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IRREVERSIBILITY IN REVERSIBLE SYSTEMS II:

THE INCOMPRESSIBLE EULER EQUATIONS

JOHAN HOFFMAN AND CLAES JOHNSON

Abstract. This is the second part of a series, where we present a new approach to
resolving the classical paradox of irreversibility in reversible Hamiltonian systems. We
base our solution on finite precision computation in the form of General Galerkin G2,
instead of statistical mechanics. In the present Part II we consider as Hamiltonian model
the Euler equations for an inviscid incompressible fluid. We show that the irreversibility
arsises because G2 reacts by introducing a dissipative weighted least squares control of
the residual if the Euler equations lack solutions with pointwise vanishing residual, which
is the general case because of the appearance of turbulence.

1. Introduction

There are great physicists who have not understood it.
(Einstein about Boltzmann’s statistical mechanics)

This is the second part of a series, where we present a new approach to resolving the
classical paradox of irreversibility in reversible Hamiltonian mechanics based on Newton’s
Second Law. We base our solution on finite precision computation instead of statistical
mechanics, which is the standard approach. We thus stay within a deterministic Hamil-
tonian framework and only add a restriction of finite precision computation, and we do not
use any form of statistics. A World governed by Hamiltonian mechanics combined with
finite precision computation, follows the laws of mechanics as far as possible taking the
finite precision into account, but is not a game of roulette as in statistical mechanics. The
difference of scientific paradigm is fundamental.

In Part I of the series we chose as a basic example of Hamiltonian mechanics the Euler
equations for an inviscid compressible perfect gas with focus on model problems in one
space dimension. We discussed the appearance of shocks in compressible inviscid flow as an
example of an irreversible phenomen arising in a formally reversible system. In the present
Part II we consider the Euler equations for incompressible inviscid flow in three dimensions,
and show that in this case turbulence represents the irreversible phenomenon. In Part III
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we extend to compressible flow with a combination of shocks and turbulence as irreversible
phenomena. We continue in Part IV with a study of the kinetic theory of gases, and
we hope to ultimately approach also quantuum mechanics using the same computational
deterministic point of view, again avoiding the conventional statistical interpretation.

We refer the reader to Part I for a broad introduction to the basic ideas using different
perspectives of physics/mechanics, mathematics and computation. Here we give a com-
pressed version of this exposition, and then proceed to the incompressible Euler equations.

The origins of irreversibility in reversible systems is a main unsolved mystery of me-
chanics and physics. A Hamiltonian system is reversible in time and does not have a
preferred (forward) direction of time: From a given configuration both the future and past
are equally well determined. The reversibility follows from the invariance of a Hamiltonian
system under a change of sign of time and velocity. It follows in particular that letting
a Hamiltonian system evolve in time from an initial configuration to a final configuration
and there reversing the velocity and changing the direction of time, will bring the system
back to the initial configuration. As a result, one may in Hamiltonian mechanics construct
a perpetuum mobile of the first kind, which is a machine that will run forever without
consuming any energy. Both celestial mechanics and quantum mechanics are Hamiltonian
and the motion of the planets in our Solar system as well as the electrons in an atom
represent reversible perpetuum mobile of the first kind.

On the other hand, in the real World there is a preferred direction of time and we are
all familiar with irreversible processess in which initial configurations cannot be recovered,
and the impossibility of constructing a perpetuum mobile of the first kind, as well as of the
second kind supposed to reversibly convert energy back and forth from heat to mechanical
work without consuming any net energy. The irreversibility is expressed in the Second
Law of Thermodynamics, which states that in an isolated system a certain scalar quantity,
named entropy, cannot decrease with time. As a consequence, an isolated system becomes
irreversible if its entropy increases, since time reversal would correspond to decreasing
entropy, which is impossible. In a Hamiltonian system the entropy is equal to minus the
total energy being the sum of kinetic and potential energy, and energy conservation reflects
reversibilty and entropy constancy. The observation that a perpetuum mobile of the second
kind seems impossible, because converting mechanical energy into heat does not seem to
be fully reversible, indicates the existence of real processes which are irreversible and thus
not Hamiltonian. Dropping a stone to the ground will convert its potential energy into
heat making the stone warmer, but the reverse process of the stone lifting itself by getting
colder, is impossible. The question is why?

