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IRREVERSIBILITY IN REVERSIBLE SYSTEMS I:THE COMPRESSIBLE EULER EQUATIONS IN 1DJOHAN HOFFMAN AND CLAES JOHNSONAbstrat. This is the �rst part of a series, where we present a new approah to resolv-ing the lassial paradox of irreversibility in reversible Hamiltonian systems. We base oursolution on �nite preision omputation in the form of General Galerkin G2, instead ofstatistial mehanis. In the present Part I we onsider as Hamiltonian model the Eulerequations for an invisid ompressible perfet gas with fous on model problems in onespae dimension. We show that the irreversibility arsises beause G2 reats by intro-duing a dissipative weighted least squares ontrol of the residual if the Euler equationslak solutions with pointwise vanishing residual, whih is the general ase beause of theappearane of shoks and/or turbulene. In partiular, we prove that the Seond Law ofThermodynamis is a onsequene of the First Law of Thermodynamis ombined withG2 �nite preision omputation. 1. IntrodutionThere are great physiists who have not understood it.(Einstein about Boltzmann's statistial mehanis)This is the �rst part of a series, where we present a new approah to resolving the lassialparadox of irreversibility in reversible Hamiltonian systems. We base our solution on �nitepreision omputation instead of statistial mehanis, whih is the standard approah.We thus stay within a deterministi Hamiltonian framework and only add a restrition of�nite preision omputation, and we do not use any form of statistis. A World governedby Hamiltonian mehanis ombined with �nite preision omputation, follows the laws ofmehanis as far as possible taking the �nite preision into aount, but is not a game ofroulette as in statistial mehanis. The di�erene of sienti� paradigm is fundamental.Einstein expresses his reservation to statistial mehanis in: God does not play die. Weseek to follow this devie ourselves.In the present Part I we hoose as Hamiltonian model the Euler equations for an invisidompressible perfet gas with fous on model problems in one spae dimension. In PartII we onsider the Euler equations for inompressible invisid ow in three dimensions,Date: May 4, 2005.Key words and phrases. Irreversibility, The Seond Law of Thermodynamis, Euler equations, GeneralGalerkin G2, turbulene, shok solution, Burger's equation.Johan Ho�man, Department of Applied Mehanis, Chalmers University of Tehnology, S{412 96G�oteborg, Sweden, email : ho�man�math.halmers.seClaes Johnson, Department of Applied Mehanis, Chalmers University of Tehnology, S{412 96G�oteborg, Sweden, email : laes�math.halmers.se. 1



2 JOHAN HOFFMAN AND CLAES JOHNSONand expand to ompressible ow in Part III. We ontinue in Part IV with a study ofthe kineti theory of gases. We hope to ultimately approah also quantuum mehanisusing the same omputational deterministi point of view, again avoiding the onventionalstatistial interpretation. In the present introdutory Part I, we expose the basi ideas,with a ertain amount of repetion, from di�erent perspetives with the hope of this wayreahing a broader audiene also outside omputational mathematis.The origins of irreversibility in reversible systems is a main unsolved mystery of me-hanis and physis. A Hamiltonian system is reversible in time and does not have apreferred (forward) diretion of time: From a given on�guration both the future and pastare equally well determined. The reversibility follows from the invariane of a Hamiltoniansystem under a hange of sign of time and veloity. It follows in partiular that lettinga Hamiltonian system evolve in time from an initial on�guration to a �nal on�gurationand there reversing the veloity and hanging the diretion of time, will bring the systembak to the initial on�guration. As a result, one may in Hamiltonian mehanis onstruta perpetuum mobile of the �rst kind, whih is a mahine that will run forever withoutonsuming any energy. Both elestial mehanis and quantum mehanis are Hamiltonianand the motion of the planets in our Solar system as well as the eletrons in an atomrepresent reversible perpetuum mobile of the �rst kind.On the other hand, in the real World there is a preferred diretion of time and we areall familiar with irreversible proessess in whih initial on�gurations annot be reovered,and the impossibility of onstruting a perpetuum mobile of the �rst kind, as well as of theseond kind supposed to reversibly onvert energy bak and forth from heat to mehanialwork without onsuming any net energy. The irreversibility is expressed in the SeondLaw of Thermodynamis, whih states that in an isolated system a ertain salar quantity,named entropy, annot derease with time. As a onsequene, an isolated system beomesirreversible if its entropy inreases, sine time reversal would orrespond to dereasingentropy, whih is impossible. In a Hamiltonian system the entropy is equal to minus thetotal energy being the sum of kineti and potential energy, and energy onservation reetsreversibilty and entropy onstany. The observation that a perpetuum mobile of the seondkind seems impossible, beause onverting mehanial energy into heat does not seem tobe fully reversible, indiates the existene of real proesses whih are irreversible and thusnot Hamiltonian. Dropping a stone to the ground will onvert its potential energy intoheat making the stone warmer, but the reverse proess of the stone lifting itself by gettingolder, is impossible. The question is why?So if now the World ultimately is governed by reversible Hamiltonian (quantuum) me-hanis, the sienti� hallenge thus beomes to explain how irreversibility may arise insystems based on reversible Hamiltonian mehanis. In the late 19th entury when theexistene of an Aether �lling empty spae was still ontemplated, the irreversibilty wassuggested to possibly result from some small visosity of the Aether, but sine no oneould ever detet any Aether, this belief faded. Similarly, the idea of putting in just atiny bit of frition (oming from somewhere) to explain irreversibility, is not onvining,sine then the planets and eletrons would be onstantly retarding a little bit, but theydon't seem to do that. And if there would be some frition in some system, the hallenge



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 3would be to explain how frition an arise in a system governed by Hamiltonian reversiblemehanis without frition. Thus the irreversibility paradox an be phrazed: How anthere be frition in a system without frition?Another attempt to explain irreversibility in a marosopi system based on reversiblemirosopi mehanis, laims that irreversibility is simply a result of perspetive, wherethe marosopi irreversibility would be a onsequene of a (possibly subjetive) maro-sopi view. The basi priniple is then stated as an irreversible tendeny of a marosopisystem to proeed from ordered to less ordered states, for some reason yet to explain, whilemirosopially the same system would be reversible. Moreover, the subjetivity in thisapproah does not harmonize well with a desired sienti� objetivity. Although this typeof reasoning has beome quite popular, it does have several weak points, as indiated. Inpartiular, no answer is o�ered to the question how initial ordered states an our, ifprogress always is towards less order.In Boltzmann's kineti theory of gases the mystery shows up in the form of Loshmidtsparadox: Kineti theory is based on a model of a gas as a reversible Hamiltonian system ofvery many moleules in the form of very small rigid spheres interating by elasti ollisions,yet Boltzmann's equation is irreversible. >From Translators Foreword to Letures on GasTheory by Boltzmann [2℄, we ite: There is apparently a ontradition between the lawof inreasing entropy and the priniples of Newtonian mehanis, sine the latter do notreognize any di�erene between past and future times. This is the so-alled reversibilityparadox whih was advaned as an objetion to Boltzmann's theory by Loshmidt 1876-77.Loshmidts paradox fored Boltzmann to invent statistial mehanis, whih is an expan-sion of deterministi Hamiltonian mehanis using onepts from statistis and probability.In expanding Hamiltonian deterministi mehanis by statistis, Boltzmann assumed thata gas as a system of elastially olliding rigid spheres, would tend to evolve from less prob-able towards more probable states, whih would de�ne a preferred diretion of time andresult in irreversibility. The assumption of Boltzmann an alternatively be expressed asstatistial independene of moleules before ollisions, but not after, whih again de�nesa preferred diretion of time and results in irreversibility. In Boltzmann's words from [2℄the assumption is formulated: Eah moleule ies from one ollision to another one so faraway that one an onsider the ourene of another moleule, at the plae where it ollidesthe seond time, with a de�nite state of motion, as being an event ompletely independent(for statistial alulations) of the plae from whih the �rst moleule ame (and similarlyfor the state of motion of the �rst moleule).Cerigniani writes in his Boltzmann biography [1℄: The answer to Loshmidt's paradox isroughly as follows: If one obeys the laws of mehanis, one an use the equation to \predit"either the future or the past. When deriving the Boltzmann equation we expressed thedistribution funtions orresponding to an afterollision state in terms of the distributionfuntion orresponding to the state before the ollision, rather than the latter in terms ofthe former. It is lear, however, that that this hoie introdued a onnetion with theeveryday onepts of past an future whih are extraneous to moleular dynamis. In otherwords, we prepared the way to a de�nition of these onepts on the basis of the statistialbehaviour of many-partile systems.



