible in time and does not have apreferred (forward) dire
tion of time: From a given 
on�guration both the future and pastare equally well determined. The reversibility follows from the invarian
e of a Hamiltoniansystem under a 
hange of sign of time and velo
ity. It follows in parti
ular that lettinga Hamiltonian system evolve in time from an initial 
on�guration to a �nal 
on�gurationand there reversing the velo
ity and 
hanging the dire
tion of time, will bring the systemba
k to the initial 
on�guration. As a result, one may in Hamiltonian me
hani
s 
onstru
ta perpetuum mobile of the �rst kind, whi
h is a ma
hine that will run forever without
onsuming any energy. Both 
elestial me
hani
s and quantum me
hani
s are Hamiltonianand the motion of the planets in our Solar system as well as the ele
trons in an atomrepresent reversible perpetuum mobile of the �rst kind.On the other hand, in the real World there is a preferred dire
tion of time and we areall familiar with irreversible pro
essess in whi
h initial 
on�gurations 
annot be re
overed,and the impossibility of 
onstru
ting a perpetuum mobile of the �rst kind, as well as of these
ond kind supposed to reversibly 
onvert energy ba
k and forth from heat to me
hani
alwork without 
onsuming any net energy. The irreversibility is expressed in the Se
ondLaw of Thermodynami
s, whi
h states that in an isolated system a 
ertain s
alar quantity,named entropy, 
annot de
rease with time. As a 
onsequen
e, an isolated system be
omesirreversible if its entropy in
reases, sin
e time reversal would 
orrespond to de
reasingentropy, whi
h is impossible. In a Hamiltonian system the entropy is equal to minus thetotal energy being the sum of kineti
 and potential energy, and energy 
onservation re
e
tsreversibilty and entropy 
onstan
y. The observation that a perpetuum mobile of the se
ondkind seems impossible, be
ause 
onverting me
hani
al energy into heat does not seem tobe fully reversible, indi
ates the existen
e of real pro
esses whi
h are irreversible and thusnot Hamiltonian. Dropping a stone to the ground will 
onvert its potential energy intoheat making the stone warmer, but the reverse pro
ess of the stone lifting itself by getting
older, is impossible. The question is why?So if now the World ultimately is governed by reversible Hamiltonian (quantuum) me-
hani
s, the s
ienti�
 
hallenge thus be
omes to explain how irreversibility may arise insystems based on reversible Hamiltonian me
hani
s. In the late 19th 
entury when theexisten
e of an Aether �lling empty spa
e was still 
ontemplated, the irreversibilty wassuggested to possibly result from some small vis
osity of the Aether, but sin
e no one
ould ever dete
t any Aether, this belief faded. Similarly, the idea of putting in just atiny bit of fri
tion (
oming from somewhere) to explain irreversibility, is not 
onvin
ing,sin
e then the planets and ele
trons would be 
onstantly retarding a little bit, but theydon't seem to do that. And if there would be some fri
tion in some system, the 
hallenge



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 3would be to explain how fri
tion 
an arise in a system governed by Hamiltonian reversibleme
hani
s without fri
tion. Thus the irreversibility paradox 
an be phrazed: How 
anthere be fri
tion in a system without fri
tion?Another attempt to explain irreversibility in a ma
ros
opi
 system based on reversiblemi
ros
opi
 me
hani
s, 
laims that irreversibility is simply a result of perspe
tive, wherethe ma
ros
opi
 irreversibility would be a 
onsequen
e of a (possibly subje
tive) ma
ro-s
opi
 view. The basi
 prin
iple is then stated as an irreversible tenden
y of a ma
ros
opi
system to pro
eed from ordered to less ordered states, for some reason yet to explain, whilemi
ros
opi
ally the same system would be reversible. Moreover, the subje
tivity in thisapproa
h does not harmonize well with a desired s
ienti�
 obje
tivity. Although this typeof reasoning has be
ome quite popular, it does have several weak points, as indi
ated. Inparti
ular, no answer is o�ered to the question how initial ordered states 
an o

ur, ifprogress always is towards less order.In Boltzmann's kineti
 theory of gases the mystery shows up in the form of Los
hmidtsparadox: Kineti
 theory is based on a model of a gas as a reversible Hamiltonian system ofvery many mole
ules in the form of very small rigid spheres intera
ting by elasti
 
ollisions,yet Boltzmann's equation is irreversible. >From Translators Foreword to Le
tures on GasTheory by Boltzmann [2℄, we 
ite: There is apparently a 
ontradi
tion between the lawof in
reasing entropy and the prin
iples of Newtonian me
hani
s, sin
e the latter do notre
ognize any di�eren
e between past and future times. This is the so-
alled reversibilityparadox whi
h was advan
ed as an obje
tion to Boltzmann's theory by Los
hmidt 1876-77.Los
hmidts paradox for
ed Boltzmann to invent statisti
al me
hani
s, whi
h is an expan-sion of deterministi
 Hamiltonian me
hani
s using 
on
epts from statisti
s and probability.In expanding Hamiltonian deterministi
 me
hani
s by statisti
s, Boltzmann assumed thata gas as a system of elasti
ally 
olliding rigid spheres, would tend to evolve from less prob-able towards more probable states, whi
h would de�ne a preferred dire
tion of time andresult in irreversibility. The assumption of Boltzmann 
an alternatively be expressed asstatisti
al independen
e of mole
ules before 
ollisions, but not after, whi
h again de�nesa preferred dire
tion of time and results in irreversibility. In Boltzmann's words from [2℄the assumption is formulated: Ea
h mole
ule 
ies from one 
ollision to another one so faraway that one 
an 
onsider the o

uren
e of another mole
ule, at the pla
e where it 
ollidesthe se
ond time, with a de�nite state of motion, as being an event 
ompletely independent(for statisti
al 
al
ulations) of the pla
e from whi
h the �rst mole
ule 
ame (and similarlyfor the state of motion of the �rst mole
ule).Cer
igniani writes in his Boltzmann biography [1℄: The answer to Los
hmidt's paradox isroughly as follows: If one obeys the laws of me
hani
s, one 
an use the equation to \predi
t"either the future or the past. When deriving the Boltzmann equation we expressed thedistribution fun
tions 
orresponding to an after
ollision state in terms of the distributionfun
tion 
orresponding to the state before the 
ollision, rather than the latter in terms ofthe former. It is 
lear, however, that that this 
hoi
e introdu
ed a 
onne
tion with theeveryday 
on
epts of past an future whi
h are extraneous to mole
ular dynami
s. In otherwords, we prepared the way to a de�nition of these 
on
epts on the basis of the statisti
albehaviour of many-parti
le systems.



4 JOHAN HOFFMAN AND CLAES JOHNSONThe irreversibility is expressed in Boltzmann's famous H-Theorem stating that a 
er-tain s
alar quantity denoted by H (whi
h with a 
hange of sign is an entropy) de�nedfor a solution to Boltzmann's equation, 
annot in
rease. Boltzmann 
laims in response toLos
hmidts paradox: If at an intermediate stage we reverse all velo
ities, we get an ex
ep-tional state where H in
reases for a 
ertain time and de
reases again. But the existen
e ofsu
h 
ases does not disprove our theorem. On the 
ontrary the theory of probablity iteselfshows that the probability of su
h 
ases is not mathemati
ally zero, only extremely small.In the Stanford En
y
lopedia of Philosophy we read: Boltzmann's responses to the re-versibility obje
tions are not easy to make sense of, and varied in the 
ourse of time. Inhis immediate response to Los
hmidt he a
knowledges that 
ertain initial states of the gaswould lead to an in
raese of the H-fun
tion, and hen
e a violation of the H-Theorem. The
rux of this rebuttal was that su
h initial states were extremely improbable, and 
ould safelybe ignored.... This rebuttal is far from satisfa
tory.Boltzmann's statisti
al me
hani
s was met with mu
h s
epti
ism by e.g. Maxwell andEinstein. Maxwell states: By the study of Boltzmann I have been unable to understandhim. He 
ould not understand me on a

ount of my shortness, and his length was andis an equal stumbling-blo
k to me. Hen
e I am very mu
h obliged to join the glorious
ompany of supplanters and to put the whole business in about six lines. Einstein expresseshis reservations in the quote in the Introdu
tion. Neither 
ould Karl Popper a

ept the ideaof explaining irreversibility by statisti
al me
hani
s and suggested instead a 
onne
tion toradiation, but did not develop 
onvin
ing details.Boltzmann's idea about natures preferen
e to move from less towards more probablestates seems to be seriously 
ir
ular (a motion from a probable to a less probable statewould not seem very probable, would it?), and Boltzmann's assumption of statisti
al inde-penden
e before 
ollision (also referred to as \mole
ular 
haos"), has been diÆ
ult to eitherverify or disprove. However, today it should be possible to 
he
k if Boltzmann's assumptionis valid or not by very 
areful 
omputation in Hamiltonian parti
le systems, and we willpresent the results of su
h a study in [9℄. Moreover, the fa
t that even Boltzmann himselfa
knowledges that his H-theorem sometimes is violated, although he 
laims this only 
ano

ur for very spe
ial (rare) inititial 
onditions, of 
ourse is potentially 
atastrophi
al froma s
ienti�
 point of view. If Newton's apple o

asionally would not fall down, there wouldseem to be some serious 
aw in his universal theory of gravitation. Neverheless, la
kingany other 
onvin
ing explanation of the appearan
e of irreversibility in reversible systems,statisti
al me
hani
s has not only survived into our time, but also opened the way to thestatististi
al interpretation of quantuum me
hani
s with the modulus of the wave fun
tionsquared supposedly expressing the probability of �nding ele
trons at spe
i�
 lo
ations inspa
e/time.In 1993 Evans, Cohen and Morriss ta
kled the paradox in their Flu
tuation Theoremagain using statisti
al methods. Evans et al suggest that the Se
ond Law may be violatedfor small mi
ros
opi
 systems, while it would still hold ma
ros
opi
ally for large systemswith a very high probability.Altogether, as far as we 
an understand, the true origins of irreversibility in reversiblesystems has not been given a s
ienti�
ally 
onvin
ing explanation. The literature is vast