So if now the World ultimately is governed by reversible Hamiltonian (quantuum) me-
chanics, the scientific challenge thus becomes to explain how irreversibility may arise in
systems based on reversible Hamiltonian mechanics. In the late 19th century when the
existence of an Aether filling empty space was still contemplated, the irreversibilty was
suggested to possibly result from some small viscosity of the Aether, but since no one
could ever detect any Aether, this belief faded. Similarly, the idea of putting in just a
tiny bit of friction (coming from somewhere) to explain irreversibility, is not convincing,
since then the planets and electrons would be constantly retarding a little bit, but they
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don’t seem to do that. And if there would be some friction in the system, the challenge
would be to explain how friction can arise in a system governed by Hamiltonian reversible
mechanics without friction. Thus the irreversibility paradox can be phrazed: How can
there be friction in a system without friction?

The traditional way to resolve the paradox has been statistical mechanics, which is an
expansion of Hamiltonian mechanics using concepts from statistics and probability. This
expansion has a high scientific cost, since so many new (difficult) questions arise from the
use of statistics. Accordingly statistical mechanics has been questioned by many famous
scientists including Einstein, and still is.

Altogether, as far as we can understand, the true origins of irreversibility in reversible
systems has not been given a scientifically convincing explanation. The literature is vast
with contributions from mathematicians, physicists, chemists, engineers, philosophers, lin-
guists, authors of science fiction and the general public.

2. Finite Precision Computation

We now focus on the new mode of explanation based on finite precision computation,
which we advocate. The finite precision computation appears in two forms: First, it
necessarily appears in digital solution of Hamiltonian equations using computers, which is
the objective of our study. Secondly, it probably appears also in Natures evolution in time
from one state to the next in some form of analog computation.

The solution of the paradox of irreversibility in reversible system based on finite precision
computation, is not trivial in the sense that it may be blamed simply on something like
round-off errors in digital computing or the inevitable approximations in solving differential
equations numerically. This would be similar to explaining irreversibility as an effect of a
slightly viscous Aether, a mode of explanation we have already rejected.

The solution of the paradox is much deeper and more fundamental and directly couples
to our recent work on computational turbulence exposed in [4]. In short, the secret we un-
cover is the following: We consider a set of Hamiltonian equations describing the evolution
in space/time of a certain system in Nature. We seek to solve the equations computa-
tionally using a numerical method implemented on a computer. Doing so we meet two
different situations: In the first case, which is the simple standard case without surprise,
the Hamiltonian equations have pointwise solutions which are computable, and if so we
simply compute these solutions and find them to be reversible. A pointwise solution has a
residual which is pointwise zero, obtained by inserting the solution in the equation, and we
can compute approximate solutions with residuals being small pointwise. Such computed
solutions are approximately reversible by the reversible nature of the equations they are
approximately solving pointwise.

In the second case, which contains the secret, the Hamiltonian equations do not ad-
mit pointwise solutions, which means that there simply are no (stable) solutions with a
residual being zero pointwise. This reflects the appearance of small scale phenomena such
as turbulence and/or shocks in the case of inviscid fluid mechanics. In this second case
the computational method cannot produce an approximate solution with small pointwise
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residual, and the computational method we are using reacts by producing an approximate
solution for which the residual is small in a weak average sense combined with a certain
weighted least squares control of the residual, which turns out to be possible to achieve.
We refer to the numerical method with this property as General Galerkin or G2. In the
case the Hamiltonian equations do not admit pointwise solutions, which may correspond
to the appearence of turbulence and/or shocks, G2 thus produces an approximate solution
with the residual being small in a weak sense and with a certain weighted least squares
control of the size of the pointwise residual, while the pointwise residual itself is not small.