4 JOHAN HOFFMAN AND CLAES JOHNSONThe irreversibility is expressed in Boltzmann's famous H-Theorem stating that a er-tain salar quantity denoted by H (whih with a hange of sign is an entropy) de�nedfor a solution to Boltzmann's equation, annot inrease. Boltzmann laims in response toLoshmidts paradox: If at an intermediate stage we reverse all veloities, we get an exep-tional state where H inreases for a ertain time and dereases again. But the existene ofsuh ases does not disprove our theorem. On the ontrary the theory of probablity iteselfshows that the probability of suh ases is not mathematially zero, only extremely small.In the Stanford Enylopedia of Philosophy we read: Boltzmann's responses to the re-versibility objetions are not easy to make sense of, and varied in the ourse of time. Inhis immediate response to Loshmidt he aknowledges that ertain initial states of the gaswould lead to an inraese of the H-funtion, and hene a violation of the H-Theorem. Therux of this rebuttal was that suh initial states were extremely improbable, and ould safelybe ignored.... This rebuttal is far from satisfatory.Boltzmann's statistial mehanis was met with muh septiism by e.g. Maxwell andEinstein. Maxwell states: By the study of Boltzmann I have been unable to understandhim. He ould not understand me on aount of my shortness, and his length was andis an equal stumbling-blok to me. Hene I am very muh obliged to join the gloriousompany of supplanters and to put the whole business in about six lines. Einstein expresseshis reservations in the quote in the Introdution. Neither ould Karl Popper aept the ideaof explaining irreversibility by statistial mehanis and suggested instead a onnetion toradiation, but did not develop onvining details.Boltzmann's idea about natures preferene to move from less towards more probablestates seems to be seriously irular (a motion from a probable to a less probable statewould not seem very probable, would it?), and Boltzmann's assumption of statistial inde-pendene before ollision (also referred to as \moleular haos"), has been diÆult to eitherverify or disprove. However, today it should be possible to hek if Boltzmann's assumptionis valid or not by very areful omputation in Hamiltonian partile systems, and we willpresent the results of suh a study in [9℄. Moreover, the fat that even Boltzmann himselfaknowledges that his H-theorem sometimes is violated, although he laims this only anour for very speial (rare) inititial onditions, of ourse is potentially atastrophial froma sienti� point of view. If Newton's apple oasionally would not fall down, there wouldseem to be some serious aw in his universal theory of gravitation. Neverheless, lakingany other onvining explanation of the appearane of irreversibility in reversible systems,statistial mehanis has not only survived into our time, but also opened the way to thestatististial interpretation of quantuum mehanis with the modulus of the wave funtionsquared supposedly expressing the probability of �nding eletrons at spei� loations inspae/time.In 1993 Evans, Cohen and Morriss takled the paradox in their Flutuation Theoremagain using statistial methods. Evans et al suggest that the Seond Law may be violatedfor small mirosopi systems, while it would still hold marosopially for large systemswith a very high probability.Altogether, as far as we an understand, the true origins of irreversibility in reversiblesystems has not been given a sienti�ally onvining explanation. The literature is vast



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 5with ontributions from mathematiians, physiists, hemists, engineers, philosophers, lin-guists, authors of siene �tion and the general publi.2. Finite Preision ComputationWe now fous on the new mode of explanation based on �nite preision omputation,whih we advoate. The �nite preision omputation appears in two forms: First, itneessarily appears in digital solution of Hamiltonian equations using omputers. Seondly,it probably appears also in Natures evolution in time from one state to the next in someform of analog omputation. In this note we fous on �nite preision omputation fromdigital solution of the Hamiltonian equations using omputers, but we also speulate aboutpossible forms of �nite preision analog omputation in Nature.The solution of the paradox of irreversibility in reversible system based on �nite preisionomputation, is not trivial in the sense that it may be blamed simply on something likeround-o� errors in digital omputing or the inevitable approximations in solving di�erentialequations numerially. This would be similar to explaining irreversibility as an e�et of aslightly visous Aether, a mode of explanation we have already rejeted.The solution of the paradox is muh deeper and more fundamental and diretly ouplesto our reent work on omputational turbulene exposed in [6℄. In short, the seret we un-over is the following: We onsider a set of Hamiltonian equations desribing the evolutionin spae/time of a ertain system in Nature. We seek to solve the equations omputa-tionally using a numerial method implemented on a omputer. Doing so we meet twodi�erent situations: In the �rst ase, whih is the simple standard ase without surprise,the Hamiltonian equations have pointwise solutions whih are omputable, and if so wesimply ompute these solutions and �nd them to be reversible. A pointwise solution hasa residual whih is pointwise zero, obtained by inserting the solution in the equation, andwe an ompute approximate solutions with residuals being small pointwise. Aordingly,omputed solutions are approximately reversible by the reversible nature of the equationsthey are approximately solving pointwise.In the seond ase, whih ontains the seret, the Hamiltonian equations do not admitpointwise solutions, whih means that there simply are no (stable) solutions with resid-ual being zero pointwise. This reets the appearane of small sale phenomena suh asturbulene and/or shoks in the ase of invisid uid mehanis, whih represents a basiexample of Hamiltonian mehanis. In this seond ase the omputational method annotprodue an approximate solution with small pointwise residual, and the omputationalmethod we are using reats by produing an approximate solution for whih the residual issmall in a weak average sense ombined with a ertain weighted least squares ontrol of theresidual, whih turns out to be possible to ahieve. We refer to the numerial method withthis property as General Galerkin or G2. In the ase the Hamiltonian equations do notadmit pointwise solutions, whih may orrespond to the appearene of turbulene and/orshoks, G2 thus produes an approximate solution with the residual being small in a weaksense and with a ertain weighted least squares ontrol of the size of the pointwise residual,while the pointwise residual itself is not small.



6 JOHAN HOFFMAN AND CLAES JOHNSONWe shall see that this is about the best that an be done in the situtation when theHamiltonian equations do not admit pointwise solutions, but it turns out to be good enoughif we as quantities of interest or output quantities hoose ertain mean values of the solution,rather than point values. In the ase the Hamiltonian equations do not admit pointwisesolutions, orresponding to turbulene/shoks, we an thus nevertheless by G2 omputeertain mean value outputs aurately. From a physially point of view, we may say thateven though the Hamiltonian equations annot be satis�ed pointwise, they an be satis�edin an average sense with the pointwise residual not being too large, and that is enough forthe system to evolve. The pointwise violation but average satisfation of the Hamiltonianlaws in this sense, orresponds to a physial system in pointwise non-equilibrium, but inaverage loal equilibrium with some ontrol of the pointwise non-equilibrium. In suh aphysial system the laws of physis serve as goals, whih annot be satis�ed pointwise,and the searh of satisfation in a suitably approximate sense is what drives the evolutionof the system. It is like the Law in our soiety, whih is never followed pointwise by allitizens, only in some average sense, but yet has the important role to seure that soietydoes not fall apart.Now, the ath is that the weighted least squares ontrol of the residual in G2 adds adissipative term in an energy balane, whih e�etively makes the system irreversible. Itis thus the appearane of turbulent/shok small sales and the resulting impossibility ofomputing solutions with pointwise small residuals, whih neessarily introdues the irre-versibility. Faing the impossibility of pointwise solution, the system reats by produingan approximate solution in whih some of the energy is lost in a dissipative least squaresterm implying irreversibility. Moreover, the size of the dissipation and the energy loss doesnot derease with inreasing preision: In turbulene the dissipation always ours on the�nest sales available, but the total amount of the turbulent dissipation (turning into heat),stays (approximately) onstant under sale re�nement. A shok in ompressible ow hasa similar nature. Mean value outputs thus show an independene of the sale of resolutionin the omputation, while pointwise solution is impossible even if the omputational saleis re�ned inde�nitely.Our proposal for solution onnets to the following senario presented by the always vi-sionary Leibniz: I had maintained that the vis viva (live fore or momentum) are onservedin the world. It has been objeted that in a ollision two soft or inelasti bodies would loosetheir live fore. I answer that things are not so. It is true that the bodies as a whole looseit as far as their total motion is onerned, but their parts aquire it, beause the ollisionstrength reates an inner agitation. Thus this loss is only apparent. The fores are notdestroyed, but everything goes as if somebody wanted to hange a oin into smaller piees.The basi idea is thus that in ertain Hamiltonian proesses neessarily small salefeatures in the form of turbulene/shoks appear, and when faed with these small un-resolvable sales, whih physially orrespond to heat, the system reats by introduinga dissipative least squares ontrol of the residual, whih implies irreversibility in whihthe small sales annot be reovered. Thus, in turbulene/shoks, large sale mehanialenergy may be turned into small sale motion, orresponding to generation of heat, and



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 7this proess is irreversible sine the details of the small sales annot be kept and thusannot be reovered.The key here is to realize that the dissipative damping (i) is neessary, (ii) is substantial,(iii) is not a numerial artifat whih an be diminished by inreasing the preision. Thekey new fat behind (i)-(iii) is the non-existene of solutions to the Hamiltonian equations!The appearane of turbulene/shoks in invisid ompressible ow is an example of anirreversible proess satisfying (i)-(iii), where inevitably and irreversibly energy is turnedinto heat. As is well known, a shok solution is not a pointwise solution to the Eulerequations. As we will show, neither turbulene orresponds to a pointwise solution.One may ask why the non-existene of pointwise solutions, has to result in dissipationin approximate solutions? An answer is that anyway this is the way G2 works, and G2orresponds to a best approximate solution in ases when exat solution is impossible. G2 isdesigned so as to satisfy the mathematial equations expressing the physial laws in a weakaverage sense, whih is neessary, ombined with a weighted least squares ontrol of thepointwise residual, where the weight is hosen so that mean value outputs are maximallyorret. Thus, one may say that G2 handles the non-existene of an exat solution as wellas possible, and that inludes a dissipative least squares ontrol of the pointwise residual.One ould of ourse hope that Nature handles the situation equally well, but further studiesto settle this issue are learly required. At least there is G2 model to look for.One may view the least squares dissipation as a �ne paid beause the laws of the systemare violated. Neessarily a �ne has to represent a postive ost. If we would get paid bybreaking the Law, soiety would quikly ollaps.
3. The Seond Law of ThermodynamisWe may summarize our results as proving that the Seond Law of Thermodynamis is aonsequene of the First Law of Thermodynamis (whih expresses onservation of energy)ombined with �nite preision omputation. We may thus propose a new foundation ofgas dynamis based on deterministi mehanis expressed by the First Law ombined with�nite preision omputation, as opposed to a usual foundation with the Seond Law as anadditional postulate.Finite preision omputation of ourse appears in digital solution of the di�erentialequations of deterministi mehanis, but it neessarily also has to appear in some formin the analog omputation performed in the physis of the real World. We may analyzethe onsequenes of �nite preision omputation of digital solution, and then seek to �ndanalogs in physis.This brings us bak to a deterministi World as a giant Clok in the spirit of Laplae,but our Clok has �nite preision and that hanges the game. In partiular, it takes us outof the lassial paradox of the existene of free will in a deterministi World. With �nitepreision omputation, the future is no longer fully determined by the present, and thereis room for something like a free will. And there are neessarily irreversible proessess.