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 5with 
ontributions from mathemati
ians, physi
ists, 
hemists, engineers, philosophers, lin-guists, authors of s
ien
e �
tion and the general publi
.2. Finite Pre
ision ComputationWe now fo
us on the new mode of explanation based on �nite pre
ision 
omputation,whi
h we advo
ate. The �nite pre
ision 
omputation appears in two forms: First, itne
essarily appears in digital solution of Hamiltonian equations using 
omputers. Se
ondly,it probably appears also in Natures evolution in time from one state to the next in someform of analog 
omputation. In this note we fo
us on �nite pre
ision 
omputation fromdigital solution of the Hamiltonian equations using 
omputers, but we also spe
ulate aboutpossible forms of �nite pre
ision analog 
omputation in Nature.The solution of the paradox of irreversibility in reversible system based on �nite pre
ision
omputation, is not trivial in the sense that it may be blamed simply on something likeround-o� errors in digital 
omputing or the inevitable approximations in solving di�erentialequations numeri
ally. This would be similar to explaining irreversibility as an e�e
t of aslightly vis
ous Aether, a mode of explanation we have already reje
ted.The solution of the paradox is mu
h deeper and more fundamental and dire
tly 
ouplesto our re
ent work on 
omputational turbulen
e exposed in [6℄. In short, the se
ret we un-
over is the following: We 
onsider a set of Hamiltonian equations des
ribing the evolutionin spa
e/time of a 
ertain system in Nature. We seek to solve the equations 
omputa-tionally using a numeri
al method implemented on a 
omputer. Doing so we meet twodi�erent situations: In the �rst 
ase, whi
h is the simple standard 
ase without surprise,the Hamiltonian equations have pointwise solutions whi
h are 
omputable, and if so wesimply 
ompute these solutions and �nd them to be reversible. A pointwise solution hasa residual whi
h is pointwise zero, obtained by inserting the solution in the equation, andwe 
an 
ompute approximate solutions with residuals being small pointwise. A

ordingly,
omputed solutions are approximately reversible by the reversible nature of the equationsthey are approximately solving pointwise.In the se
ond 
ase, whi
h 
ontains the se
ret, the Hamiltonian equations do not admitpointwise solutions, whi
h means that there simply are no (stable) solutions with resid-ual being zero pointwise. This re
e
ts the appearan
e of small s
ale phenomena su
h asturbulen
e and/or sho
ks in the 
ase of invis
id 
uid me
hani
s, whi
h represents a basi
example of Hamiltonian me
hani
s. In this se
ond 
ase the 
omputational method 
annotprodu
e an approximate solution with small pointwise residual, and the 
omputationalmethod we are using rea
ts by produ
ing an approximate solution for whi
h the residual issmall in a weak average sense 
ombined with a 
ertain weighted least squares 
ontrol of theresidual, whi
h turns out to be possible to a
hieve. We refer to the numeri
al method withthis property as General Galerkin or G2. In the 
ase the Hamiltonian equations do notadmit pointwise solutions, whi
h may 
orrespond to the appearen
e of turbulen
e and/orsho
ks, G2 thus produ
es an approximate solution with the residual being small in a weaksense and with a 
ertain weighted least squares 
ontrol of the size of the pointwise residual,while the pointwise residual itself is not small.



6 JOHAN HOFFMAN AND CLAES JOHNSONWe shall see that this is about the best that 
an be done in the situtation when theHamiltonian equations do not admit pointwise solutions, but it turns out to be good enoughif we as quantities of interest or output quantities 
hoose 
ertain mean values of the solution,rather than point values. In the 
ase the Hamiltonian equations do not admit pointwisesolutions, 
orresponding to turbulen
e/sho
ks, we 
an thus nevertheless by G2 
ompute
ertain mean value outputs a

urately. From a physi
ally point of view, we may say thateven though the Hamiltonian equations 
annot be satis�ed pointwise, they 
an be satis�edin an average sense with the pointwise residual not being too large, and that is enough forthe system to evolve. The pointwise violation but average satisfa
tion of the Hamiltonianlaws in this sense, 
orresponds to a physi
al system in pointwise non-equilibrium, but inaverage lo
al equilibrium with some 
ontrol of the pointwise non-equilibrium. In su
h aphysi
al system the laws of physi
s serve as goals, whi
h 
annot be satis�ed pointwise,and the sear
h of satisfa
tion in a suitably approximate sense is what drives the evolutionof the system. It is like the Law in our so
iety, whi
h is never followed pointwise by all
itizens, only in some average sense, but yet has the important role to se
ure that so
ietydoes not fall apart.Now, the 
at
h is that the weighted least squares 
ontrol of the residual in G2 adds adissipative term in an energy balan
e, whi
h e�e
tively makes the system irreversible. Itis thus the appearan
e of turbulent/sho
k small s
ales and the resulting impossibility of
omputing solutions with pointwise small residuals, whi
h ne
essarily introdu
es the irre-versibility. Fa
ing the impossibility of pointwise solution, the system rea
ts by produ
ingan approximate solution in whi
h some of the energy is lost in a dissipative least squaresterm implying irreversibility. Moreover, the size of the dissipation and the energy loss doesnot de
rease with in
reasing pre
ision: In turbulen
e the dissipation always o

urs on the�nest s
ales available, but the total amount of the turbulent dissipation (turning into heat),stays (approximately) 
onstant under s
ale re�nement. A sho
k in 
ompressible 
ow hasa similar nature. Mean value outputs thus show an independen
e of the s
ale of resolutionin the 
omputation, while pointwise solution is impossible even if the 
omputational s
aleis re�ned inde�nitely.Our proposal for solution 
onne
ts to the following s
enario presented by the always vi-sionary Leibniz: I had maintained that the vis viva (live for
e or momentum) are 
onservedin the world. It has been obje
ted that in a 
ollision two soft or inelasti
 bodies would loosetheir live for
e. I answer that things are not so. It is true that the bodies as a whole looseit as far as their total motion is 
on
erned, but their parts a
quire it, be
ause the 
ollisionstrength 
reates an inner agitation. Thus this loss is only apparent. The for
es are notdestroyed, but everything goes as if somebody wanted to 
hange a 
oin into smaller pie
es.The basi
 idea is thus that in 
ertain Hamiltonian pro
esses ne
essarily small s
alefeatures in the form of turbulen
e/sho
ks appear, and when fa
ed with these small un-resolvable s
ales, whi
h physi
ally 
orrespond to heat, the system rea
ts by introdu
inga dissipative least squares 
ontrol of the residual, whi
h implies irreversibility in whi
hthe small s
ales 
annot be re
overed. Thus, in turbulen
e/sho
ks, large s
ale me
hani
alenergy may be turned into small s
ale motion, 
orresponding to generation of heat, and



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 7this pro
ess is irreversible sin
e the details of the small s
ales 
annot be kept and thus
annot be re
overed.The key here is to realize that the dissipative damping (i) is ne
essary, (ii) is substantial,(iii) is not a numeri
al artifa
t whi
h 
an be diminished by in
reasing the pre
ision. Thekey new fa
t behind (i)-(iii) is the non-existen
e of solutions to the Hamiltonian equations!The appearan
e of turbulen
e/sho
ks in invis
id 
ompressible 
ow is an example of anirreversible pro
ess satisfying (i)-(iii), where inevitably and irreversibly energy is turnedinto heat. As is well known, a sho
k solution is not a pointwise solution to the Eulerequations. As we will show, neither turbulen
e 
orresponds to a pointwise solution.One may ask why the non-existen
e of pointwise solutions, has to result in dissipationin approximate solutions? An answer is that anyway this is the way G2 works, and G2
orresponds to a best approximate solution in 
ases when exa
t solution is impossible. G2 isdesigned so as to satisfy the mathemati
al equations expressing the physi
al laws in a weakaverage sense, whi
h is ne
essary, 
ombined with a weighted least squares 
ontrol of thepointwise residual, where the weight is 
hosen so that mean value outputs are maximally
orre
t. Thus, one may say that G2 handles the non-existen
e of an exa
t solution as wellas possible, and that in
ludes a dissipative least squares 
ontrol of the pointwise residual.One 
ould of 
ourse hope that Nature handles the situation equally well, but further studiesto settle this issue are 
learly required. At least there is G2 model to look for.One may view the least squares dissipation as a �ne paid be
ause the laws of the systemare violated. Ne
essarily a �ne has to represent a postive 
ost. If we would get paid bybreaking the Law, so
iety would qui
kly 
ollaps.
3. The Se
ond Law of Thermodynami
sWe may summarize our results as proving that the Se
ond Law of Thermodynami
s is a
onsequen
e of the First Law of Thermodynami
s (whi
h expresses 
onservation of energy)
ombined with �nite pre
ision 
omputation. We may thus propose a new foundation ofgas dynami
s based on deterministi
 me
hani
s expressed by the First Law 
ombined with�nite pre
ision 
omputation, as opposed to a usual foundation with the Se
ond Law as anadditional postulate.Finite pre
ision 
omputation of 
ourse appears in digital solution of the di�erentialequations of deterministi
 me
hani
s, but it ne
essarily also has to appear in some formin the analog 
omputation performed in the physi
s of the real World. We may analyzethe 
onsequen
es of �nite pre
ision 
omputation of digital solution, and then seek to �ndanalogs in physi
s.This brings us ba
k to a deterministi
 World as a giant Clo
k in the spirit of Lapla
e,but our Clo
k has �nite pre
ision and that 
hanges the game. In parti
ular, it takes us outof the 
lassi
al paradox of the existen
e of free will in a deterministi
 World. With �nitepre
ision 
omputation, the future is no longer fully determined by the present, and thereis room for something like a free will. And there are ne
essarily irreversible pro
essess.