We shall see that this is about the best that can be done in the situation when the
Hamiltonian equations do not admit pointwise solutions, but we shall also see that it is
good enough if we as quantities of interest or output quantities choose certain mean values
of the solution, rather than point values. In the case the Hamiltonian equations do not
admit pointwise solutions, corresponding to turbulence/shocks, we can thus nevertheless
by G2 compute certain mean value outputs accurately. From a physical point of view, we
may say that even though the Hamiltonian equations cannot be satisfied pointwise, they
can be satisfied in an average sense with the pointwise residual not being too large, and that
may be enough for the system to evolve. The pointwise violation but average satisfaction
of the Hamiltonian laws in this sense, corresponds to a physical system in pointwise non-
equilibrium, but in average local equilibrium with some control of the pointwise non-
equilibrium. In such a physical system the laws of physics serve as goals, which cannot be
satisfied pointwise, and the search of satisfaction in a suitably approximate sense is what
drives the evolution of the system. It is like the Law in our society, which is never followed
pointwise by all citizens, only in some average sense, but yet has an important role to
secure that society does not fall apart.

Now, the catch is that the weighted least squares control of the residual in G2 adds a
dissipative term in an energy balance, which effectively makes the system irreversible. This
is like a fine or cost arising from not following the Law pointwise. It is thus the appearance
of turbulent/shock small scales and the resulting impossibility of computing solutions with
pointwise small residuals, which necessarily introduces the irreversibility. By necessity, a
fine has to represent a positive cost; if we would get paid by breaking the Law, society
would quickly collapse. Or if there would be a negative cost (gain) in changing currency,
the monetary system would explode.

Facing the impossibility of pointwise solution, the system thus reacts by producing an
approximate solution in which some of the energy is lost in a dissipative least squares
term implying irreversibility. Moreover, the size of the dissipation and the energy loss
do not decrease with increasing precision: In turbulence the dissipation always occurs on
the finest scales available, but the total amount of the turbulent dissipation (turning into
heat), stays (approximately) constant under scale refinement. A shock in compressible
flow has a similar nature. Mean value outputs thus may show an independence of the
scale of resolution in the computation, while pointwise solution is impossible even if the
computational scale is refined indefinitely. The more you refine, the more scales you find
and there is no end to this process.
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The basic idea is thus that in certain Hamiltonian processes necessarily small scale
features in the form of turbulence/shocks appear, and when faced with these small un-
resolvable scales, which physically generate heat, the system reacts by introducing a dis-
sipative least squares control of the residual, which implies irreversibility. Thus, in tur-
bulence/shocks, large scale mechanical energy may be turned into small scale motion,
corresponding to generation of heat, and this process is irreversible since the details of the
small scales cannot be kept and thus cannot be recovered.

The key here is to realize that the dissipative damping (i) is necessary, (ii) is substantial,
and (iii) is not a numerical artifact which can be diminished by increasing the precision.
The key new fact behind (i)-(iii) is the non-existence of solutions to the Hamiltonian
equations!

The appearance of turbulence/shocks in inviscid compressible flow is an example of an
irreversible process satisfying (i)-(iii), where inevitably and irreversibly energy is turned
into heat. As is well known, a shock solution is a not pointwise solution to the Euler
equations. As we will show below, neither does turbulence correspond to a pointwise
solution.

In G2 the irreversibility arises from the presence of the least squares control of the
residual, which corresponds to a loss of the kinetic/potential energy which cannot be
recovered in G2; reversing time and velocities at final time in G2 and computing backwards
in time will bring in a new least squares term only adding to the losses already made in
the forward computation. This reflects the difficulty of getting a refund of an already paid
fine.

3. The Second Law of Thermodynamics

We may summarize our results as proving that the Second Law of Thermodynamics is a
consequence of the First Law of Thermodynamics (which expresses conservation of energy)
combined with finite precision computation. We may thus propose a new foundation of
thermodynamics based on deterministic mechanics expressed by the First Law combined
with finite precision computation, as opposed to a usual foundation with the Second Law
as an additional postulate. We will return to this task in more detail.

Finite precision computation of course appears in digital solution of the differential
equations of deterministic mechanics, but it necessarily also has to appear in some form
in the analog computation performed in the physics of the real World. We may analyze
the consequences of finite precision computation of digital solution, and then seek to find
analogs in physics.