8 JOHAN HOFFMAN AND CLAES JOHNSONGoogle gives 160.000 hits searhing on \Seond Law of Thermodynamis", while \FirstLaw of Thermodynamis" gives 70.000, whih gives an indiation of the mystery surround-ing the Seond Law. 4. The Euler Equations for Fluid FlowThe Euler equations for ompressible invisid ow may be viewed to model a very largeolletion of \uid partiles" following Newton's Seond Law subjet to a pressure foregiven by the state equation of a perfet gas. This is a Hamiltonian reversible system,whih may formally be obtained by taking moments (averages) of Boltzmann's equation ofa gas (with no ontribution from the ollision term). As a speial ase we have the Eulerequations for an inompressible uid desribing a speial ow regime inluding turbulenebut not shoks.It is known that the ompressible Euler equations in general lak pointwise solutions, inpartiular beause shoks develop but also beause of turbulene. Neither do the inom-pressible Euler equations in general have pointwise solutions beause of turbulene. Thus,both omputation and Nature will have to go for suitable approximate solutions of theEuler equations. Computation will then rely on G2, with presumably Nature resorting tosomething similar, whih inevitable (beause of the least squares residual ontrol in G2)will introdue a dissipative e�et implying irreversibility.We thus have a situation, where the equations we want to solve have no exat pointwisesolutions (or if they have, then they are unstable), while the turbulent/shok solutionswhih do exist in fat only are approximate weak solutions and not pointwise solutions,and moreover these approximate solutions neessarily have a dissipative harater resultingin irreversibility. The paradox of irreversibility in a formally reversible Hamiltonian systemis thus a onsequene of the non-existene of stable laminar/shok-free pointwise (strong)solutions to the Euler equations, whih would have been reversible if they had only existed,and the dissipative nature of the turbulent/shok approximate weak solutions, whih doexist omputationally and and for whih mean value outputs an be aurately omputed.We note that the non-existene of exat solutions, strong or weak, hanges the waymathematis for the Euler equations an be presented: With non-existent exat solutions,the attention has to move to existing approximate solutions, and thus the omputationalaspet takes a prime position before analytial mathematis.The non-existene of pointwise solutions to the Euler equations, whih may be viewedas a failure of mathematis, in fat may be turned around into an advantage from aomputational point of view: If there were an exat solution, one ould always ask for morepreision in omputing this solution requiring �ner resolution and higher omputationalost, but if there is no exat solution, then we ould be relieved from this demand beyonda ertain point. A key feature in this situation is that the absolute size of the �ne salesno longer are important, and this ould save omputational work. We know that there arearound 1023 moleules in a mole of gas, but it is likely that we an omputationally modelgas dynamis with instead say 106 degrees of freedom.



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 9We will also see that the pointwise non-solvability of the invisid Euler equations reetthe presene of small sale turbulene/shoks in slightly visous ow, with a passage tothe limit of vanishing visosity being impossible.In order for a Hamiltonian system to develop turbulene, it has to be rih enough indegrees of freedom. In partiular, the inompressible or ompressible Euler equationsin less than three spae dimensions are not rih enough, even if the mesh is very �ne.On the other hand, turbulene invariably develops in three dimensions if the visosity issmall or zero. Our experiene with turbulent solutions of the inompressible Navier-Stokesequations indiates that a mesh with 100.000 mesh points in spae may suÆe in simplegeometries, while in more omplex geometries millions, but not billions, of mesh pointsmay be needed. 5. Compressible Euler Equations in 1dThe Euler equations in one spae dimension (1d) modeling the ow of a ompressibleinvisid perfet gas in an in�nite tube along the real axis R, take the following form: Findu = (�;m; e) depending on (x; t) suh that(5.1) _�+ (w�)0 = 0; x 2 R; t 2 R+ ;_m+ (wm+ p)0 = 0; x 2 R; t 2 R+ ;_e + (we+ pw)0 = 0; x 2 R; t 2 R+ ;u(x; 0) = u0(x) x 2 R;where u0(x) is a given initial ondition, R+ = ft 2 R : t > 0g, � is the density, m = �wthe momentum with w the veloity, e the total energy being the sum of the kineti energy�w2=2 and the internal energy in the form of heat measured by temperature, and p is thepressure given by the state equations for a perfet gas p = ( � 1)(e � m2=(2�)), where > 1 is a onstant. Further, _v = �v�t and v0 = �v�x . We assume that u(x; t) tends to zero asjxj tends to in�nity.The system of equations (5.1) may be written in vetor form as(5.2) _u+ (f(u))0 = 0; x 2 R; t 2 R+ ;u(x; 0) = u0(x) x 2 R;where f(u) = (w�;wm + p; we + pw) is the ux vetor, whih expresses onservation ofmass, momentum and energy, where the momentum equation orresponds to Newton'sSeond Law with p0 representing the net fore on a uid element from the pressure, and inthe energy equation (pw)0 represents the work from the pressure ating on a uid element.Here w�, wm and we are the onvetive uxes of the mass, momentum and energy, and p0and (pw)0 are uxes related to the pressure. We also refer to an equation of the form (5.2)as a onservation law.The Euler equations (5.2) express onservation in pointwise (strong) form as R(u) � _u+(f(u))0 = 0 in R�R+ , asking u to be a di�erentiable and in partiular ontinuous pointwisesolution with residual R(u) vanishing pointwise. The Euler equations are Hamiltonian andformally reversible in the sense that a hange of sign of time t and veloity w leave theequations unhanged.



10 JOHAN HOFFMAN AND CLAES JOHNSONThe Euler equations have onservation form, sine they express onservation, whihmeans that a notion of weak solution an be introdued as follows: Multiply R(u) = 0with a smooth test funtion ' = ('1; '2; '3) vanishing for t = 0 and large (x; t), integratein spae/time, and then integrate by parts to move all spae and time derivatives ontothe smooth test funtion '. We an then express the Euler equations in weak form as(R(u); ') = 0 for all smooth test funtions ', where (�; �) indiates integration in spae-time, and ' arries the derivatives. For example, mass onservation takes the weak form�(�; _'1)�(w�; '01) = 0 for all smooth test funtions '1. Aordingly, we say that a boundedfuntion u(x; t), whih thus may be disontinuous, is a a weak solution if (R(u); ') = 0 forall smooth test funtions ', and it suitably satis�es the initial ondition.The funtion � = �(u) = � log(p��) is a mathematial entropy for the Euler equations,whih means that �(u) is a onvex funtion of u, and there is a orresponding entropy uxq(u) = w� suh that if u is a pointwise (strong) solutions, then_� + (w�)0 = 0 in R � R+ :This equation follows by multiplying the residual equation R(u) = 0 by the JaobianD�(u)of �(u) with respet to u, and using the ompatibility relationDq(u) = D�(u)Df(u). Moregenerally, weak solutions of the Euler equations orresponding to physially admissiblesolutions, satisfy the entropy inequality_� + (w�)0 � 0 in R � R+ ;in weak form, whih expresses the Seond Law of Thermodynamis. Here �� orrespondsto the physial entropy. The important feature to notie here is that pointwise solutionssatisfy the entropy inequality with equality, and they orrespond to reversible solutionswith onstant entropy, while weak solutions with stritly dereasing entropy orrespond toirreversible solutions.It is well known that ompressible invisid ow in general develops shoks, whih in1d orrespond to disontinuous weak solutions of the Euler equations with sudden sharpjumps from one state to another, and whih in 3d probably also has a turbulent regionaround the jump. Shok solutions satisfy the entropy inequality with strit inequality, andthus shoks are irreversible.We onlude that the ompressible Euler equations o�er an example of a system whihis formally reversible, but nevertheless has irreversible solutions. Clearly, it is the existeneof shoks/turbulene, whih are not pointwise solutions to the Euler equations, whih openfor this senario. Thus, it is the non-existene of pointwise solutions, whih auses the irre-versibility. We note that the irreversibility is unavoidable beause shoks are unavoidable.The ompressible Euler equations in 1d o�er a model of irreversibility in the form of shokswithout the presene of turbulene. We use this model in Part I to expose the prinipalideas, and onsider the real ase with turbulene in 3d in Part II-III.Now we approah this phenomenon of irreversibility in a formally reversible system froma purely omputational point of view. We will show that if we use G2 to ompute solutionsto the Euler equations, then G2 will automatially single out physially admissible entropysolutions, without expliitely enforing the entropy ondition. We shall see that this is a