8 JOHAN HOFFMAN AND CLAES JOHNSONGoogle gives 160.000 hits sear
hing on \Se
ond Law of Thermodynami
s", while \FirstLaw of Thermodynami
s" gives 70.000, whi
h gives an indi
ation of the mystery surround-ing the Se
ond Law. 4. The Euler Equations for Fluid FlowThe Euler equations for 
ompressible invis
id 
ow may be viewed to model a very large
olle
tion of \
uid parti
les" following Newton's Se
ond Law subje
t to a pressure for
egiven by the state equation of a perfe
t gas. This is a Hamiltonian reversible system,whi
h may formally be obtained by taking moments (averages) of Boltzmann's equation ofa gas (with no 
ontribution from the 
ollision term). As a spe
ial 
ase we have the Eulerequations for an in
ompressible 
uid des
ribing a spe
ial 
ow regime in
luding turbulen
ebut not sho
ks.It is known that the 
ompressible Euler equations in general la
k pointwise solutions, inparti
ular be
ause sho
ks develop but also be
ause of turbulen
e. Neither do the in
om-pressible Euler equations in general have pointwise solutions be
ause of turbulen
e. Thus,both 
omputation and Nature will have to go for suitable approximate solutions of theEuler equations. Computation will then rely on G2, with presumably Nature resorting tosomething similar, whi
h inevitable (be
ause of the least squares residual 
ontrol in G2)will introdu
e a dissipative e�e
t implying irreversibility.We thus have a situation, where the equations we want to solve have no exa
t pointwisesolutions (or if they have, then they are unstable), while the turbulent/sho
k solutionswhi
h do exist in fa
t only are approximate weak solutions and not pointwise solutions,and moreover these approximate solutions ne
essarily have a dissipative 
hara
ter resultingin irreversibility. The paradox of irreversibility in a formally reversible Hamiltonian systemis thus a 
onsequen
e of the non-existen
e of stable laminar/sho
k-free pointwise (strong)solutions to the Euler equations, whi
h would have been reversible if they had only existed,and the dissipative nature of the turbulent/sho
k approximate weak solutions, whi
h doexist 
omputationally and and for whi
h mean value outputs 
an be a

urately 
omputed.We note that the non-existen
e of exa
t solutions, strong or weak, 
hanges the waymathemati
s for the Euler equations 
an be presented: With non-existent exa
t solutions,the attention has to move to existing approximate solutions, and thus the 
omputationalaspe
t takes a prime position before analyti
al mathemati
s.The non-existen
e of pointwise solutions to the Euler equations, whi
h may be viewedas a failure of mathemati
s, in fa
t may be turned around into an advantage from a
omputational point of view: If there were an exa
t solution, one 
ould always ask for morepre
ision in 
omputing this solution requiring �ner resolution and higher 
omputational
ost, but if there is no exa
t solution, then we 
ould be relieved from this demand beyonda 
ertain point. A key feature in this situation is that the absolute size of the �ne s
alesno longer are important, and this 
ould save 
omputational work. We know that there arearound 1023 mole
ules in a mole of gas, but it is likely that we 
an 
omputationally modelgas dynami
s with instead say 106 degrees of freedom.



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 9We will also see that the pointwise non-solvability of the invis
id Euler equations re
e
tthe presen
e of small s
ale turbulen
e/sho
ks in slightly vis
ous 
ow, with a passage tothe limit of vanishing vis
osity being impossible.In order for a Hamiltonian system to develop turbulen
e, it has to be ri
h enough indegrees of freedom. In parti
ular, the in
ompressible or 
ompressible Euler equationsin less than three spa
e dimensions are not ri
h enough, even if the mesh is very �ne.On the other hand, turbulen
e invariably develops in three dimensions if the vis
osity issmall or zero. Our experien
e with turbulent solutions of the in
ompressible Navier-Stokesequations indi
ates that a mesh with 100.000 mesh points in spa
e may suÆ
e in simplegeometries, while in more 
omplex geometries millions, but not billions, of mesh pointsmay be needed. 5. Compressible Euler Equations in 1dThe Euler equations in one spa
e dimension (1d) modeling the 
ow of a 
ompressibleinvis
id perfe
t gas in an in�nite tube along the real axis R, take the following form: Findu = (�;m; e) depending on (x; t) su
h that(5.1) _�+ (w�)0 = 0; x 2 R; t 2 R+ ;_m+ (wm+ p)0 = 0; x 2 R; t 2 R+ ;_e + (we+ pw)0 = 0; x 2 R; t 2 R+ ;u(x; 0) = u0(x) x 2 R;where u0(x) is a given initial 
ondition, R+ = ft 2 R : t > 0g, � is the density, m = �wthe momentum with w the velo
ity, e the total energy being the sum of the kineti
 energy�w2=2 and the internal energy in the form of heat measured by temperature, and p is thepressure given by the state equations for a perfe
t gas p = (
 � 1)(e � m2=(2�)), where
 > 1 is a 
onstant. Further, _v = �v�t and v0 = �v�x . We assume that u(x; t) tends to zero asjxj tends to in�nity.The system of equations (5.1) may be written in ve
tor form as(5.2) _u+ (f(u))0 = 0; x 2 R; t 2 R+ ;u(x; 0) = u0(x) x 2 R;where f(u) = (w�;wm + p; we + pw) is the 
ux ve
tor, whi
h expresses 
onservation ofmass, momentum and energy, where the momentum equation 
orresponds to Newton'sSe
ond Law with p0 representing the net for
e on a 
uid element from the pressure, and inthe energy equation (pw)0 represents the work from the pressure a
ting on a 
uid element.Here w�, wm and we are the 
onve
tive 
uxes of the mass, momentum and energy, and p0and (pw)0 are 
uxes related to the pressure. We also refer to an equation of the form (5.2)as a 
onservation law.The Euler equations (5.2) express 
onservation in pointwise (strong) form as R(u) � _u+(f(u))0 = 0 in R�R+ , asking u to be a di�erentiable and in parti
ular 
ontinuous pointwisesolution with residual R(u) vanishing pointwise. The Euler equations are Hamiltonian andformally reversible in the sense that a 
hange of sign of time t and velo
ity w leave theequations un
hanged.



10 JOHAN HOFFMAN AND CLAES JOHNSONThe Euler equations have 
onservation form, sin
e they express 
onservation, whi
hmeans that a notion of weak solution 
an be introdu
ed as follows: Multiply R(u) = 0with a smooth test fun
tion ' = ('1; '2; '3) vanishing for t = 0 and large (x; t), integratein spa
e/time, and then integrate by parts to move all spa
e and time derivatives ontothe smooth test fun
tion '. We 
an then express the Euler equations in weak form as(R(u); ') = 0 for all smooth test fun
tions ', where (�; �) indi
ates integration in spa
e-time, and ' 
arries the derivatives. For example, mass 
onservation takes the weak form�(�; _'1)�(w�; '01) = 0 for all smooth test fun
tions '1. A

ordingly, we say that a boundedfun
tion u(x; t), whi
h thus may be dis
ontinuous, is a a weak solution if (R(u); ') = 0 forall smooth test fun
tions ', and it suitably satis�es the initial 
ondition.The fun
tion � = �(u) = � log(p��
) is a mathemati
al entropy for the Euler equations,whi
h means that �(u) is a 
onvex fun
tion of u, and there is a 
orresponding entropy 
uxq(u) = w� su
h that if u is a pointwise (strong) solutions, then_� + (w�)0 = 0 in R � R+ :This equation follows by multiplying the residual equation R(u) = 0 by the Ja
obianD�(u)of �(u) with respe
t to u, and using the 
ompatibility relationDq(u) = D�(u)Df(u). Moregenerally, weak solutions of the Euler equations 
orresponding to physi
ally admissiblesolutions, satisfy the entropy inequality_� + (w�)0 � 0 in R � R+ ;in weak form, whi
h expresses the Se
ond Law of Thermodynami
s. Here �� 
orrespondsto the physi
al entropy. The important feature to noti
e here is that pointwise solutionssatisfy the entropy inequality with equality, and they 
orrespond to reversible solutionswith 
onstant entropy, while weak solutions with stri
tly de
reasing entropy 
orrespond toirreversible solutions.It is well known that 
ompressible invis
id 
ow in general develops sho
ks, whi
h in1d 
orrespond to dis
ontinuous weak solutions of the Euler equations with sudden sharpjumps from one state to another, and whi
h in 3d probably also has a turbulent regionaround the jump. Sho
k solutions satisfy the entropy inequality with stri
t inequality, andthus sho
ks are irreversible.We 
on
lude that the 
ompressible Euler equations o�er an example of a system whi
his formally reversible, but nevertheless has irreversible solutions. Clearly, it is the existen
eof sho
ks/turbulen
e, whi
h are not pointwise solutions to the Euler equations, whi
h openfor this s
enario. Thus, it is the non-existen
e of pointwise solutions, whi
h 
auses the irre-versibility. We note that the irreversibility is unavoidable be
ause sho
ks are unavoidable.The 
ompressible Euler equations in 1d o�er a model of irreversibility in the form of sho
kswithout the presen
e of turbulen
e. We use this model in Part I to expose the prin
ipalideas, and 
onsider the real 
ase with turbulen
e in 3d in Part II-III.Now we approa
h this phenomenon of irreversibility in a formally reversible system froma purely 
omputational point of view. We will show that if we use G2 to 
ompute solutionsto the Euler equations, then G2 will automati
ally single out physi
ally admissible entropysolutions, without expli
itely enfor
ing the entropy 
ondition. We shall see that this is a



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 11result of the least squares 
ontrol of the pointwise residual and the 
oupling of residual
ontrol to the entropy inequality.We may interprete these G2 results in physi
al terms as follows: Nature seeks to satisfythe 
onservation laws expressesd by the Euler equations. When sho
ks appear, whi
h isinevitable, the equations 
an no longer be satis�ed pointwise, be
ause sho
ks are dis
on-tinuous, and Nature then seeks to handle this situation by resorting to something like G2involving a weak satisfa
tion of the 
onservation laws 
ombined with a 
ertain 
ontrol ofthe pointwise residual. The result is that Nature produ
es a solution whi
h satis�es theentropy 
ondition or the Se
ond Law of Thermodynami
s, whi
h follows from what weshow for G2 below. Of 
ourse the key point here is that Nature in this way a
hieves tosatisfy the Se
ond Law, not by expli
itly seeking to do so, but as a result only of solvingthe original 
onservation equations by G2.Again, Nature may be supposed to dire
tly rea
t to the 
onservation laws, but it is notlikely that Nature has any dire
t sensor of entropy. Thus, from a s
ienti�
 point of viewthe 
ru
ial point is to explain how Nature 
an be for
ed to satisfy the entropy inequality,without knowing anything about it. We show that this is a
hieved automati
ally by solvingthe 
onservation laws by something like G2.It is known that adding a small vis
ous term in the Euler Equations to get the Navier-Stokes equations, is a way to automati
ally satisfy the entropy inequality in the limit ofvanishing vis
osity, as a 
onsequen
e of the 
onservation laws. As indi
ated above, we donot 
onsisder this approa
h s
ienti�
ally satisfying, sin
e the nature of su
h a vis
osity infa
t is the essen
e of the mystery of irreversibility in reversible systems.We have noted that a key point is the automati
 satisfa
tion of the entropy inequality byG2. In parti
ular, it means that G2 will never 
ompute a weak solution whi
h 
orrespondsto a physi
ally non-admissible sho
k violating the entropy inequality. Another way ofexpressing the non-physi
al nature of a sho
k violating the entropy 
ondition would be tosay that it is unstable, and that G2 will prefer to 
ompute stable entropy satisfying weaksolutions before unstable entropy violating weak solutions. Computing a sho
k ba
kwardsin time would 
orrespond to 
omputing an entropy violating sho
k, and this 
omputationwould be unstable, be
ause the stabilizing term is destabilizing when 
omputing ba
kwards.Thus we may express the entropy inequality satisfa
tion built into G2 as a result of thestabilizing least squares term whi
h, by its stabilizing nature, will 
hoose a stable solutionsatisfying the entropy 
ondition before an unstable solution violating the entropy 
ondition.There is thus a 
lose 
onne
tion between stability and the entropy inequality.The impossibility of solving a sho
k problem ba
kwards, whi
h 
orresponds to the im-possibility to re
over all the heat generated in a sho
k and irreversibility, thus may beviewed as a re
e
tion of instability. If the instability 
ould be 
ontroled, 
omplete re
ov-ery and reversibility would be possible, but su
h a minute 
ontrol (
orresponding to theMaxwell Demon) seems impossible, with the simple reason is that heat is a small s
alephenomenon.