This brings us back to a deterministic World as a giant Clock in the spirit of Laplace,
but our Clock has finite precision and that changes the game. In particular, it takes us out
of the classical paradox of the existence of free will in a deterministic World. With finite
precision computation, the future is no longer fully determined by the present, and there
is room for something like a free will. And there are necessarily irreversible processes.
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4. The Euler Equations for Fluid Flow

The Euler equations for incompressible inviscid flow may be viewed to model a very
large collection of “fluid particles” following Newton’s Second Law subject to a pressure
force maintaining incompressibility.

The incompressible Euler equations represent a formally reversible system, which as
we will see in general lacks pointwise solutions. This is because the laminar pointwise
solutions, which do exist, turn out to be unstable without physical realization, and be-
cause the turbulent solutions, which do appear, are not pointwise solutions but only weak
approximate solutions. Thus, both computation and Nature will have to go for suitable
approximate solution of the Euler equations. Computation will then rely on G2, with
presumably Nature resorting to something similar, which inevitable (because of the least
squares residual control in G2) will introduce a dissipative effect implying irreversibility.

We will thus study a situation, where the equations we want to solve do not have exact
pointwise solutions (or if they have, then they are unstable), while the turbulent solutions
which do exist in fact only are approximate weak solutions and not pointwise solutions,
and moreover these approximate solutions necessarily have a dissipative character result-
ing in irreversibility. The paradox of irreversibility in a formally reversible Hamiltonian
system is thus a consequence of the non-existence of stable laminar pointwise (strong) so-
lutions to the Euler equations, which would have been reversible if they had only existed,
and the dissipative nature of the turbulent approximate weak solutions, which do exist
computationally and for which mean value outputs can be accurately computed.

We note that the non-existence of (stable) exact solutions changes the way mathematics
for the Euler equations can be presented: With non-existent exact solutions, the attention
has to move to existing approximate solutions, and thus the computational aspect takes a
prime position before analytical mathematics.

The non-existence of pointwise solutions to the Euler equations, which may be viewed
as a failure of mathematics, in fact may be turned around into an advantage from a
computational point of view: If there were an exact solution, one could always ask for more
precision in computing this solution requiring finer resolution and higher computational
cost, but if there is no exact solution, then we could be relieved from this demand beyond
a certain point. A key feature in this situation is that the absolute size of the fine scales no
longer are important, and this could save computational work. In turbulence this means
that mean value outputs may be computed on meshes which do not resolve the turbulent
vortices to their actual physical scale.

In order for a Hamiltonian system to develop turbulence, it has to be rich enough in
degrees of freedom. In particular, the incompressible or compressible Euler equations in less
than three space dimensions are not rich enough, even if the mesh is very fine. On the other
hand, turbulence invariably develops in three dimensions once the mesh is fine enough. Our
experience with turbulent solutions of the incompresible Navier-Stokes equations indicates
that a mesh with 100 000 mesh points in space may suffice in simple geometries, while in
more complex geometries millions, but not billions, of mesh points may be needed.
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5. Imperfect Nature and Mathematics?

How are we to handle the fact that the Euler equations do not have pointwise solutions in
general? Does this express an imperfection of mathematics? And what is the consequence
in physics? Is Nature simply unable to satisfy the basic laws laid down in the form of e.g.
Newton’s Second Law? Does this mean that also Nature is imperfect? And if now both
mathematics and Nature indeed are imperfect, what is the degree of imperfection and how
does it show up?

We may make a parallel with the squareroot of two
√

2, which is the length of the diagonal
in a square with side length 1. We know that the Pythagoreans discovered that

√
2 is not a

rational number. This knowledge had to be kept secret, since it indicated an imperfection in
the creation by God formed as relations between natural numbers according the basic belief
of the Pythagoreans. Eventually this unsovable conflict ruined their philosophical school
and gave room for the Euclidean school based on geometry instead of natural numbers.
Civilization did not recover until Descartes resurrected numbers and gave geometry an
algebraic form, which opened for Calculus and the scientific revolution.

But how is the Pythagorean paradox of non-existence of
√

2 as a rational number handled
today? Well, we know that the accepted mathematical solution since Cantor and Dedekind
is to extend the rational numbers to the real numbers, some of which like

√
2 are called

irrational, and which can only be described approximately using rational numbers. We
may say that this solution in fact is a kind of non-solution, since it acknowledges the
fact that the equation x2 = 2 cannot be solved exacly using rational numbers, and since
the existence of irrational numbers (as infinite decimal expansions of Cauchy sequences of
rational numbers) has a different nature than the existence of natural numbers or rational
numbers. The non-existence is thus handled by expanding the solution concept until
existence can be assured.