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 11result of the least squares ontrol of the pointwise residual and the oupling of residualontrol to the entropy inequality.We may interprete these G2 results in physial terms as follows: Nature seeks to satisfythe onservation laws expressesd by the Euler equations. When shoks appear, whih isinevitable, the equations an no longer be satis�ed pointwise, beause shoks are dison-tinuous, and Nature then seeks to handle this situation by resorting to something like G2involving a weak satisfation of the onservation laws ombined with a ertain ontrol ofthe pointwise residual. The result is that Nature produes a solution whih satis�es theentropy ondition or the Seond Law of Thermodynamis, whih follows from what weshow for G2 below. Of ourse the key point here is that Nature in this way ahieves tosatisfy the Seond Law, not by expliitly seeking to do so, but as a result only of solvingthe original onservation equations by G2.Again, Nature may be supposed to diretly reat to the onservation laws, but it is notlikely that Nature has any diret sensor of entropy. Thus, from a sienti� point of viewthe ruial point is to explain how Nature an be fored to satisfy the entropy inequality,without knowing anything about it. We show that this is ahieved automatially by solvingthe onservation laws by something like G2.It is known that adding a small visous term in the Euler Equations to get the Navier-Stokes equations, is a way to automatially satisfy the entropy inequality in the limit ofvanishing visosity, as a onsequene of the onservation laws. As indiated above, we donot onsisder this approah sienti�ally satisfying, sine the nature of suh a visosity infat is the essene of the mystery of irreversibility in reversible systems.We have noted that a key point is the automati satisfation of the entropy inequality byG2. In partiular, it means that G2 will never ompute a weak solution whih orrespondsto a physially non-admissible shok violating the entropy inequality. Another way ofexpressing the non-physial nature of a shok violating the entropy ondition would be tosay that it is unstable, and that G2 will prefer to ompute stable entropy satisfying weaksolutions before unstable entropy violating weak solutions. Computing a shok bakwardsin time would orrespond to omputing an entropy violating shok, and this omputationwould be unstable, beause the stabilizing term is destabilizing when omputing bakwards.Thus we may express the entropy inequality satisfation built into G2 as a result of thestabilizing least squares term whih, by its stabilizing nature, will hoose a stable solutionsatisfying the entropy ondition before an unstable solution violating the entropy ondition.There is thus a lose onnetion between stability and the entropy inequality.The impossibility of solving a shok problem bakwards, whih orresponds to the im-possibility to reover all the heat generated in a shok and irreversibility, thus may beviewed as a reetion of instability. If the instability ould be ontroled, omplete reov-ery and reversibility would be possible, but suh a minute ontrol (orresponding to theMaxwell Demon) seems impossible, with the simple reason is that heat is a small salephenomenon.



12 JOHAN HOFFMAN AND CLAES JOHNSON6. A Senario of IrreversibilityThe ompressible Euler equations o�er a senario of irreversibility in a formally reversiblesystem in the form of disontinuous shok solutions, whih have been studied intensivelysine the 1940s when von Neumann during the war initiated a study of the mathematisand numeris of high speed gas dynamis. A shok solution satis�es the Euler equationsin a weak sense, but not in a pointwise sense, while it also satis�es an entropy inequal-ity orresponding to the Seond Law of Thermodynamis stating that the mathematialentropy of a (physial) solution an never inrease (with the mathematial entropy beingequal to minus the physial entropy). Smooth solutions have onstant (mathematial) en-tropy, while the entropy for shoks is stritly dereasing, whih e�etively makes a shokirreversible, sine time reversal would orrespond to a shok solution with inreasing en-tropy. Thus, shok solutions for the Euler equations represent a well studied phenomenonof irreversibility in a formally reversible system.However, one may ask how in fat Nature sueds to satisfy the entropy ondition,whih is a diret onsequene of the onservation laws for smooth solutions, but not forweak solutions. In fat, there are so alled unphysial shoks, whih are weak solutionsof the Euler equations violating the entropy ondition, and one may ask what Naturesmehanism of preferring shoks satisfying the entropy inequality may be? The standardanswer to this question is to add a small amount of visosity to the Euler equations and showthat limits of visous solutions as the visosity tends to zero, satisfy the entropy inequality.The argument would then be that Nature always has some visosity, although very small,and the presene of this visosity would be the mehanism hoosing the entropy solution.However, again the physial origin of this visosity would then have to be explained, andwe would again have to deal with some small (mysterious) frition or visosity in someAether �lling empty spae, whih we seek to avoid.We give in this note instead an alternative answer to this question using the basi prop-erty of G2 by showing that G2 solutions of the Euler equations automatially satisfy theentropy inequality (approximately). We thus show that for G2 the satisfation of the en-tropy inequality is a onsequene of the weak satisfation of the onservation laws ombinedwith the weighted least squares ontrol of the residual. G2 would thus not be apable ofomputing an unphysial entropy-violating solution. This puts the entropy inequality andthe Seond Law of Thermodynamis in new light: Spei�ally we show that the SeondLaw may be viewed as a onsequene of the First Law expressing the onservation lawombined with �nite preision G2 omputation. This indiates that Nature would satisfythe entropy inequality automatially by using an analog omputation similar to G2, thuswithout expliit presene of visosity as in the standard argument. Altogether, we showthat the Seond Law is a onsequene of the First Law ombined with G2 �nite preisionomputation. 7. Imperfet Nature and Mathematis?How are we to handle the fat that the Euler equations do not have pointwise solutions ingeneral? Does this express an imperfetion of mathematis? And what is the onsequene



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 13in physis? Is Nature simply unable to satisfy the basi laws laid down in the form of e.g.Newton's Seond Law? Does this mean that also Nature is imperfet? And if now bothmathematis and Nature indeed are imperfet, what is the degree of imperfetion and howdoes it show up?We may make a parallel with the squareroot of twop2, whih is the length of the diagonalin a square with side length 1. We know that the Pythagoreans disovered that p2 is not arational number. This knowledge had to be kept seret, sine it indiated an imperfetion inthe reation by God formed as relations between natural numbers aording the basi beliefof the Pythagoreans. Eventually this unsovable onit ruined their philosophial shooland gave room for the Eulidean shool based on geometry instead of natural numbers.Civilization did not reover until Desartes resurreted numbers and gave geometry analgebrai form, whih opened for Calulus and the sienti� revolution.But how is the Pythagorean paradox of non-existene ofp2 as a rational number handledtoday? Well, we know that the aepted mathematial solution sine Cantor and Dedekindis to extend the rational numbers to the real numbers, some of whih like p2 are alledirrational, and whih an only be desribed approximately using rational numbers. Wemay say that this solution in fat is a kind of non-solution, sine it aknowledges thefat that the equation x2 = 2 annot be solved exaly using rational numbers, and sinethe existene of irrational numbers (as in�nite deimal expansions or Cauhy sequenes ofrational numbers) has a di�erent nature than the existene of natural numbers or rationalnumbers. The non-existene is thus handled by expanding the solution onept untilexistene an be assured.We handle the non-existene of pointwise solutions to the Euler equations similarly, thatis, by extending the solution onept to approximate solutions in a weak sense ombinedwith some ontrol of pointwise residuals. Doing so we neessarily introdue a dissipationausing irreversibility. In this ase, the non-existene of solutions thus has a ost: irre-versibility. In the perfet World, pointwise solutions would exist, but this World annotbe onstruted neither mathematially nor physially, and in a onstrutible World ne-essarily there will exist irreversible phenomena as a onsequene of the non-existene ofpointwise solutions. The non-existene of pointwise solutions reets the development ofomplex solutions with small sales, and thus the non-existene also relets a omplexityof the onstrutible World. The perfet World would lak this omplexity, so in additionto being non-existent it would also probably be pretty non-interesting. The World we livein thus does not seem to be perfet, but it surely is omplex and interesting.What is the reason that the resolution of the paradox we are proposing has not beenpresented before, if it indeed unovers the mystery? We believe it an be explained bythe Ideal Worlds that both mathematiians and physiists assume as basis of their siene.In the Ideal World of mathematis, exat solutions to di�erential equations exist as wellas in�nite sets, not just approximate solutions and �nite sets, and the World of physisis supposed to follow laws of physis exatly, not just approximately, unless a resort tostatistis is made (whih is a very strong mediation with severe side e�ets). It thusappears that an imperfet World of mathematis or physis, where equations annot be



14 JOHAN HOFFMAN AND CLAES JOHNSONsolved exatly or laws of physis annot be exatly satis�ed, lassially is unthinkable atleast as a deterministi World, and thus has reieved little attention by mathematiians andphysiists with little bakground in omputational mathematis. Yet, suh an imperfetWorld seems to be a reality in both mathematis and physis, and thus should be studied.8. A New Paradigm?From a philosophial point of view, we may say that the traditional paradigm of bothmathematis and physis is Platonisti in the sense that it assumes the existene of anIdeal World, where equations/laws are satis�ed exatly. We may say that this is an IdealWorld of in�nities beause exat satisfation of e.g. the equation x2 = 2 requires in�nitelymany deimals. This is the mathematial Ideal World of Cantor, whih represents a for-malist/logiist shool. In strong opposition to this shool of in�nities, is the onstrutivistshool, whih only deals with mathematiial objets that an be onstruted in a �nitenumber of steps. In the onstrutivists Construtible World, the set of natural numbersdoes not exist as a ompleted mathematial objet as in Cantors Ideal World, but only asa never-ending projet where always a next natural number an be onstruted if needed,whih follows the suggestions of e.g. Aristotle and Gauss. The Construtible World is�nitary and thus inherently omputational, while Cantors Ideal World is non-�nitary andnon-omputational. In the eduational projet [10℄ and the pamphlett [11℄, we ompare thetwo shools, and give our vote to the Construtible World, whih today an be exploredusing the omputer, and we question the existene of an Ideal World as a sienti�allymeaningful onept. 9. Physis vs ComputationThe mehanism making G2 irreversible when applied to a suÆiently omplex formallyreversible Hamiltonian system, is the least squares ontrol of the pointwise residual intro-duing a dissipative e�et when pointwise solutions do not exist. It is natural to believethat Nature resorts to something similar, but the more preise physis of this e�et is ofourse up to debate and study. In general, one may view the physis/mehanis of a systemof interating partiles as some kind of analog omputation, where during eah little timestep the partiles exhange data onerning (relative) positions and fores determining a-elerations and then update veloities, positions and fores for the next time step. But themore exat nature of the exhange proess is largely unknown, and it is oneivable thata areful study of a omputational model may open doors to understanding, as suggestedby the famous omputer sientist Dijkstra: Originallly I viewed it as the funtion of theabstrat mahine to provide a truthful piture of the physial reality. Later, however, Ilearned to onsider the abstrat mahine as the \true" one, beause that is the only one wean \think"; it is the physial mahine's purpose to supply a \working model", a (hopefully)suÆiently aurate physial simulation of the true, abstrat mahine.