12 JOHAN HOFFMAN AND CLAES JOHNSON6. A S
enario of IrreversibilityThe 
ompressible Euler equations o�er a s
enario of irreversibility in a formally reversiblesystem in the form of dis
ontinuous sho
k solutions, whi
h have been studied intensivelysin
e the 1940s when von Neumann during the war initiated a study of the mathemati
sand numeri
s of high speed gas dynami
s. A sho
k solution satis�es the Euler equationsin a weak sense, but not in a pointwise sense, while it also satis�es an entropy inequal-ity 
orresponding to the Se
ond Law of Thermodynami
s stating that the mathemati
alentropy of a (physi
al) solution 
an never in
rease (with the mathemati
al entropy beingequal to minus the physi
al entropy). Smooth solutions have 
onstant (mathemati
al) en-tropy, while the entropy for sho
ks is stri
tly de
reasing, whi
h e�e
tively makes a sho
kirreversible, sin
e time reversal would 
orrespond to a sho
k solution with in
reasing en-tropy. Thus, sho
k solutions for the Euler equations represent a well studied phenomenonof irreversibility in a formally reversible system.However, one may ask how in fa
t Nature su

eds to satisfy the entropy 
ondition,whi
h is a dire
t 
onsequen
e of the 
onservation laws for smooth solutions, but not forweak solutions. In fa
t, there are so 
alled unphysi
al sho
ks, whi
h are weak solutionsof the Euler equations violating the entropy 
ondition, and one may ask what Naturesme
hanism of preferring sho
ks satisfying the entropy inequality may be? The standardanswer to this question is to add a small amount of vis
osity to the Euler equations and showthat limits of vis
ous solutions as the vis
osity tends to zero, satisfy the entropy inequality.The argument would then be that Nature always has some vis
osity, although very small,and the presen
e of this vis
osity would be the me
hanism 
hoosing the entropy solution.However, again the physi
al origin of this vis
osity would then have to be explained, andwe would again have to deal with some small (mysterious) fri
tion or vis
osity in someAether �lling empty spa
e, whi
h we seek to avoid.We give in this note instead an alternative answer to this question using the basi
 prop-erty of G2 by showing that G2 solutions of the Euler equations automati
ally satisfy theentropy inequality (approximately). We thus show that for G2 the satisfa
tion of the en-tropy inequality is a 
onsequen
e of the weak satisfa
tion of the 
onservation laws 
ombinedwith the weighted least squares 
ontrol of the residual. G2 would thus not be 
apable of
omputing an unphysi
al entropy-violating solution. This puts the entropy inequality andthe Se
ond Law of Thermodynami
s in new light: Spe
i�
ally we show that the Se
ondLaw may be viewed as a 
onsequen
e of the First Law expressing the 
onservation law
ombined with �nite pre
ision G2 
omputation. This indi
ates that Nature would satisfythe entropy inequality automati
ally by using an analog 
omputation similar to G2, thuswithout expli
it presen
e of vis
osity as in the standard argument. Altogether, we showthat the Se
ond Law is a 
onsequen
e of the First Law 
ombined with G2 �nite pre
ision
omputation. 7. Imperfe
t Nature and Mathemati
s?How are we to handle the fa
t that the Euler equations do not have pointwise solutions ingeneral? Does this express an imperfe
tion of mathemati
s? And what is the 
onsequen
e
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s? Is Nature simply unable to satisfy the basi
 laws laid down in the form of e.g.Newton's Se
ond Law? Does this mean that also Nature is imperfe
t? And if now bothmathemati
s and Nature indeed are imperfe
t, what is the degree of imperfe
tion and howdoes it show up?We may make a parallel with the squareroot of twop2, whi
h is the length of the diagonalin a square with side length 1. We know that the Pythagoreans dis
overed that p2 is not arational number. This knowledge had to be kept se
ret, sin
e it indi
ated an imperfe
tion inthe 
reation by God formed as relations between natural numbers a

ording the basi
 beliefof the Pythagoreans. Eventually this unsovable 
on
i
t ruined their philosophi
al s
hooland gave room for the Eu
lidean s
hool based on geometry instead of natural numbers.Civilization did not re
over until Des
artes resurre
ted numbers and gave geometry analgebrai
 form, whi
h opened for Cal
ulus and the s
ienti�
 revolution.But how is the Pythagorean paradox of non-existen
e ofp2 as a rational number handledtoday? Well, we know that the a

epted mathemati
al solution sin
e Cantor and Dedekindis to extend the rational numbers to the real numbers, some of whi
h like p2 are 
alledirrational, and whi
h 
an only be des
ribed approximately using rational numbers. Wemay say that this solution in fa
t is a kind of non-solution, sin
e it a
knowledges thefa
t that the equation x2 = 2 
annot be solved exa
ly using rational numbers, and sin
ethe existen
e of irrational numbers (as in�nite de
imal expansions or Cau
hy sequen
es ofrational numbers) has a di�erent nature than the existen
e of natural numbers or rationalnumbers. The non-existen
e is thus handled by expanding the solution 
on
ept untilexisten
e 
an be assured.We handle the non-existen
e of pointwise solutions to the Euler equations similarly, thatis, by extending the solution 
on
ept to approximate solutions in a weak sense 
ombinedwith some 
ontrol of pointwise residuals. Doing so we ne
essarily introdu
e a dissipation
ausing irreversibility. In this 
ase, the non-existen
e of solutions thus has a 
ost: irre-versibility. In the perfe
t World, pointwise solutions would exist, but this World 
annotbe 
onstru
ted neither mathemati
ally nor physi
ally, and in a 
onstru
tible World ne
-essarily there will exist irreversible phenomena as a 
onsequen
e of the non-existen
e ofpointwise solutions. The non-existen
e of pointwise solutions re
e
ts the development of
omplex solutions with small s
ales, and thus the non-existen
e also rele
ts a 
omplexityof the 
onstru
tible World. The perfe
t World would la
k this 
omplexity, so in additionto being non-existent it would also probably be pretty non-interesting. The World we livein thus does not seem to be perfe
t, but it surely is 
omplex and interesting.What is the reason that the resolution of the paradox we are proposing has not beenpresented before, if it indeed un
overs the mystery? We believe it 
an be explained bythe Ideal Worlds that both mathemati
ians and physi
ists assume as basis of their s
ien
e.In the Ideal World of mathemati
s, exa
t solutions to di�erential equations exist as wellas in�nite sets, not just approximate solutions and �nite sets, and the World of physi
sis supposed to follow laws of physi
s exa
tly, not just approximately, unless a resort tostatisti
s is made (whi
h is a very strong medi
ation with severe side e�e
ts). It thusappears that an imperfe
t World of mathemati
s or physi
s, where equations 
annot be
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tly or laws of physi
s 
annot be exa
tly satis�ed, 
lassi
ally is unthinkable atleast as a deterministi
 World, and thus has re
ieved little attention by mathemati
ians andphysi
ists with little ba
kground in 
omputational mathemati
s. Yet, su
h an imperfe
tWorld seems to be a reality in both mathemati
s and physi
s, and thus should be studied.8. A New Paradigm?From a philosophi
al point of view, we may say that the traditional paradigm of bothmathemati
s and physi
s is Platonisti
 in the sense that it assumes the existen
e of anIdeal World, where equations/laws are satis�ed exa
tly. We may say that this is an IdealWorld of in�nities be
ause exa
t satisfa
tion of e.g. the equation x2 = 2 requires in�nitelymany de
imals. This is the mathemati
al Ideal World of Cantor, whi
h represents a for-malist/logi
ist s
hool. In strong opposition to this s
hool of in�nities, is the 
onstru
tivists
hool, whi
h only deals with mathemati
ial obje
ts that 
an be 
onstru
ted in a �nitenumber of steps. In the 
onstru
tivists Constru
tible World, the set of natural numbersdoes not exist as a 
ompleted mathemati
al obje
t as in Cantors Ideal World, but only asa never-ending proje
t where always a next natural number 
an be 
onstru
ted if needed,whi
h follows the suggestions of e.g. Aristotle and Gauss. The Constru
tible World is�nitary and thus inherently 
omputational, while Cantors Ideal World is non-�nitary andnon-
omputational. In the edu
ational proje
t [10℄ and the pamphlett [11℄, we 
ompare thetwo s
hools, and give our vote to the Constru
tible World, whi
h today 
an be exploredusing the 
omputer, and we question the existen
e of an Ideal World as a s
ienti�
allymeaningful 
on
ept. 9. Physi
s vs ComputationThe me
hanism making G2 irreversible when applied to a suÆ
iently 
omplex formallyreversible Hamiltonian system, is the least squares 
ontrol of the pointwise residual intro-du
ing a dissipative e�e
t when pointwise solutions do not exist. It is natural to believethat Nature resorts to something similar, but the more pre
ise physi
s of this e�e
t is of
ourse up to debate and study. In general, one may view the physi
s/me
hani
s of a systemof intera
ting parti
les as some kind of analog 
omputation, where during ea
h little timestep the parti
les ex
hange data 
on
erning (relative) positions and for
es determining a
-
elerations and then update velo
ities, positions and for
es for the next time step. But themore exa
t nature of the ex
hange pro
ess is largely unknown, and it is 
on
eivable thata 
areful study of a 
omputational model may open doors to understanding, as suggestedby the famous 
omputer s
ientist Dijkstra: Originallly I viewed it as the fun
tion of theabstra
t ma
hine to provide a truthful pi
ture of the physi
al reality. Later, however, Ilearned to 
onsider the abstra
t ma
hine as the \true" one, be
ause that is the only one we
an \think"; it is the physi
al ma
hine's purpose to supply a \working model", a (hopefully)suÆ
iently a