We handle the non-existence of pointwise solutions to the Euler equations similarly,
that is, by extending the solution concept to an approximate solution in a weak sense
combined with some control of pointwise residuals. Doing so we necessarily introduce a
dissipation causing irreversibility. In this case, the non-existence of solutions thus has a
cost: irreversibility. In the perfect World, pointwise solutions would exist, but this World
cannot be constructed neither mathematically nor physically, and in a constructible World
necessarily there will exist irreversible phenomena as a consequence of the non-existence of
pointwise solutions. The non-existence of pointwise solutions reflects the development of
complex solutions with small scales, and thus the non-existence also relects a complexity
of the constructible World. The perfect World would lack this complexity, so in addition
to being non-existent it would also probably be pretty non-interesting. The World we live
in thus does not seem to be perfect, but it surely is complex and interesting.

What is the reason that the resolution of the paradox we are proposing has not been
presented before, if it indeed uncovers the mystery? We believe it can be explained by
the Ideal Worlds that both mathematicians and physicists assume as basis of their science.
In the Ideal World of mathematics, exact solutions to differential equations exist as well
as infinite sets, not just approximate solutions and finite sets, and the World of physics
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is supposed to follow laws of physics exactly, not just approximately, unless a resort to
statistics is made (which is a very strong medication with severe side effects). It thus
appears that an imperfect World of mathematics or physics, where equations cannot be
solved exactly or laws of physics cannot be exactly satisfied, classically is unthinkable at
least as a deterministic World, and thus has recieved little attention by mathematicians and
physicists with little background in computational mathematics. Yet, such an imperfect
World seems to be a reality in both mathematics and physics, and thus should be studied.

6. A New Paradigm?

From philosophical point of view, we may say that the traditional paradigm of both
mathematics and physics is Platonistic in the sense that it assumes the existence of an
Ideal World, where equations/laws are satisfied exactly. We may say that this is an Ideal
World of infinities because exact satisfaction of e.g. the equation x2 = 2 requires infinitely
many decimals. This is the mathematical Ideal World of Cantor, which represents a for-
malist/logicist school. In strong opposition to this school of infinities, is the constructivist
school, which only deals with mathematicial objects that can be constructed in a finite
number of steps. In the constructivists Constructible World, the set of natural numbers
does not exist as a completed mathematical object as in Cantors Ideal World, but only as
a never-ending project where always a next natural number can be constructed if needed,
which follows the suggestions of e.g. Aristotle and Gauss. The Constructible World is
finitary and thus inherently computational, while Cantors Ideal World is non-finitary and
non-computational. In the educational project [8] and the pamphlett [9], we compare the
two schools, and give our vote to the Constructible World, which today can be explored
using the computer, and we question the existence an Ideal World as always a scientifically
meaningful concept.

7. A $1 Million Prize Problem

One of the seven Clay Institute Millennium $1 Million Prize Problems asks for a proof
of existence of a pointwise solution to the Navier-Stokes equations for incompressible fluid
flow, a formulation which fits into an Ideal World paradigm. In [9] we claim that the
formulation of the Prize Problem is unfortunate and should be reformulated in construc-
tive terms, since in general pointwise solutions do not exist, while turbulent approximate
solutions do. We note that the Clay Institute does not react to this criticism, which could
be viewed as an analog of the Pythagoreans denial of non-existene of an exact solution to
the equation x2 = 2. What will the consequence be when the secret of non-existence of
pointwise solutions to the Navier-Stokes equations is broken?