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 1510. Burgers' EquationWe now proeed to �ll in the details of the senario sethed above in the setting of theompressible Euler equations. To simplify the disussion we onsider the simplest modelof ompressible ow in the form of Burgers' equation. We will return to the ompressibleEuler equations in 1d below and to the real ase of 3d in [8℄.Burgers' equation reads: Find the salar funtion u = u(x; t) suh that(10.1) _u+ (f(u))0 = 0; x 2 R; t 2 R+ ;u(x; 0) = u0(x); x 2 R:where f(u) = u2=2, and we assume that u(t; x) tends to zero as x ! �1. Obviously,Burgers' equation takes the pointwise form _u+ uu0 = 0 for a smooth solution u.A pointwise solution u(x; t) is onstant with values u0(�x) along straight line harateris-tis x = st+ �x, where s = f 0(u0(�x)). If u0(x) is inreasing with inreasing x and is smooth,then there is a smooth solution u(t; x) for all time given by this formula. However, if theinitial data u0(x) is stritly dereasing, then harateristis ross in �nite time, and thena shok solution neessarily develops, whih is disontinuous in x.A disontinuous shok solution u(x; t) satis�es Burgers' equation in the following weaksense:(10.2) ZR�R+(�u _'� f(u)'0)dx dt� ZR u0(x)'(x; 0) dx = 0for all di�erentiable test funtions ' suh that '(x; t) vanishes for large (x; t). Here theinitial ondition appears in weak form together with the onservation law in the formof Burgers' equation. This equation is obtained from (10.1) by multipliation by ' andintegration by parts.A disontinuous funtion u(x; t) de�ned by u(x; t) = u+ if x > st and u(x; t) = u� ifx < st, where u+ and u� are two onstant states and s is a onstant, orresponding toa disontinuity propagating with speed s, is a weak solution to Burgers' equation if theshok speed satis�es the Rankine-Hugoniot ondition(10.3) s = [f(u)℄[u℄ ;where [u℄ = u+ � u� and [f(u)℄ = f(u+) � f(u�). With f(u) = u2=2 as in Burgers'equation, we have(10.4) s = (u+ + u�)=2:The Rankine-Hugoniot ondition expresses the onservation law in weak form for a piee-wise onstant disontinuous u.10.1. Rarefation wave. The solution to Burgers' equation with the inreasing dison-tinuous initial data u0(x) = 0 for x < 0, and u0(x) = 1 for x > 0, is a rarefation wave



16 JOHAN HOFFMAN AND CLAES JOHNSONgiven by(10.5) u(x; t) = 0 for x < 0;u(x; t) = xt for 0 � xt � 1;u(x; t) = 1 for 1 < xt :This is a ontinuous funtion for t > 0, di�erentiable o� the lines x = 0 and x = t, whihsatis�es (10.1) pointwise for t > 0. In a rarefation wave, an initial disontinuity separatingtwo onstant states develops into a ontinuous linear transition from one state to the otherof width t in spae, orresponding to \fan-like" level urves in spae-time, see Fig 10.1:
x

t

u = 0
u = x / t

u = 1

Figure 1. Charateristis of a rarefation wave.The stability of a rarefation wave u(x; t) is governed by the linearized equation(10.6) _w + (uw)0 = 0 in R � R+where w represents a (small) perturbation (tending to zero for jxj tending to in�nity).Multiplying by w and integrating in spae, we obtain by a simple omputation using thefat that u0(x; t) = 1=t for 0 � x � t and u0(x; t) = 0 else,ddt ZRw2(x; t) dx+ Z t0 w2(x; t)1t dx = 0; for t > 0;from whih follows that(10.7) ZRw2(x; t) dx � ZR w2(x; 0) dx for t > 0:This inequality shows that the L2-norm in spae of a perturbation of initial data does notgrow with time, whih proves stability of a rarefation wave. Note that this argument buildson the fat that the rarefation wave u(x; t) is inreasing in x so that u0 is non-negative.10.2. Shok. The solution with dereasing disontinuous initial data u0(x) = 1 for x < 0,and u0(x) = 0 for x > 0, is a disontinuous shok wave moving with speed 12 :(10.8) u(x; t) = 1 for x < t2 ;u(x; t) = 0 for x > t2 ;see Fig 2. The stability proof used above to prove stability of a rarefation wave, does notwork the same way for a shok, sine in this ase u(x; t) is dereasing with x. In fat a
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Figure 2. Charateristis of a shokshok does not satisfy an L2 stability estimate of the form (10.7). However, one may proveinstead an L1-bound of the form(10.9) ZR jw(x; t)j dx � ZR jw(x; 0)j dx for t > 0:This follows by multiplying (10.6) by sgn(w) = +1 if w > 0 and �1 if w < 0, to get byintegration by parts:(10.10) ddt ZR jw(x; t)j dx+ (u� � u+)jw( t2 ; t)j = 0;and using the fat that for a shok u+ < u�. Moreover, we will below with a di�erenttype of stability estimate show that a shok is stable from a omputational G2 point ofview. Thus, a shok is a stable phenomenon from both physial and omputational pointof view.In one spae dimension, shoks exist as pieewise onstant (disontinuous) solutions. Inthree spae dimensions suh sharp disontinous shoks are probably not stable, and insteada shok will be surrounded by a turbulent transition region. We will return to this issuein further studies.10.3. Weak solutions may be non-unique. The rarefation wave initial data u0(x) = 0for x < 0 and u0(x) = 1 for x > 0, also admits the alternative disontinuous weak solution(10.11) u(x; t) = 0 for x < t2 ;u(x; t) = 1 for x > t2 ;orresponding to a disontinuity f(x; t) : x = stg moving with speed s = 12 . This solutionis obviously di�erent from the rarefation wave solution (10.5), whih sine it is a lassialsolution, also is a weak solution. Thus, we have in this ase two di�erent weak solutions,and thus we have an example of non-uniqueness of weak solutions.We saw above that the rarefation wave solution is stable, and we now study the stabilityof the alternative weak solution (10.11). By the same argument as used to prove (10.10)we obtain(10.12) ddt ZR jw(x; t)j dx = (u+ � u�)jw( t2 ; t)j;



18 JOHAN HOFFMAN AND CLAES JOHNSONwhere now u+ > u�. In this ase, RR jw(x; t)j dx an grow arbitrarily fast, sine thepositive right hand side in (10.12) in no way an be ontroled by the left hand side, andwe thus onlude that the alternative weak solution is unstable. We may thus disard thealternative weak solution on the ground that it is unstable and thus not physial, beausephysis would of ourse prefer to realize a stable solution before an unstable. We may referto the alternative unstable weak solution, as a non-physial shok.We shall now disqualify the alternative weak solution as a physial solution also beauseit violates a ertain entropy inequality satis�ed by physial solutions. We thus have twomethods to single out physial weak solutions, one based on stability, and the other on anentropy inequality.10.4. The entropy inequality. A pointwise solution of Burgers' equation _u + (u22 )0 = 0also satis�es the entropy equality(10.13) ��t (u22 ) + (u33 )0 = 0;whih is obtained by multiplying _u+ (u22 )0 = 0 by u and rearranging terms. The quantity�(u) = u22 is a mathematial entropy for Burgers' equation with orresponding entropy uxq(u) = u33 . The entropy equality is thus obtained by multiplying Burgers'equation with�0(u) = u, where here the prime indiates di�erentiation with respet to u. More generally,as an entropy �(u) for Burgers' equation _u + (f(u))0 = 0, we may hoose any onvexfuntion �(u) of u sine in the present ase it is always possible to �nd a orrespondingentropy ux q(u) satisfyig the ompatibility relation q0(u) = �0(u)f 0(u). The situation isdi�erent for the Euler equations in 3d, where only one type of entropy is known to exist.We shall motivate below that a weak solution u whih is physially admissible, willsatisfy in a weak sense the following entropy inequality:(10.14) ��t(u22 ) + (u33 )0 � 0;whih we will see orresponds to the Seond Law of Thermodynamis. The entropy in-equality shows upon integration in spae and time thatZR �(u(x; t)) dx � ZR �(u0(x)) dx;whih states that the total entropy annot inrease with time. The entropy �(u) = u22orresponds to the kineti energy, and the entropy inequality states that the kineti energyof a Burgers solution annot inrease. We shall see that a shok has a substantial lossof kineti energy as a result of strit entropy inequality, where the lost kineti energy isdissipated into heat.For a disontinuous solution onsisting of two onstant states u+ and u� separated bythe line fx = stg, the entropy inequality takes the form(10.15) s[u22 ℄� [u33 ℄ � 0;