urate physi
al simulation of the true, abstra
t ma
hine.
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eed to �ll in the details of the s
enario s
et
hed above in the setting of the
ompressible Euler equations. To simplify the dis
ussion we 
onsider the simplest modelof 
ompressible 
ow in the form of Burgers' equation. We will return to the 
ompressibleEuler equations in 1d below and to the real 
ase of 3d in [8℄.Burgers' equation reads: Find the s
alar fun
tion u = u(x; t) su
h that(10.1) _u+ (f(u))0 = 0; x 2 R; t 2 R+ ;u(x; 0) = u0(x); x 2 R:where f(u) = u2=2, and we assume that u(t; x) tends to zero as x ! �1. Obviously,Burgers' equation takes the pointwise form _u+ uu0 = 0 for a smooth solution u.A pointwise solution u(x; t) is 
onstant with values u0(�x) along straight line 
hara
teris-ti
s x = st+ �x, where s = f 0(u0(�x)). If u0(x) is in
reasing with in
reasing x and is smooth,then there is a smooth solution u(t; x) for all time given by this formula. However, if theinitial data u0(x) is stri
tly de
reasing, then 
hara
teristi
s 
ross in �nite time, and thena sho
k solution ne
essarily develops, whi
h is dis
ontinuous in x.A dis
ontinuous sho
k solution u(x; t) satis�es Burgers' equation in the following weaksense:(10.2) ZR�R+(�u _'� f(u)'0)dx dt� ZR u0(x)'(x; 0) dx = 0for all di�erentiable test fun
tions ' su
h that '(x; t) vanishes for large (x; t). Here theinitial 
ondition appears in weak form together with the 
onservation law in the formof Burgers' equation. This equation is obtained from (10.1) by multipli
ation by ' andintegration by parts.A dis
ontinuous fun
tion u(x; t) de�ned by u(x; t) = u+ if x > st and u(x; t) = u� ifx < st, where u+ and u� are two 
onstant states and s is a 
onstant, 
orresponding toa dis
ontinuity propagating with speed s, is a weak solution to Burgers' equation if thesho
k speed satis�es the Rankine-Hugoniot 
ondition(10.3) s = [f(u)℄[u℄ ;where [u℄ = u+ � u� and [f(u)℄ = f(u+) � f(u�). With f(u) = u2=2 as in Burgers'equation, we have(10.4) s = (u+ + u�)=2:The Rankine-Hugoniot 
ondition expresses the 
onservation law in weak form for a pie
e-wise 
onstant dis
ontinuous u.10.1. Rarefa
tion wave. The solution to Burgers' equation with the in
reasing dis
on-tinuous initial data u0(x) = 0 for x < 0, and u0(x) = 1 for x > 0, is a rarefa
tion wave



16 JOHAN HOFFMAN AND CLAES JOHNSONgiven by(10.5) u(x; t) = 0 for x < 0;u(x; t) = xt for 0 � xt � 1;u(x; t) = 1 for 1 < xt :This is a 
ontinuous fun
tion for t > 0, di�erentiable o� the lines x = 0 and x = t, whi
hsatis�es (10.1) pointwise for t > 0. In a rarefa
tion wave, an initial dis
ontinuity separatingtwo 
onstant states develops into a 
ontinuous linear transition from one state to the otherof width t in spa
e, 
orresponding to \fan-like" level 
urves in spa
e-time, see Fig 10.1:
x

t

u = 0
u = x / t

u = 1

Figure 1. Chara
teristi
s of a rarefa
tion wave.The stability of a rarefa
tion wave u(x; t) is governed by the linearized equation(10.6) _w + (uw)0 = 0 in R � R+where w represents a (small) perturbation (tending to zero for jxj tending to in�nity).Multiplying by w and integrating in spa
e, we obtain by a simple 
omputation using thefa
t that u0(x; t) = 1=t for 0 � x � t and u0(x; t) = 0 else,ddt ZRw2(x; t) dx+ Z t0 w2(x; t)1t dx = 0; for t > 0;from whi
h follows that(10.7) ZRw2(x; t) dx � ZR w2(x; 0) dx for t > 0:This inequality shows that the L2-norm in spa
e of a perturbation of initial data does notgrow with time, whi
h proves stability of a rarefa
tion wave. Note that this argument buildson the fa
t that the rarefa
tion wave u(x; t) is in
reasing in x so that u0 is non-negative.10.2. Sho
k. The solution with de
reasing dis
ontinuous initial data u0(x) = 1 for x < 0,and u0(x) = 0 for x > 0, is a dis
ontinuous sho
k wave moving with speed 12 :(10.8) u(x; t) = 1 for x < t2 ;u(x; t) = 0 for x > t2 ;see Fig 2. The stability proof used above to prove stability of a rarefa
tion wave, does notwork the same way for a sho
k, sin
e in this 
ase u(x; t) is de
reasing with x. In fa
t a
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x