8. Physics vs Computation

We have noted that the mechanism making G2 irreversible when applied to a suffi-
ciently complex formally reversible Hamiltonian system, is the least squares control of the
pointwise residual introducing a dissipative effect when pointwise solutions do not exist.
It is natural to believe that Nature resorts to something similar, but the more precise
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physics of this effect is of course up to debate and study. In general, one may view the
physics/mechanics of a system of interacting particles as some kind of analog computa-
tion, where during each little time step the particles exchange data concerning (relative)
positions and forces determining accelerations and then update velocities, positions and
forces for the next time step. But the more exact nature of the exchange process is largely
unknown, and it is conceivable that a careful study of computational models may open
doors to understanding, as suggested by the famous computer scientist Dijkstra: Original-
lly I viewed it as the function of the abstract machine to provide a truthful picture of the
physical reality. Later, however, I learned to consider the abstract machine as the “true”
one, because that is the only one we can “think”; it is the physical machine’s purpose to
supply a “working model”, a (hopefully) sufficiently accurate physical simulation of the
true, abstract machine.

9. Outline

We start by recalling the Navier-Stokes equations for viscous incompressible flow and
discuss basic aspects of turbulent solutions, and then proceed to the Euler equations ob-
tained by setting the zero viscosity to zero and changing from no-slip to slip boundary
conditions.

We also present a solution to d’Alemberts paradox stating that the drag of a bluff body
subject to inviscid incompressible flow is zero. The resolution builds on the fact that the
pointwise solution to the Euler equations used by d’Alembert in his computation of zero
drag, is unstable and thus cannot be realized and thus in fact is non-existent. Obviously,
this makes d’Alembert’s computation invalid. Computing instead approximate solutions
of the Euler equations using G2, we find a non-zero drag which is close to the drag of a
slightly viscosus fluid.

10. The Incompressible Navier–Stokes Equations

The Navier–Stokes equations for an incompressible Newtonian fluid of constant unit
density and constant kinematic viscosity ν > 0 enclosed in a volume Ω in R3 with boundary
Γ over a time interval I = (0, T ], read as follows:

(10.1)

u̇ + (u · ∇)u − ν∆u + ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,

u = 0 on Γ × I,
u(·, 0) = u0 in Ω,

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the velocity and p = p(x, t) the pressure
of the fluid at (x, t) = (x1, x2, x3, t) ∈ Ω× I with ui the velocity in the coordinate direction
xi, and the dot indicates differentiation with respect to time. Further, f = (f1, f2, f3) is
a given volume force acting on the fluid, and u0 = u0(x) is a given initial velocity. We
here assume for definiteness homogeneous Dirichlet boundary conditions for the velocity
u. We further assume that ν is small, and that a typical velocity u and length scale is
of unit size, so that the Reynolds number ∼ ν−1 is large. The first equation in (10.1)
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expresses Newton’s Second Law of conservation of momentum in vector form, and the
second equation expresses conservation of mass in the form of incompressibility.

For an incompressible flow described by a solution û = (u, p) of the Navier–Stokes
equations, the Second Law of Thermodynamics follows from the following basic energy
balance obtained by multiplying the momentum equation by u and integrating (assuming
f = 0 for simplicity):

(10.2)
1

2
‖u(T )‖2 + Dν(u, T ) =

1

2
‖u(0)‖2,

where u(t) = u(·, t), ‖ · ‖ is the L2(Ω)3-norm, 1

2
‖u(t)‖2 is the kinetic energy at time t, and

(10.3) Dν(u, T ) =

3∑
i=1

∫ T

0

ν‖∇ui‖2dt

represents the quantity which physically is dissipated into heat.
The entropy for a Navier-Stokes solution û at time T is simply −1

2
‖u(T )‖2 and the in-

crease of entropy from −1

2
‖u(0)‖2 is equal to the dissipative term Dν(u, T ). The character-

istic feature of a turbulent solution û is that Dν(u, T ) is not small, signifying a considerable
entropy production or generation of heat corresponding to small scale velocity fluctuations
with |∇ui| large. Increasing entropy thus corresponds to turbulent dissipation into heat in
the form of small scale velocity fluctuations, which are irreversible because the backward
heat equation is unstable for highly oscillatory data. On the other hand, in a laminar
flow Dν(u, T ) will be very small and the entropy will be very slowly increasing, but it will
increase since ν > 0.

We conclude that in a World governed by the Navier–Stokes equations with viscosity
ν > 0, the entropy would be increasing more or less, and in this World we would not find
planetary systems and atoms with constant entropy. Since we undoubtely observe such
phenomena, we would be led to set ν = 0, which leads us to the next section.