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 19from whih by a simple omputation, we get(10.16) 0 � 12(u� + u+)12[u2℄� 13[u3℄ = (u� � u+) 112(u� � u+)2:We onlude that the entropy inequality for a disontinuous weak solution an be statedas u� � u+, that is,(10.17) u� � s � u+:A physial shok solution is thus haraterized by the ondition u� > u+ with shok speed(u� + u+)=2, in whih ase the entropy inequality is satis�ed with strit inequality. Weonlude that a shok dissipates kineti energy into heat.The entropy inequality states that the harateristis of a physially admissible dison-tinuous weak solution of the invisid Burgers equation \onverge into" the shok, orre-sponding to u� > u+. This eliminates the disontinuous weak solution to the rarefationinitial data as an unphysial weak solution violating the entropy ondition, sine in thisase u� < u+, and the harateristis appear to \emerge from" the disontinuity. Thisreets that the entropy inequality states that in a losed system information may get de-stroyed (as in a shok with onverging harateristis), but not reated (as in an unphysialrarefation with diverging harateristis).10.5. Motivation of the entropy inequality. We shall now motivate the entropy in-equality (10.14) by using a vanishing visosity argument. This does not mean that weresurret visosity as explaining irreversibility. Below we shall present an analog of thisargument for G2, where instead the role of visosity is taken over by least squares stabiliza-tion, whih is thus di�erent from arti�ially introduing visosity, something we want toavoid. However, in motivating the entropy inequality, an approah using vanishing arti�ialvisosity is mathematially and physially sound.We thus hange Burgers`equation into _u + uu0 � �u00 = 0, where � is a small positivevisosity, whih we refer to as the visid Burgers' equation. Multiplying this equation byu, integrating in time and spae, we obtain the basi energy estimate:(10.18) ZR ju(x; t)j2 dx+D�(u) = ZR ju(x; 0)j2 dx;where the dissipation(10.19) D�(u) = 2 Z t0 ZR �(u0)2 dx ds;represents the kineti energy turned into heat. Clearly, it follows that for t > 0(10.20) ku(�; t)k � ku0k;with k � k denoting the L2(R)-norm.We now ompare the size of the dissipation D�(u) in the ase of a rarefation wave and ashok wave. We �nd that D�(u) / � in the ase of a rarefation wave and D�(u) / j[u℄j inthe ase of a shok wave with jump [u℄. Thus, in the ase of a rarefation wave, D�(u)! 0as � ! 0, while in the shok ase we have D�(u) ! j[u℄j 6= 0 as � ! 0. Thus, in a limit



20 JOHAN HOFFMAN AND CLAES JOHNSONof vanishing visosity �, we will have equality in (10.20) in the ase of a rarefation wave,and strit inequality in the ase of a shok wave expressing a \loss of information" or\(physial) entropy prodution" orresponding to generation of heat in the ase of a shokwave.To justify (10.14) we now assume that solutions u of the visid Burgers' equation arebounded for � > 0, and tend pointwise to some bounded limit, again denoted by u, as �tends to zero. Multiplying the visid Burgers' equation �rst by a smooth test funtion 'vanishing for t = 0, and integrating by parts, we obtain� R t0 RR u _'dx ds � 12 R t0 RR u2'0 dx ds= � R t0 RR �u0'0 dx ds:Sine by (10.18)(10.21) 2 Z t0 ZR �(u0)2 dx ds � ku0k2;we have using Cauhy's inequality and the smoothness of ',(10.22) Z t0 ZR �u0'0 dx ds � ku0kp�(Z t0 ZR('0)2dx ds)1=2 ! 0 as �! 0:Thus, we onlude that the limit u satis�es (10.2) with f(u) = u2=2 and hene is a weaksolution of the (invisid) Burgers' equation.Next, multiplying by u', where ' is a smooth test funtion now assumed to be alsonon-negative, we obtain integrating by parts� R t0 RR u22 _'dx ds � R t0 RR u33 '0 dx ds+ R t0 RR �(u0)2'dx ds = � R t0 RR �uu0'0 dx ds:Arguing as above, using also the boundedness of u, we see that the right hand side tendsto zero. Using also the positivity of ' to see that the third term on the right hand side ispositive, we onlude that the limit u satis�es(10.23) � Z t0 ZR u22 _'dx ds� Z t0 ZR u33 '0 dx ds � 0;for all smooth non-negative test funtions �, with strit inequality if D�(u) tends to somenon-zero limit. This is the entropy inequality (10.14) stated in weak form.We have now shown that a limit of solutions of the visid Burgers' equation as thevisosity tends to zero satis�es the entropy inequality (10.14). We have also seen that fora shok the inequality is strit. It follows that a shok solution to Burgers' equation isirreversible sine e�etively the mathematial entropy dereases, and reversing time wouldorrespond to stritly inreasing mathematial entropy violating the entropy inequality.10.6. Sum up Burgers. We have shown that the mathematial entropy of a shok so-lution to Burgers' equation is stritly dereasing, whih shows that a shok solution tothe formally reversible Burgers'equation, is irreversible. Letting time pass bakwards ina shok problem with onverging harateristis in forward time, would orrespond to an



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 21unphysial rarefation initial data solution with diverging harteristis in bakward time.We may thus say that the irreversibility of a shok in the invisid Burgers' equation, isreeted by instability when seeking to reover the initial data by omputing bakwards intime from �nal data. We may thus phraze the irreversibility as reeting forward stabilityand bakward instability, just as in the heat equation, although formally we are dealingwith an invisid equation.We have presented a very simple onrete (well known) example of irreversibility in aformally reversible problem, and we have seen that the irreversibility requires non-existeneof pointwise solutions in order to our. We have thus presented a key basi example of thesenario of irreversibility in reversible systems, whih we are seeking to unover in the moregeneral setting of inompressible and ompressible ow, partile dynamis and hopefullyeventually for quantuum mehanis.We now proeed to the omputational version of the senario. The key here will be theG2 method and its property of automatially satisfying the entropy inequality, withoutexpliitely being required to do so, whih is a parallel of Natures ability to satisfy theSeond Law of Thermodynamis again without knowing anything about it. This is madepossible by omputing, in a situtation where pointwise solution is impossible beause ofnon-existene of pointwise solutions, an approximate solution whih satis�es the basionservation laws in a weak sense ombined with a weighted least squares ontrol of thepointwise residual. It is this ombination whih automatially builds the entropy inequalityinto a weak solution. We may say that by the ombination of Galerkin and least squaresstabilization, G2 will automatially prefer to ompute stable (physial) weak solutionsbefore unstable (non-physial) weak solutions.11. G2 for Burgers' equationWe now turn to the G2-method whih is Galerkin's method ombined with a weightedleast-squares ontrol of the residual. G2 is based on pieewise polynomial approxima-tion in spae-time and o�ers a spetrum of omputational methods depending on thehoie of the spae-time mesh. G2 uses pieewise polynomials in spae-time. We refer tothese variants as G(p)G(q), G(p)dG(q) et et, with G(p)/dG(p) referring to ontinu-ous/disontinuous pieewise approximation of degree p in spae, and G(q)/dG(q) refer-ring to ontinuous/disontinuous approximation in time of degree q. G2 is Eulerian if thespae-time mesh is oriented along the spae and time oordinate axis, Lagrangean if thespae-time mesh is oriented along partile paths in spae-time, and Arbitrary Lagrangean-Eulerian or ALE if the spae-time mesh is oriented aording to some other feature suh asspae-time gradients of the solution. We also refer to Lagrangean variants as harateristiGalerkin, ALE-methods as oriented Galerkin, and Eulerian variants as SUPG and Stream-line Di�usion-methods. In all these variants the spae-time mesh is usually organized inspae-time slabs between disrete time levels, and the spae mesh may be hanged arossthe disrete time levels to avoid mesh distortion and allow mesh adaption. In dG(q) theapproximation is disontinuous in time and the spae mesh may vary from one slab to thenext. If the spae mesh is hanged aross a disrete time level in G(q), then a projetion