t

u = 1 u = 0

Figure 2. Chara
teristi
s of a sho
ksho
k does not satisfy an L2 stability estimate of the form (10.7). However, one may proveinstead an L1-bound of the form(10.9) ZR jw(x; t)j dx � ZR jw(x; 0)j dx for t > 0:This follows by multiplying (10.6) by sgn(w) = +1 if w > 0 and �1 if w < 0, to get byintegration by parts:(10.10) ddt ZR jw(x; t)j dx+ (u� � u+)jw( t2 ; t)j = 0;and using the fa
t that for a sho
k u+ < u�. Moreover, we will below with a di�erenttype of stability estimate show that a sho
k is stable from a 
omputational G2 point ofview. Thus, a sho
k is a stable phenomenon from both physi
al and 
omputational pointof view.In one spa
e dimension, sho
ks exist as pie
ewise 
onstant (dis
ontinuous) solutions. Inthree spa
e dimensions su
h sharp dis
ontinous sho
ks are probably not stable, and insteada sho
k will be surrounded by a turbulent transition region. We will return to this issuein further studies.10.3. Weak solutions may be non-unique. The rarefa
tion wave initial data u0(x) = 0for x < 0 and u0(x) = 1 for x > 0, also admits the alternative dis
ontinuous weak solution(10.11) u(x; t) = 0 for x < t2 ;u(x; t) = 1 for x > t2 ;
orresponding to a dis
ontinuity f(x; t) : x = stg moving with speed s = 12 . This solutionis obviously di�erent from the rarefa
tion wave solution (10.5), whi
h sin
e it is a 
lassi
alsolution, also is a weak solution. Thus, we have in this 
ase two di�erent weak solutions,and thus we have an example of non-uniqueness of weak solutions.We saw above that the rarefa
tion wave solution is stable, and we now study the stabilityof the alternative weak solution (10.11). By the same argument as used to prove (10.10)we obtain(10.12) ddt ZR jw(x; t)j dx = (u+ � u�)jw( t2 ; t)j;
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ase, RR jw(x; t)j dx 
an grow arbitrarily fast, sin
e thepositive right hand side in (10.12) in no way 
an be 
ontroled by the left hand side, andwe thus 
on
lude that the alternative weak solution is unstable. We may thus dis
ard thealternative weak solution on the ground that it is unstable and thus not physi
al, be
ausephysi
s would of 
ourse prefer to realize a stable solution before an unstable. We may referto the alternative unstable weak solution, as a non-physi
al sho
k.We shall now disqualify the alternative weak solution as a physi
al solution also be
auseit violates a 
ertain entropy inequality satis�ed by physi
al solutions. We thus have twomethods to single out physi
al weak solutions, one based on stability, and the other on anentropy inequality.10.4. The entropy inequality. A pointwise solution of Burgers' equation _u + (u22 )0 = 0also satis�es the entropy equality(10.13) ��t (u22 ) + (u33 )0 = 0;whi
h is obtained by multiplying _u+ (u22 )0 = 0 by u and rearranging terms. The quantity�(u) = u22 is a mathemati
al entropy for Burgers' equation with 
orresponding entropy 
uxq(u) = u33 . The entropy equality is thus obtained by multiplying Burgers'equation with�0(u) = u, where here the prime indi
ates di�erentiation with respe
t to u. More generally,as an entropy �(u) for Burgers' equation _u + (f(u))0 = 0, we may 
hoose any 
onvexfun
tion �(u) of u sin
e in the present 
ase it is always possible to �nd a 
orrespondingentropy 
ux q(u) satisfyig the 
ompatibility relation q0(u) = �0(u)f 0(u). The situation isdi�erent for the Euler equations in 3d, where only one type of entropy is known to exist.We shall motivate below that a weak solution u whi
h is physi
ally admissible, willsatisfy in a weak sense the following entropy inequality:(10.14) ��t(u22 ) + (u33 )0 � 0;whi
h we will see 
orresponds to the Se
ond Law of Thermodynami
s. The entropy in-equality shows upon integration in spa
e and time thatZR �(u(x; t)) dx � ZR �(u0(x)) dx;whi
h states that the total entropy 
annot in
rease with time. The entropy �(u) = u22
orresponds to the kineti
 energy, and the entropy inequality states that the kineti
 energyof a Burgers solution 
annot in
rease. We shall see that a sho
k has a substantial lossof kineti
 energy as a result of stri
t entropy inequality, where the lost kineti
 energy isdissipated into heat.For a dis
ontinuous solution 
onsisting of two 
onstant states u+ and u� separated bythe line fx = stg, the entropy inequality takes the form(10.15) s[u22 ℄� [u33 ℄ � 0;
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h by a simple 
omputation, we get(10.16) 0 � 12(u� + u+)12[u2℄� 13[u3℄ = (u� � u+) 112(u� � u+)2:We 
on
lude that the entropy inequality for a dis
ontinuous weak solution 
an be statedas u� � u+, that is,(10.17) u� � s � u+:A physi
al sho
k solution is thus 
hara
terized by the 
ondition u� > u+ with sho
k speed(u� + u+)=2, in whi
h 
ase the entropy inequality is satis�ed with stri
t inequality. We
on
lude that a sho
k dissipates kineti
 energy into heat.The entropy inequality states that the 
hara
teristi
s of a physi
ally admissible dis
on-tinuous weak solution of the invis
id Burgers equation \
onverge into" the sho
k, 
orre-sponding to u� > u+. This eliminates the dis
ontinuous weak solution to the rarefa
tioninitial data as an unphysi
al weak solution violating the entropy 
ondition, sin
e in this
ase u� < u+, and the 
hara
teristi
s appear to \emerge from" the dis
ontinuity. Thisre
e
ts that the entropy inequality states that in a 
losed system information may get de-stroyed (as in a sho
k with 
onverging 
hara
teristi
s), but not 
reated (as in an unphysi
alrarefa
tion with diverging 
hara
teristis).10.5. Motivation of the entropy inequality. We shall now motivate the entropy in-equality (10.14) by using a vanishing vis
osity argument. This does not mean that weresurre
t vis
osity as explaining irreversibility. Below we shall present an analog of thisargument for G2, where instead the role of vis
osity is taken over by least squares stabiliza-tion, whi
h is thus di�erent from arti�
ially introdu
ing vis
osity, something we want toavoid. However, in motivating the entropy inequality, an approa
h using vanishing arti�
ialvis
osity is mathemati
ally and physi
ally sound.We thus 
hange Burgers`equation into _u + uu0 � �u00 = 0, where � is a small positivevis
osity, whi
h we refer to as the vis
id Burgers' equation. Multiplying this equation byu, integrating in time and spa
e, we obtain the basi
 energy estimate:(10.18) ZR ju(x; t)j2 dx+D�(u) = ZR ju(x; 0)j2 dx;where the dissipation(10.19) D�(u) = 2 Z t0 ZR �(u0)2 dx ds;represents the kineti
 energy turned into heat. Clearly, it follows that for t > 0(10.20) ku(�; t)k � ku0k;with k � k denoting the L2(R)-norm.We now 
ompare the size of the dissipation D�(u) in the 
ase of a rarefa
tion wave and asho
k wave. We �nd that D�(u) / � in the 
ase of a rarefa
tion wave and D�(u) / j[u℄j inthe 
ase of a sho
k wave with jump [u℄. Thus, in the 
ase of a rarefa
tion wave, D�(u)! 0as � ! 0, while in the sho
k 
ase we have D�(u) ! j[u℄j 6= 0 as � ! 0. Thus, in a limit
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osity �, we will have equality in (10.20) in the 
ase of a rarefa
tion wave,and stri
t inequality in the 
ase of a sho
k wave expressing a \loss of information" or\(physi
al) entropy produ
tion" 
orresponding to generation of heat in the 
ase of a sho
kwave.To justify (10.14) we now assume that solutions u of the vis
id Burgers' equation arebounded for � > 0, and tend pointwise to some bounded limit, again denoted by u, as �tends to zero. Multiplying the vis
id Burgers' equation �rst by a smooth test fun
tion 'vanishing for t = 0, and integrating by parts, we obtain� R t0 RR u _'dx ds � 12 R t0 RR u2'0 dx ds= � R t0 RR �u0'0 dx ds:Sin
e by (10.18)(10.21) 2 Z t0 ZR �(u0)2 dx ds � ku0k2;we have using Cau
hy's inequality and the smoothness of ',(10.22) Z t0 ZR �u0'0 dx ds � ku0kp�(Z t0 ZR('0)2dx ds)1=2 ! 0 as �! 0:Thus, we 
on
lude that the limit u satis�es (10.2) with f(u) = u2=2 and hen
e is a weaksolution of the (invis
id) Burgers' equation.Next, multiplying by u', where ' is a smooth test fun
tion now assumed to be alsonon-negative, we obtain integrating by parts� R t0 RR u22 _'dx ds � R t0 RR u33 '0 dx ds+ R t0 RR �(u0)2'dx ds = � R t0 RR �uu0'0 dx ds:Arguing as above, using also the boundedness of u, we see that the right hand side tendsto zero. Using also the positivity of ' to see that the third term on the right hand side ispositive, we 
on
lude that the limit u satis�es(10.23) � Z t0 ZR u22 _'dx ds� Z t0 ZR u33 '0 dx ds � 0;for all smooth non-negative test fun
tions �, with stri
t inequality if D�(u) tends to somenon-zero limit. This is the entropy inequality (10.14) stated in weak form.We have now shown that a limit of solutions of the vis
id Burgers' equation as thevis
osity tends to zero satis�es the entropy inequality (10.14). We have also seen that fora sho
k the inequality is stri
t. It follows that a sho
k solution to Burgers' equation isirreversible sin
e e�e
tively the mathemati
al entropy de
reases, and reversing time would
orrespond to stri
tly in
reasing mathemati
al entropy violating the entropy inequality.10.6. Sum up Burgers. We have shown that the mathemati
al entropy of a sho
k so-lution to Burgers' equation is stri
tly de
reasing, whi
h shows that a sho
k solution tothe formally reversible Burgers'equation, is irreversible. Letting time pass ba
kwards ina sho
k problem with 
onverging 
hara
teristi
s in forward time, would 
orrespond to an
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al rarefa
tion initial data solution with diverging 
har
teristi
s in ba
kward time.We may thus say that the irreversibility of a sho
k in the invis
id Burgers' equation, isre
e
ted by instability when seeking to re
over the initial data by 
omputing ba
kwards intime from �nal data. We may thus phraze the irreversibility as re
e
ting forward stabilityand ba
kward instability, just as in the heat equation, although formally we are dealingwith an invis
id equation.We have presented a very simple 
on
rete (well known) example of irreversibility in aformally reversible problem, and we have seen that the irreversibility requires non-existen
eof pointwise solutions in order to o

ur. We have thus presented a key basi
 example of thes
enario of irreversibility in reversible systems, whi
h we are seeking to un
over in the moregeneral setting of in
ompressible and 
ompressible 
ow, parti
le dynami
s and hopefullyeventually for quantuum me
hani
s.We now pro
eed to the 
omputational version of the s
enario. The key here will be theG2 method and its property of automati
ally satisfying the entropy inequality, withoutexpli
itely being required to do so, whi
h is a parallel of Natures ability to satisfy theSe
ond Law of Thermodynami
s again without knowing anything about it. This is madepossible by 
omputing, in a situtation where pointwise solution is impossible be
ause ofnon-existen
e of pointwise solutions, an approximate solution whi
h satis�es the basi

onservation laws in a weak sense 
ombined with a weighted least squares 
ontrol of thepointwise residual. It is this 
ombination whi
h automati
ally builds the entropy inequalityinto a weak solution. We may say that by the 
ombination of Galerkin and least squaresstabilization, G2 will automati
ally prefer to 
ompute stable (physi
al) weak solutionsbefore unstable (non-physi
al) weak solutions.11. G2 for Burgers' equationWe now turn to the G2-method whi
h is Galerkin's method 
ombined with a weightedleast-squares 
ontrol of the residual. G2 is based on pie
ewise polynomial approxima-tion in spa
e-time and o�ers a spe
trum of 
omputational methods depending on the
hoi
e of the spa
e-time mesh. G2 uses pie
ewise polynomials in spa
e-time. We refer tothese variants as 
G(p)
G(q), 
G(p)dG(q) et 
et, with 
G(p)/dG(p) referring to 
ontinu-ous/dis
ontinuous pie
ewise approximation of degree p in spa
e, and 
G(q)/dG(q) refer-ring to 
ontinuous/dis
ontinuous approximation in time of degree q. G2 is Eulerian if thespa
e-time mesh is oriented along the spa
e and time 
oordinate axis, Lagrangean if thespa
e-time mesh is oriented along parti
le paths in spa
e-time, and Arbitrary Lagrangean-Eulerian or ALE if the spa
e-time mesh is oriented a

ording to some other feature su
h asspa
e-time gradients of the solution. We also refer to Lagrangean variants as 
hara
teristi
Galerkin, ALE-methods as oriented Galerkin, and Eulerian variants as SUPG and Stream-line Di�usion-methods. In all these variants the spa
e-time mesh is usually organized inspa
e-time slabs between dis
rete time levels, and the spa
e mesh may be 
hanged a
rossthe dis
rete time levels to avoid mesh distortion and allow mesh adaption. In dG(q) theapproximation is dis
ontinuous in time and the spa
e mesh may vary from one slab to thenext. If the spa
e mesh is 
hanged a
ross a dis
rete time level in 
G(q), then a proje
tion



22 JOHAN HOFFMAN AND CLAES JOHNSONfrom the previous mesh to the new mesh is performed. The proje
tion is built into theGalerkin method through a jump term 
orresponding to a L2 proje
tion. The dis
retesolution between the dis
rete time levels may be viewed as an approximate transport step,and the whole pro
ess may be viewed as a method of the basi
 form proje
tion-transport.The traditional �nite di�eren
e methods are of Eulerian type with the �rst order Lax-Friedri
hs' s
heme from the 50s as a prototype on 
onservation form and with arti�
ialvis
osity proportional to the mesh size. The next generation of 
lassi
al s
hemes originatesfrom Godunov's method in 1d, whi
h is of the form proje
tion-transport with a pie
e-wise 
onstant (dis
ontinuous) approximation and a Riemann solver for the transport step.The multi-dimensional �nite volume s
hemes developed in re
ent de
ades, use dis
ontinu-ous polynomial approximation with numeri
al 
uxes often 
onstru
ted using 1d Riemannsolvers. All these methods may alternatively be viewed as parti
ular G2 methods.Galerkin/least squares methods were pionereed in the early 1980s by Hughes followedby Johnson in the form of SUPG and Streamline Di�usion methods, see [12, 4, 5℄.11.1. G2 in the form 
G(1)dG(1). We now de�ne G2 in the form of 
G(1)dG(1) on anEulerian mesh for Burgers' equation. Let then 0 = t0 < t1 < ::: < tN = T with T a �naltime, be an in
reasing sequen
e of time levels with 
orresponding time steps kn = tn�tn�1,and let Sn = R�In where In = (tn�1; tn℄, be the 
orresponding spa
e-time slabs. Asso
iateto ea
h slab Sn a set Vn of 
ontinuous pie
ewise linear fun
tions v(x; t) on Sn, typi
ally ofthe form v(x; t) = v0(x) + tv1(x), where v0(x) and v1(x) are 
ontinuous pie
ewise linear ona mesh of mesh size hn on R. Then de�ne Vh =QNn=1 Vn, where h is a measure of the meshsize in spa
e-time. Thus, Vh 
onsists of pie
ewise linear fun
tions in spa
e-time, whi
h are
ontinuous in spa
e and dis
ontinuous in time (and in addition vanish for jxj large). Forsimpli
ity, we assume that the time step kn and mesh size in spa
e hn one ea
h slab Vn areof 
onstant size h.A fun
tion v 2 Vh is dis
ontinuous in time a
ross a dis
rete time level tn with limitsv+n (x) = lims!0;s>0 v(x; tn + s) and v�n (x) = lims!0;s<0 v(x; tn + s), and with jump [vn℄ =v+n � v�n .We 
an now formulate G2 in the form 
G(1)dG(1) as follows: Find U 2 Vh, su
h thatfor n = 1; 2; :::;,(11.1) (R(U); v)Sn + (hR(U); _v + Uv0)Sn + ([Un�1℄; v+n�1)R = 0; 8v 2 Vn;where R(U) = _U + UU 0 is the residual, U�0 = u0, (v; w)Sn = RSn vw dxdt, and (v; w)R =RR vw dx.11.2. The basi
 energy estimate for G2. Choosing v = U in (11.1), we obtain byintegration by parts and summation over n = 1; :::; N :12 ZR U�N (x)2 dx+ 12 NXn=1 k[Un�1℄k2R + Z tN0 ZR hR(U)2 dxdt = 12 ZR u0(x)2 dx;