11. The Incompressible Euler Equations

The Euler equations for an incompressible flow are obtained setting the viscosity ν = 0
in the Navier–Stokes equations (10.1) and changing the Dirichlet boundary conditions to
get:

(11.1)

u̇ + (u · ∇)u + ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,
u · n = 0 on Γ × I,

u(·, 0) = u0 in Ω,

where n is the outward unit normal to Γ. We note that in the Euler equations only the
normal velocity u ·n is prescribed to be zero on the boundary, while the tangential velocity
is free. This is also referred to as a slip boundary condition, as compared to the no-slip
Dirichlet boundary condition u = 0 in the Navier–Stokes equations.

The Euler equations are formally reversible: Changing the sign of time t and the velocity
u, obviously leave the equations unchanged. In particular, if û is a solution to the Euler



IRREVERSIBILITY IN REVERSIBLE SYSTEMS II 11

equations with initial velocity u0 at time t = 0 and final value û(T ) at time t = T , then the
function v̂(t) = (−u(T − t), p(T − t)) satisfies Eulers equations for t ∈ (0, T ] with initial
data v(0) = −u(T ) and final velocity v(T ) = −u(0). Thus reversing the velocities u(T )
and letting time pass backwards would bring back the velocities to −u(0) from −u(T ).

The basic energy estimate (10.2) with ν = 0 states that the kinetic energy (negative
entropy) 1

2
‖u(t)‖2 stays constant if f = 0:

(11.2)
1

2
‖u(T )‖2 =

1

2
‖u(0)‖2.

It follows that a system governed by the Euler equations allows the design of a perpetuum
mobile by reversing the velocity at t = 0 and t = T , corresponding to a system bouncing
back and forth for ever. We conclude that if the Euler equations admit a pointwise solu-
tion with pointwise zero residual, then that solution would be reversible and represent a
perpetuum mobile.

However, as we will see, in general the Euler equations do not have pointwise solutions,
so any conclusion made from an assumption of existence of a pointwise solutions is risky,
including the energy conservation (11.2), as we will see. We use this insight below to
resolve d’Alemberts paradox, by showing that the pointwise solution used by d’Alembert
to compute zero drag, simply does not exist!

Non-existence of pointwise solutions of the Euler equations follows from the observation
that solutions to the Navier-Stokes equations in general are turbulent if ν is small, and
that it is unthinkable that these turbulent solutions could converge to a pointwise solution
of the Euler equations as ν tends to zero. The reason is that as we let ν tend to zero,
the corresponding Navier-Stokes solutions develop ever finer scales of turbulence which is
incompatible with convergence to a pointwise solution of the Euler equations. If the Navier-
Stokes solutions had stayed laminar as ν tends to zero, pointwise convergence would have
been possible, but the Navier-Stokes solutions invariably become turbulent if ν is small,
and thus convergence simply does not take place. We thus have clear evidence that in
general pointwise solutions of the Euler equations are non-existent.

For the analytical mathematical struggle to come to grips with the Euler equations, we
refer to [1] and references therein.

12. Solution of the Euler Equations by G2

If it now is impossible to solve the Euler equations exactly pointwise and if Nature
faces the same difficulty in its own analog computation seeking to follow Newton’s Second
Law and maintain incompressibility, the question is what the alternative to a pointwise
exact solution could be? In a computational approach we suggest to use G2, which is a
combination of Galerkin’s method and a weighted least squares method, as presented in
[4].

G2 takes the general form: Find Û = (U, P ) ∈ Vh such that

(12.1) (R(Û), v̂)Q + (hR(Û), R(v̂))Q = 0 for all v̂ ∈ Vh,
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where Vh is a space of piecewise polynomials on a mesh in space/time with mesh size h,

(·, ·)Q is the =L2(Q)4-scalar product with Q = Ω×I, R(Û) = (U̇ +(U ·∇)U+∇P−f,∇·U)
and R(v̂) = (v̇ + (U · ∇)v + ∇q,∇ · v). It is here not necessary to go into details, which
in particular contain jump terms arising from discontinuous approximation in time, or a
modification of the test functions in case Û is kept continuous in time.