22 JOHAN HOFFMAN AND CLAES JOHNSONfrom the previous mesh to the new mesh is performed. The projetion is built into theGalerkin method through a jump term orresponding to a L2 projetion. The disretesolution between the disrete time levels may be viewed as an approximate transport step,and the whole proess may be viewed as a method of the basi form projetion-transport.The traditional �nite di�erene methods are of Eulerian type with the �rst order Lax-Friedrihs' sheme from the 50s as a prototype on onservation form and with arti�ialvisosity proportional to the mesh size. The next generation of lassial shemes originatesfrom Godunov's method in 1d, whih is of the form projetion-transport with a piee-wise onstant (disontinuous) approximation and a Riemann solver for the transport step.The multi-dimensional �nite volume shemes developed in reent deades, use disontinu-ous polynomial approximation with numerial uxes often onstruted using 1d Riemannsolvers. All these methods may alternatively be viewed as partiular G2 methods.Galerkin/least squares methods were pionereed in the early 1980s by Hughes followedby Johnson in the form of SUPG and Streamline Di�usion methods, see [12, 4, 5℄.11.1. G2 in the form G(1)dG(1). We now de�ne G2 in the form of G(1)dG(1) on anEulerian mesh for Burgers' equation. Let then 0 = t0 < t1 < ::: < tN = T with T a �naltime, be an inreasing sequene of time levels with orresponding time steps kn = tn�tn�1,and let Sn = R�In where In = (tn�1; tn℄, be the orresponding spae-time slabs. Assoiateto eah slab Sn a set Vn of ontinuous pieewise linear funtions v(x; t) on Sn, typially ofthe form v(x; t) = v0(x) + tv1(x), where v0(x) and v1(x) are ontinuous pieewise linear ona mesh of mesh size hn on R. Then de�ne Vh =QNn=1 Vn, where h is a measure of the meshsize in spae-time. Thus, Vh onsists of pieewise linear funtions in spae-time, whih areontinuous in spae and disontinuous in time (and in addition vanish for jxj large). Forsimpliity, we assume that the time step kn and mesh size in spae hn one eah slab Vn areof onstant size h.A funtion v 2 Vh is disontinuous in time aross a disrete time level tn with limitsv+n (x) = lims!0;s>0 v(x; tn + s) and v�n (x) = lims!0;s<0 v(x; tn + s), and with jump [vn℄ =v+n � v�n .We an now formulate G2 in the form G(1)dG(1) as follows: Find U 2 Vh, suh thatfor n = 1; 2; :::;,(11.1) (R(U); v)Sn + (hR(U); _v + Uv0)Sn + ([Un�1℄; v+n�1)R = 0; 8v 2 Vn;where R(U) = _U + UU 0 is the residual, U�0 = u0, (v; w)Sn = RSn vw dxdt, and (v; w)R =RR vw dx.11.2. The basi energy estimate for G2. Choosing v = U in (11.1), we obtain byintegration by parts and summation over n = 1; :::; N :12 ZR U�N (x)2 dx+ 12 NXn=1 k[Un�1℄k2R + Z tN0 ZR hR(U)2 dxdt = 12 ZR u0(x)2 dx;



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 23that is, 12kUNk2R + 12 NXn=1 k[Un�1℄k2R + kphR(U)k2QN = 12ku0k2R;where k � kD is the L2(D)-norm with D = R and D = QN � R � (0; tN). This is the basienergy estimate for G2 for Burgers'equation, whih also represents an entropy inequality forthe mathematial entropy �(u) = u2=2. We see that the least squares term kphR(U)k2QNand the jump term ats as dissipative terms, e�etively ausing the mathematial entropyto derease signi�antly in a situation when the slab residual R(U) and jumps annot bepointwise small, whih will happen in the ase of a shok. We may view the jump [u℄ asbeing part of the residual, with the jump being zero for an exat solution as well as theresidual on eah slab.11.3. G2 is entropy onsistent. We shall now prove as a major observation of thisnote that G2 automatially satis�es the entropy inequality (10.14) in a weak sense, andthus automatially omputes a physial solution without expliitely enforing the entropyinequality. The key point is thus that the onstrution of G2 as a weak satisfation of theonservation law ombined with weighted least squares onstrol of the pointwise residual,assures that a G2 solution also satis�es the entropy inequality haraterizing physialsolutions. In partiular, there is no hane that G2 will produe a non-physial solutionviolating the entropy ondition signi�antly.To see this, we hoose a smooth non-negative test funtion ', write w = 'U andthen hoose in G2 the �nite element test funtion v = wh, where wh 2 Vh is a nodalinterpolant of w, noting that w does not belong to Vh in G2 in general. We then have with~Un = 12(U+n + U�n ), by integration by parts in spae and time,�(12U2; _')QN � (13U3; '0)QN= NXn=1�(R(U); w)Sn + ([Un�1℄; ~Un�1'+n�1)R�= NXn=1�R(U); ŵh)Sn � (hR(U); _wh + Uw0h)Sn + ([Un�1℄; ~Un�1'+n�1 � w+h;n�1)R�� I + II + III;where ŵh = w � wh, and we used (11.1) with v = wh. We now estimate the interpolationerror ŵh as follows: kŵhkSn � kh2D2wkSn � ChkUk1;where D represents �rst order derivation in spae or time, C depends on �rst and seondderivatives of ' and kUk1 = maxQN jU j �M . This type of estimate is referred to as super-approximation sine it ontains the fator h without paying the prie of �rst derivatives of



24 JOHAN HOFFMAN AND CLAES JOHNSONU , whih results from the speial form of w = 'U as a produt of a �nite element funtionU and a smooth funtion. We onlude thatI � CMkhR(U)kQN � CMph;where we used the basi energy estimate assuming ku0k � 1. FurtherII = NXn=1(hR(U); ��tŵh + Uŵ0h)Sn � NXn=1(hR(U); _w + Uw0)Sn = IIa + IIb:We have again by super-approximation and the energy estimate that IIa � CMph, andIIb = � NXn=1(hR(U); _U'+ UU 0')Sn � NXn=1(hR(U); U _' + UU'0)Sn� � NXn=1(hR(U); R(U)')Sn + CMph � CMph;where we used the non-negativity of '. The term III is estimated similarly. We onludethat for all non-negative test funtions ', we have�(12U2; _')QN � (13U3; '0)QN � CMph;where M is a bound for U and C depends on up to seond derivatives of '. This expressesthat the G2 solution U approximately satis�es the entropy inequality in weak form andthe approximation improves as h gets smaller. We refer to this property of G2 as entropyonsisteny. In partiular G2 annot ompute a non-physial solution signi�antly violatingthe entropy inequality. Note that the M -bound on U is natural and an be proved by amaximum priniple if G2 is suitably modi�ed by introduing residual-dependent shok-apturing, [5℄.We have now established the key feature of G2 to automatially satisfy the entropyinequality approximately, as a onsequene of the least squares stabilization. The key tothe proof is the super-approximation making it e�etively possible to hoose U' as a testfuntion in G2, from whih entropy onsisteny follows using the positivity of the leastsquares term, whih reets that the entropy inequality is obtained by multipliation ofthe visid Burgers' equation by �0(u)' = u'. Note that hoosing U as a test funtion givesthe basi energy estimate, whih is the integrated form of the entropy inequality, and thestep to hoose instead (U�)h is not large, but requires the least squares stabilization towork out.11.4. A posteriori error estimation. Applying the general tehnique of a posteriorierror estimation for G2 presented in detail in [5℄ and [6℄, we may obtain an estimate of theform(11.2) ku� UkQN � SkhR(U)kQN ;



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 25where u is an exat Burgers solution, U is a G2 solution with mesh size h, and(11.3) S = kh�00kQNkekQN ;where e = u�U , is a normalized stability fator de�ned by the solution � of the followinglinearized dual problem:(11.4) � _�� a�0 � h�00 = e; x 2 R; 0 < t < tN ;�(x; t)! 0; x! �1; 0 < t < tN ;�(x; T ) = 0; x 2 R;where a = (u + U)=2. We notie that the dual problem has a visous term with visosityoeÆient h.We �rst note that by the basi energy stability estimate, we have that khR(U)kQN � phif ku0kR = 1, and thus(11.5) ku� UkQN � Sph:Clearly the size of the stability fator S determines the quality of the error bound. Weshall now prove that for a shok S � 1, whih shows that a shok is safely omputablewith G2, with a L2(QN) error of size ph whih is optimal from approximation point ofview, sine the exat solution u is disontinuous and U is ontinuous in x.The a posteriori error estimate (11.2) follows by multiplying (11.4) by u� U and inte-grating in spae and time to get the error representationku� Uk2QN = (R(U); �)QN ;where the jump term is inluded in R(U) to simplify the reading. We now use the Galerkinequation (11.1) with v = �h 2 Vh an interpolant of the dual solution �, to getku� Uk2QN = (R(U); �� �h)QN � (hR(U); _�h + U�0h)QN ;whih ombined with an interpolation error bound of the form k� � �hkQN � kh2�00kQN ,shows that ku� Uk2QN � khR(U)kQNkh�00kQN ;from whih the desired result diretly follows. Here, for simpliity we only aountedfor approximation in spae. We also used the dual equation to bound k _�h + U�0hkQN bykh�00kQN replaing a = (u+U)=2 by U and �h by �. We also regularized the exat solutionu leaving a very small regularizing term. For details, we refer to [6℄. We note the simpleform of (11.2), whih holds in a wide generality.11.5. Stability estimate for a shok. We shall now investigate the stability propertiesof the dual problem (11.4) and bound h�00 in terms of the right hand side e. For simpliitywe linearize at the exat solution u(x; t) (instead of the mean value (u + U)=2) and thusonsider the dual problem(11.6) � _�� u�0 � h�00 = e; x 2 R; 0 < t < tN ;�(x; T ) = 0; x 2 R:



26 JOHAN HOFFMAN AND CLAES JOHNSONThe stability properties are largely determined by the sign of u0, whih reets the hangeof the diretion u of the harateristis. If u0 � 0, then the harateristis onverge withinreasing t, whih typially ours in the ase of a shok. If u0 � 0, then the harateristisdiverge, whih typially ours in the ase of a rarefation. If u0 is bounded below by amoderate onstant, e.g. u0 � 0, then we may estimate k�kL1(L2(R)) and kph�0kQ in terms ofa moderate onstant times kekQ, whih we refer to as weak stability. If u0 is bounded aboveby a moderate onstant, e.g. u0 � 0, then we may estimate kh�00kQ in terms of a moderateonstant times kekQ, whih we refer to as strong stability, beause we estimate seondderivatives of �, f. (11.3). These estimates are proved by multiplying by � and �h�00,respetively, bringing in the positive stabilizing terms 12u0�2 and �12hu0(�0)2, respetively.We now give the details in the ase of a shok with u0 � 0, where we assume u isdi�erentiable with a very large negative x-derivative lose to the shok. We indiate thegeneral nature of the harateristis of the dual problem in Fig 11.5. We shall prove thatthe solution � of (11.6) satis�es(11.7) kh�00kQN + k _�+ u�0kQN + sup0<t<T kh1=2�0(�; t)kR � 3kekQN :To see this we multiply the �rst equation in (11.6) by �h�00, integrating by parts withrespet to x, and integrating in time over (�; T ) with 0 < � < T , we get withQ� = R�(�; T )(11.8) 12 RR h (�0(�; �))2 dx+ RQ� (h�00)2 dxdt+ RQ� 12 �uh (�0)2�0 dxdt� 12 RQ� �hu0 (�0)2 + e2 + (h�00)2� dxdt;whih proves the desired result stating that S � 1 for a shok.
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Figure 3. Charateristis of the dual problem for a regularized shok solution.