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 23that is, 12kUNk2R + 12 NXn=1 k[Un�1℄k2R + kphR(U)k2QN = 12ku0k2R;where k � kD is the L2(D)-norm with D = R and D = QN � R � (0; tN). This is the basi
energy estimate for G2 for Burgers'equation, whi
h also represents an entropy inequality forthe mathemati
al entropy �(u) = u2=2. We see that the least squares term kphR(U)k2QNand the jump term a
ts as dissipative terms, e�e
tively 
ausing the mathemati
al entropyto de
rease signi�
antly in a situation when the slab residual R(U) and jumps 
annot bepointwise small, whi
h will happen in the 
ase of a sho
k. We may view the jump [u℄ asbeing part of the residual, with the jump being zero for an exa
t solution as well as theresidual on ea
h slab.11.3. G2 is entropy 
onsistent. We shall now prove as a major observation of thisnote that G2 automati
ally satis�es the entropy inequality (10.14) in a weak sense, andthus automati
ally 
omputes a physi
al solution without expli
itely enfor
ing the entropyinequality. The key point is thus that the 
onstru
tion of G2 as a weak satisfa
tion of the
onservation law 
ombined with weighted least squares 
onstrol of the pointwise residual,assures that a G2 solution also satis�es the entropy inequality 
hara
terizing physi
alsolutions. In parti
ular, there is no 
han
e that G2 will produ
e a non-physi
al solutionviolating the entropy 
ondition signi�
antly.To see this, we 
hoose a smooth non-negative test fun
tion ', write w = 'U andthen 
hoose in G2 the �nite element test fun
tion v = wh, where wh 2 Vh is a nodalinterpolant of w, noting that w does not belong to Vh in G2 in general. We then have with~Un = 12(U+n + U�n ), by integration by parts in spa
e and time,�(12U2; _')QN � (13U3; '0)QN= NXn=1�(R(U); w)Sn + ([Un�1℄; ~Un�1'+n�1)R�= NXn=1�R(U); ŵh)Sn � (hR(U); _wh + Uw0h)Sn + ([Un�1℄; ~Un�1'+n�1 � w+h;n�1)R�� I + II + III;where ŵh = w � wh, and we used (11.1) with v = wh. We now estimate the interpolationerror ŵh as follows: kŵhkSn � kh2D2wkSn � ChkUk1;where D represents �rst order derivation in spa
e or time, C depends on �rst and se
ondderivatives of ' and kUk1 = maxQN jU j �M . This type of estimate is referred to as super-approximation sin
e it 
ontains the fa
tor h without paying the pri
e of �rst derivatives of
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h results from the spe
ial form of w = 'U as a produ
t of a �nite element fun
tionU and a smooth fun
tion. We 
on
lude thatI � CMkhR(U)kQN � CMph;where we used the basi
 energy estimate assuming ku0k � 1. FurtherII = NXn=1(hR(U); ��tŵh + Uŵ0h)Sn � NXn=1(hR(U); _w + Uw0)Sn = IIa + IIb:We have again by super-approximation and the energy estimate that IIa � CMph, andIIb = � NXn=1(hR(U); _U'+ UU 0')Sn � NXn=1(hR(U); U _' + UU'0)Sn� � NXn=1(hR(U); R(U)')Sn + CMph � CMph;where we used the non-negativity of '. The term III is estimated similarly. We 
on
ludethat for all non-negative test fun
tions ', we have�(12U2; _')QN � (13U3; '0)QN � CMph;where M is a bound for U and C depends on up to se
ond derivatives of '. This expressesthat the G2 solution U approximately satis�es the entropy inequality in weak form andthe approximation improves as h gets smaller. We refer to this property of G2 as entropy
onsisten
y. In parti
ular G2 
annot 
ompute a non-physi
al solution signi�
antly violatingthe entropy inequality. Note that the M -bound on U is natural and 
an be proved by amaximum prin
iple if G2 is suitably modi�ed by introdu
ing residual-dependent sho
k-
apturing, [5℄.We have now established the key feature of G2 to automati
ally satisfy the entropyinequality approximately, as a 
onsequen
e of the least squares stabilization. The key tothe proof is the super-approximation making it e�e
tively possible to 
hoose U' as a testfun
tion in G2, from whi
h entropy 
onsisten
y follows using the positivity of the leastsquares term, whi
h re
e
ts that the entropy inequality is obtained by multipli
ation ofthe vis
id Burgers' equation by �0(u)' = u'. Note that 
hoosing U as a test fun
tion givesthe basi
 energy estimate, whi
h is the integrated form of the entropy inequality, and thestep to 
hoose instead (U�)h is not large, but requires the least squares stabilization towork out.11.4. A posteriori error estimation. Applying the general te
hnique of a posteriorierror estimation for G2 presented in detail in [5℄ and [6℄, we may obtain an estimate of theform(11.2) ku� UkQN � SkhR(U)kQN ;
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t Burgers solution, U is a G2 solution with mesh size h, and(11.3) S = kh�00kQNkekQN ;where e = u�U , is a normalized stability fa
tor de�ned by the solution � of the followinglinearized dual problem:(11.4) � _�� a�0 � h�00 = e; x 2 R; 0 < t < tN ;�(x; t)! 0; x! �1; 0 < t < tN ;�(x; T ) = 0; x 2 R;where a = (u + U)=2. We noti
e that the dual problem has a vis
ous term with vis
osity
oeÆ
ient h.We �rst note that by the basi
 energy stability estimate, we have that khR(U)kQN � phif ku0kR = 1, and thus(11.5) ku� UkQN � Sph:Clearly the size of the stability fa
tor S determines the quality of the error bound. Weshall now prove that for a sho
k S � 1, whi
h shows that a sho
k is safely 
omputablewith G2, with a L2(QN) error of size ph whi
h is optimal from approximation point ofview, sin
e the exa
t solution u is dis
ontinuous and U is 
ontinuous in x.The a posteriori error estimate (11.2) follows by multiplying (11.4) by u� U and inte-grating in spa
e and time to get the error representationku� Uk2QN = (R(U); �)QN ;where the jump term is in
luded in R(U) to simplify the reading. We now use the Galerkinequation (11.1) with v = �h 2 Vh an interpolant of the dual solution �, to getku� Uk2QN = (R(U); �� �h)QN � (hR(U); _�h + U�0h)QN ;whi
h 
ombined with an interpolation error bound of the form k� � �hkQN � kh2�00kQN ,shows that ku� Uk2QN � khR(U)kQNkh�00kQN ;from whi
h the desired result dire
tly follows. Here, for simpli
ity we only a

ountedfor approximation in spa
e. We also used the dual equation to bound k _�h + U�0hkQN bykh�00kQN repla
ing a = (u+U)=2 by U and �h by �. We also regularized the exa
t solutionu leaving a very small regularizing term. For details, we refer to [6℄. We note the simpleform of (11.2), whi
h holds in a wide generality.11.5. Stability estimate for a sho
k. We shall now investigate the stability propertiesof the dual problem (11.4) and bound h�00 in terms of the right hand side e. For simpli
itywe linearize at the exa
t solution u(x; t) (instead of the mean value (u + U)=2) and thus
onsider the dual problem(11.6) � _�� u�0 � h�00 = e; x 2 R; 0 < t < tN ;�(x; T ) = 0; x 2 R:



26 JOHAN HOFFMAN AND CLAES JOHNSONThe stability properties are largely determined by the sign of u0, whi
h re
e
ts the 
hangeof the dire
tion u of the 
hara
teristi
s. If u0 � 0, then the 
hara
teristi
s 
onverge within
reasing t, whi
h typi
ally o

urs in the 
ase of a sho
k. If u0 � 0, then the 
hara
teristi
sdiverge, whi
h typi
ally o