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 27As omparison, let us now attempt to derive a weak stability estimate for (11.6) in thease u is a shok. Multipliation by � and integration over Q� gives12 RR �2(x; �) dx+ h RQ� (�0(x; t))2 dxdt= �12 RQ� u0�2(x; t) dx+ RR e(x; t)�(x; t) dx:Sine u0 is large negative in the ase of a shok, we have a large positive term of the righthand side, and using a Gr�onwall's inequality would results in a very large stability fator.The situation is more favorable onerning weak stability estimates for a rarefation wavesolution with u0 � 0, as we demonstrate below.Summing up, we see that for a shok, the linearized dual problem satis�es a strong sta-bility estimate with a stability fator of moderat size, while a orresponding weak stabilityestimate appears to have a very large stability fator. These stability features may beunderstood in a qualitative sense, by pondering the diretionality of the harateristisand the nature of the L2-norm.11.6. Stability estimates for a rarefation wave. We now onsider the linearized dualBurgers' equation (11.6), linearized at the exat solution u(x; t) = x=t, orresponding toa rarefation wave. Multiplying now (11.6) by �ht�00, and using standard manipulations,we obtain the following weighted norm strong stability estimate for 0 < � < T ,(11.9) k� 1=2h1=2�0k+ k!h�00kQ� � k!ekQ� ;where !(t) = t1=2 ats as a weight.A weighted norm analog of the a posteriori error estimate (11.2) takes the form(11.10) k!�1ekQN � S!k!�1hR(U)kQNwith S! de�ned by the diret weighted norm analog of (11.3). The estimate (11.9) thenshows that S! � 1, and thus a rarefation wave solution is omputable in the weightednorm with a omputational work orresponding to interpolation. Note that the preseneof the weight t�1=2 will fore more stringent demands on the mesh for t lose to zero,whih will fore an aurate resolution of the initial phase of the rarefation. This isintuitively reasonable and orresponds to the fat that an initial error in the omputationof a rarefation will get ampli�ed as time goes, beause harateristis diverge forward intime. On the other hand, in the ase of a shok, an initial error may be eliminated atlater times, beause of onverging harateristis, Thus, a rarefation is more deliate toompute than a shok, whih we will see in the omputational results we now present.11.7. Dual solution and stability fators for Burgers' equation. In [5, 3℄ an ap-proximate solution is omputed onsisting of a ombination of a rarefation wave and ashok using the G(1)dG(0)- method on a uniform spae mesh with h = 10�3 and timestep 10�4. We plot the omputed solution at t=0, t=0.3, t=0.8, t=1 in Fig 4. We see thatthe initial disontinuity develops into a rarefation and that a shok is formed for t � 0:5.The dual problem is solved using the following di�erent approximations of the oeÆienta = (u+U)=2 and the error e, with �u the analytial, invisid solution, and U(h) the �nite
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Figure 4. A ombined rarefation and shok wave (omputations by Bur-man [3℄).element solution on a mesh of size h: (i) a = (�u + U(h)) and e = �u� U(h), (ii) a = U(h)and e = �u � U(h), (iii) a = (U(h=4) + U(h))=2 and e = U(h=4) � U(h). We plot theorresponding dual solutions � at the same time levels as above, but in reverse order (t=1,t=0.8, t=0.3 , t=0) in Fig 11.7. We also plot in Fig. 6 the orresponding seond derivatives�00. We note the hange of j�00j, whih may be viewed as a weight in the a posteriori errorestimate, from being large lose to the shok at �nal time towards being large lose to theinitial disontinuity at (x; t) = (0:2; 0) initiating the rarefation. We see that it is the datafrom the rarefation at �nal time whih generates the large values of �00 at t = 0, and notthose from the shok. This indiates that a rarefation is more deliate to ompute thana shok.We plot in Fig. 7 the strong stability fator S de�ned by (11.3) for (i)-(iii) and h =0:0001; h = 0:00005; h = 0:00001. We see that S � 1, whih shows that the Burgers'solution onsisting of a rarefation and shok wave is omputable in L2(QN ) with workomparable to interpolation.12. The Euler Equations for Compressible FlowWe now extend to the Euler equations for an invisid perfet gas, inluding details onthe formulation of the G2-method. The a posteriori error estimation generalizes in a diretway. G2 has the entropy onsisteny automatially built in if we ompute in entropy vari-ables. If we ompute using the standard onservation variables, we need to add a residualdependent arti�ial visosity, to ensure entropy onsisteny. The omputational results
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Figure 5. Dual solution in reverse time (omputations by Burman [3℄).
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Figure 7. Strong stability fator for di�erent h (omputations by Burman [3℄).in 1d are entirely analogous to those presented for Burgers' equation, with in partiularstrong stability fators being of unit size. We present omputaions in 3d in Part III.The Euler equations for a ompressible invisid perfet gas in R3 read on onservationform: �nd u(x; t) suh that(12.1) _u+P3i=1 fi(u);i = 0 x 2 R3 ; t > 0;u(x; 0) = u0(x) x 2 R3 ;where u0 is given initial data,u = �266664 1w1w2w3e
377775 ; fi = wiu+ p266664 0Æ1iÆ2iÆ3iwi

377775 ;� is the density, w = (w1; w2; w3) is the partile veloity, e is the total energy density,p = (�1)(�e��jwj2)=2) is the pressure, Æij the Kroneker delta,  > 1 is a onstant, andv;i = �v=�xi. These equations generalize the one-dimensional equations (5.1) and expressonservation of mass, momentum and energy. For smooth solutions the onservation law(12.1) an be written as a generalized onvetion problem of the form(12.2) _u+ 3Xi=1 Ai(u)u;i = 0;where the Ai = �fi�u are the Jaobians of the fi(u).The funtion �(u) = � log(p��) is a mathematial entropy for (12.1) orresponding tothe negative of the physial entropy, whih up to trivial mod�ations is the only knownentropy for (12.1). The funtion �(u) is a onvex funtion of u, with symmetri positive



IRREVERSIBILITY IN REVERSIBLE SYSTEMS I 31de�nite Hessian �00. Smooth solutions of (12.1) or equivalently (12.2), satisfy the equation��t�(u) + 3Xi=1 ��xi (qi(u)) = 0:where q(u) = (qi(u)) = �w = (�wi) is the entropy ux. This equation follows by multiply-ing (12.2) by the gradient �0(u) of �(u) and using the ompatibility relation(12.3) �0(u)�Ai(u) = q0i(u)�;with � denoting the transpose. The ompatibility ondition (12.3) is equivalent to therelation(12.4) �00Ai = A�i �00; i = 1; 2; 3;stating that the Hessian �00 simultaneously symmetrizes all the Ai. The entropy inequalityharaterizing physial weak solutions reads in strong form(12.5) ��t�(u) +Xi ��xi (qi(u)) � 0:12.1. G2 for the Euler equations. Let Vh be as above and setWh = [Vh℄3. G2 for (12.1)an then be formulated as follows: Find U 2 Wh suh that for n = 1; 2; :::;(12.6) (R(U); v)QN + (R(U); Æ( _v +PiA�i (U)v;i))Sn+([Un�1℄; v+n�1)R = 0 8v 2 Wn = [Vn℄3;where � denotes transpose,(12.7) Æ� = Æ(U)� = h2(I + 3Xi=1 Ai(U)2)� 12 on Sn;R(U) = _U +Xi Ai(U)Uxi on Sn:To see that the square root in (12.7) is well de�ned, we note that (12.4) implies thatA0 = (�00)�1 symmetrizes the Ai, so that �Ai � AiA0 is symmetri, i = 1; 2; 3. ThereforeA� 120 AiA 120 = A� 120 �AiA� 120is symmetri, and thus the similarity transform indued by A 120 transforms the matrixM � (k�2n I + h�2PiA2i ) to an obviously positive de�nite symmetri matrix. It followsthat M has positive eigenvalues and a full set of eigenvetors whih shows that M� 12 anbe omputed.One an prove as above that G2 augumented by a residual dependent arti�ial visosityof the form �̂ = h2jR(U)j, is entropy onsistent.
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