urs in the 
ase of a rarefa
tion. If u0 is bounded below by amoderate 
onstant, e.g. u0 � 0, then we may estimate k�kL1(L2(R)) and kph�0kQ in terms ofa moderate 
onstant times kekQ, whi
h we refer to as weak stability. If u0 is bounded aboveby a moderate 
onstant, e.g. u0 � 0, then we may estimate kh�00kQ in terms of a moderate
onstant times kekQ, whi
h we refer to as strong stability, be
ause we estimate se
ondderivatives of �, 
f. (11.3). These estimates are proved by multiplying by � and �h�00,respe
tively, bringing in the positive stabilizing terms 12u0�2 and �12hu0(�0)2, respe
tively.We now give the details in the 
ase of a sho
k with u0 � 0, where we assume u isdi�erentiable with a very large negative x-derivative 
lose to the sho
k. We indi
ate thegeneral nature of the 
hara
teristi
s of the dual problem in Fig 11.5. We shall prove thatthe solution � of (11.6) satis�es(11.7) kh�00kQN + k _�+ u�0kQN + sup0<t<T kh1=2�0(�; t)kR � 3kekQN :To see this we multiply the �rst equation in (11.6) by �h�00, integrating by parts withrespe
t to x, and integrating in time over (�; T ) with 0 < � < T , we get withQ� = R�(�; T )(11.8) 12 RR h (�0(�; �))2 dx+ RQ� (h�00)2 dxdt+ RQ� 12 �uh (�0)2�0 dxdt� 12 RQ� �hu0 (�0)2 + e2 + (h�00)2� dxdt;whi
h proves the desired result stating that S � 1 for a sho
k.
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Figure 3. Chara
teristi
s of the dual problem for a regularized sho
k solution.
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omparison, let us now attempt to derive a weak stability estimate for (11.6) in the
ase u is a sho
k. Multipli
ation by � and integration over Q� gives12 RR �2(x; �) dx+ h RQ� (�0(x; t))2 dxdt= �12 RQ� u0�2(x; t) dx+ RR e(x; t)�(x; t) dx:Sin
e u0 is large negative in the 
ase of a sho
k, we have a large positive term of the righthand side, and using a Gr�onwall's inequality would results in a very large stability fa
tor.The situation is more favorable 
on
erning weak stability estimates for a rarefa
tion wavesolution with u0 � 0, as we demonstrate below.Summing up, we see that for a sho
k, the linearized dual problem satis�es a strong sta-bility estimate with a stability fa
tor of moderat size, while a 
orresponding weak stabilityestimate appears to have a very large stability fa
tor. These stability features may beunderstood in a qualitative sense, by pondering the dire
tionality of the 
hara
teristi
sand the nature of the L2-norm.11.6. Stability estimates for a rarefa
tion wave. We now 
onsider the linearized dualBurgers' equation (11.6), linearized at the exa
t solution u(x; t) = x=t, 
orresponding toa rarefa
tion wave. Multiplying now (11.6) by �ht�00, and using standard manipulations,we obtain the following weighted norm strong stability estimate for 0 < � < T ,(11.9) k� 1=2h1=2�0k+ k!h�00kQ� � k!ekQ� ;where !(t) = t1=2 a
ts as a weight.A weighted norm analog of the a posteriori error estimate (11.2) takes the form(11.10) k!�1ekQN � S!k!�1hR(U)kQNwith S! de�ned by the dire
t weighted norm analog of (11.3). The estimate (11.9) thenshows that S! � 1, and thus a rarefa
tion wave solution is 
omputable in the weightednorm with a 
omputational work 
orresponding to interpolation. Note that the presen
eof the weight t�1=2 will for
e more stringent demands on the mesh for t 
lose to zero,whi
h will for
e an a

urate resolution of the initial phase of the rarefa
tion. This isintuitively reasonable and 
orresponds to the fa
t that an initial error in the 
omputationof a rarefa
tion will get ampli�ed as time goes, be
ause 
hara
teristi
s diverge forward intime. On the other hand, in the 
ase of a sho
k, an initial error may be eliminated atlater times, be
ause of 
onverging 
hara
teristi
s, Thus, a rarefa
tion is more deli
ate to
ompute than a sho
k, whi
h we will see in the 
omputational results we now present.11.7. Dual solution and stability fa
tors for Burgers' equation. In [5, 3℄ an ap-proximate solution is 
omputed 
onsisting of a 
ombination of a rarefa
tion wave and asho
k using the 
G(1)dG(0)- method on a uniform spa
e mesh with h = 10�3 and timestep 10�4. We plot the 
omputed solution at t=0, t=0.3, t=0.8, t=1 in Fig 4. We see thatthe initial dis
ontinuity develops into a rarefa
tion and that a sho
k is formed for t � 0:5.The dual problem is solved using the following di�erent approximations of the 
oeÆ
ienta = (u+U)=2 and the error e, with �u the analyti
al, invis
id solution, and U(h) the �nite
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Figure 4. A 
ombined rarefa
tion and sho
k wave (
omputations by Bur-man [3℄).element solution on a mesh of size h: (i) a = (�u + U(h)) and e = �u� U(h), (ii) a = U(h)and e = �u � U(h), (iii) a = (U(h=4) + U(h))=2 and e = U(h=4) � U(h). We plot the
orresponding dual solutions � at the same time levels as above, but in reverse order (t=1,t=0.8, t=0.3 , t=0) in Fig 11.7. We also plot in Fig. 6 the 
orresponding se
ond derivatives�00. We note the 
hange of j�00j, whi
h may be viewed as a weight in the a posteriori errorestimate, from being large 
lose to the sho
k at �nal time towards being large 
lose to theinitial dis
ontinuity at (x; t) = (0:2; 0) initiating the rarefa
tion. We see that it is the datafrom the rarefa
tion at �nal time whi
h generates the large values of �00 at t = 0, and notthose from the sho
k. This indi
ates that a rarefa
tion is more deli
ate to 
ompute thana sho
k.We plot in Fig. 7 the strong stability fa
tor S de�ned by (11.3) for (i)-(iii) and h =0:0001; h = 0:00005; h = 0:00001. We see that S � 1, whi
h shows that the Burgers'solution 
onsisting of a rarefa
tion and sho
k wave is 
omputable in L2(QN ) with work
omparable to interpolation.12. The Euler Equations for Compressible FlowWe now extend to the Euler equations for an invis
id perfe
t gas, in
luding details onthe formulation of the G2-method. The a posteriori error estimation generalizes in a dire
tway. G2 has the entropy 
onsisten
y automati
ally built in if we 
ompute in entropy vari-ables. If we 
ompute using the standard 
onservation variables, we need to add a residualdependent arti�
ial vis
osity, to ensure entropy 
onsisten
y. The 
omputational results
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Figure 5. Dual solution in reverse time (
omputations by Burman [3℄).
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Figure 7. Strong stability fa
tor for di�erent h (
omputations by Burman [3℄).in 1d are entirely analogous to those presented for Burgers' equation, with in parti
ularstrong stability fa
tors being of unit size. We present 
omputaions in 3d in Part III.The Euler equations for a 
ompressible invis
id perfe
t gas in R3 read on 
onservationform: �nd u(x; t) su
h that(12.1) _u+P3i=1 fi(u);i = 0 x 2 R3 ; t > 0;u(x; 0) = u0(x) x 2 R3 ;where u0 is given initial data,u = �266664 1w1w2w3e
377775 ; fi = wiu+ p266664 0Æ1iÆ2iÆ3iwi

377775 ;� is the density, w = (w1; w2; w3) is the parti
le velo
ity, e is the total energy density,p = (
�1)(�e��jwj2)=2) is the pressure, Æij the Krone
ker delta, 
 > 1 is a 
onstant, andv;i = �v=�xi. These equations generalize the one-dimensional equations (5.1) and express
onservation of mass, momentum and energy. For smooth solutions the 
onservation law(12.1) 
an be written as a generalized 
onve
tion problem of the form(12.2) _u+ 3Xi=1 Ai(u)u;i = 0;where the Ai = �fi�u are the Ja
obians of the fi(u).The fun
tion �(u) = � log(p��
) is a mathemati
al entropy for (12.1) 
orresponding tothe negative of the physi
al entropy, whi
h up to trivial mod�
ations is the only knownentropy for (12.1). The fun
tion �(u) is a 
onvex fun
tion of u, with symmetri
 positive



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 31de�nite Hessian �00. Smooth solutions of (12.1) or equivalently (12.2), satisfy the equation��t�(u) + 3Xi=1 ��xi (qi(u)) = 0:where q(u) = (qi(u)) = �w = (�wi) is the entropy 
ux. This equation follows by multiply-ing (12.2) by the gradient �0(u) of �(u) and using the 
ompatibility relation(12.3) �0(u)�Ai(u) = q0i(u)�;with � denoting the transpose. The 
ompatibility 
ondition (12.3) is equivalent to therelation(12.4) �00Ai = A�i �00; i = 1; 2; 3;stating that the Hessian �00 simultaneously symmetrizes all the Ai. The entropy inequality
hara
terizing physi
al weak solutions reads in strong form(12.5) ��t�(u) +Xi ��xi (qi(u)) � 0:12.1. G2 for the Euler equations. Let Vh be as above and setWh = [Vh℄3. G2 for (12.1)
an then be formulated as follows: Find U 2 Wh su
h that for n = 1; 2; :::;(12.6) (R(U); v)QN + (R(U); Æ( _v +PiA�i (U)v;i))Sn+([Un�1℄; v+n�1)R = 0 8v 2 Wn = [Vn℄3;where � denotes transpose,(12.7) Æ� = Æ(U)� = h2(I + 3Xi=1 Ai(U)2)� 12 on Sn;R(U) = _U +Xi Ai(U)Uxi on Sn:To see that the square root in (12.7) is well de�ned, we note that (12.4) implies thatA0 = (�00)�1 symmetrizes the Ai, so that �Ai � AiA0 is symmetri
, i = 1; 2; 3. ThereforeA� 120 AiA 120 = A� 120 �AiA� 120is symmetri
, and thus the similarity transform indu
ed by A 120 transforms the matrixM � (k�2n I + h�2PiA2i ) to an obviously positive de�nite symmetri
 matrix. It followsthat M has positive eigenvalues and a full set of eigenve
tors whi
h shows that M� 12 
anbe 
omputed.One 
an prove as above that G2 augumented by a residual dependent arti�
ial vis
osityof the form �̂ = h2jR(U)j, is entropy 
onsistent.



32 JOHAN HOFFMAN AND CLAES JOHNSON12.2. G2 in entropy variables. The 
hange of variables �u = �0(u), whi
h is one-to-onesin
e �00 is positive de�nite, transforms (12.2) into(12.8) �A0 _�u+X �Ai�u;i = 0where �A0(�u) = (�00)�1(�u) is positive de�nite symmetri
, and �Ai = Ai �A0 are symmetri
be
ause of (12.4). We refer to �u = �0(u) as the entropy varibles.In the entropy variables �u = �0(u), the 
onservation law (12.2) takes the form of thesymmetri
 hyperboli
 system (12.8) with the �Ai symmetri
 and �A0 positive de�nite. Theentropy inequality is obtained multiplying a vis
ous variant of (12.8) by �u�, with � a non-negative test fun
tion, and letting the vis
osity tend to zero, as for Burgers equation, sin
e�u = �0(u).We may now apply the G2 method to (12.8), and we may as in the 
ase of Burg-ers'equation prove entropy 
onsisten
y by 
hoosing the test fun
tion to be an interpolantof �U�. Thus G2 in entropy variables is entropy 
onsistent without the residual dependentarti�
ial vis
osity. The use of G2 in entropy variables was pioneered by Hughes in [12℄.We 
ontinue our study of irreversibility in the 
ompressible Euler equations in [8℄.A
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