The first term in (12.1) is the Galerkin term asking the residual R(Û) to vanish in a
weak sense, and the second term is the weighted least squares stabilization with weight
equal to the mesh size h. Choosing v̂ = Û , we obtain the basic energy estimate, assuming
f = 0:

(12.2)
1

2
‖U(T )‖2 + ‖

√
hR(Û)‖2

Q =
1

2
‖U(0)‖2,

where ‖·‖Q is the L2(Q)4-norm. Obviously, the least squares term ‖
√

hR(Û)‖2

Q corresponds
to the the viscous term Dν(u, T ) in the energy estimate for the Navier–Stokes equations,
and thus corresponds to the generation of heat, as we return to below. Accordingly, we
shall see that in case of turbulence, the least squares term is not small, while it is for
laminar solutions.

We now choose a certain (mean value) quantity of interest M(Û ) depending on the G2

solution Û such as drag or lift, and seek to estimate the difference in output of two different
G2 solutions Û and Ŵ on different meshes. Using duality one can show as in [4] that

|M(Û) − M(Ŵ )| ≤ S(‖hR(Û)‖Q + ‖hR(Ŵ )‖Q),

where h represents the larger of the two mesh sizes, and S represents a stability factor
obtained solving a dual problem. We can thus estimate the difference in output between two
different G2 solutions in terms of their residuals multiplied with a certain stability factor.
It is important to notice the presence of the crucial factor h multiplying the residuals, which
makes it possible for the difference in output to be small, although the residual is not small
pointwise. The reflection in G2 of non-existence of a pointwise solution is that ‖R(Û)‖Q is

not small, while ‖hR(Û)‖Q may be small. Typically, ‖R(U)‖Q ∼ h−1/2, reflecting that the

least squares term ‖
√

hR(Û)‖Q has a significant contribution in the energy balance (12.2).
It is thus the impossibility of solving the Euler equations pointwise, which forces G2 to

introduce a dissipative weighted least squares term to come to grips with an impossible
situation. It is not difficult to envision that Nature faces the same problem and resorts to
a similar type of solution involving a weak satisfaction of the balance laws together with
some control of the pointwise dis-satisfaction. What else could there be to do in a situation
when pointwise satisfaction is impossible? Of course, the dissipative least squares term
puts a bound on solution gradients and thus destroys very fine scales which corresponds
to information loss and increase of entropy.

Notice that it is the combination of Galerkin and weighted least squares that produces a
reasonable compromise in the difficult case when a pointwise solution is impossible. Only
least squares will not work because the residual cannot be small in the L2(Q)-norm, and
from only the knowledge that the residual is large nothing can be concluded. Further,
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only Galerkin will not work either because the residual control is too weak to produce any
sensible output. It is only the combination of Galerkin and weighted least squares that
works. The evidence of success is the presence of the factor h in the expression ‖hR(Û)‖
and the fact that by (12.2), we have that ‖hR(Û)‖ ≤

√
h if ‖u0‖ = 1. In a pure least

squares method the factor h in front of R(Û) would be missing, and in pure Galerkin one

may have R(Û) ∼ 1/h and thus ‖hR(Û)‖ ∼ 1. Thus neither extreme case can work in
general.

13. d’Alemberts Paradox

d’Alemberts paradox states that a bluff body subject to inviscid flow has zero drag,
which is at variance with observations of a substantial drag even if the viscosity is very
small.

We first recall d’Alemberts computation of zero drag: Suppose there is a pointwise
(laminar) solution (u, p) to the Euler equations of inviscid incompressible flow around a
bluff body in a horisontal channel oriented in the x1-direction. Integrating the momentum
equation over the domain, we obtain by partial integration, considering the first component

0 =

∫
Γb

pn1 ds +

∫
Γin

(u · nu1 + pn1) ds +

∫
Γout

(u · nu1 + pn1) ds

where Γin and Γout denote the inflow and outflow boundaries of the channel, and Γb denotes
the boundary of the immersed body. Assuming now that the velocity is equal on inflow
and outflow, which is natural if the channel is long, by Bernoullis law the pressure will be
as well, and thus the inflow and outflow terms will cancel and therefore the drag

∫
Γb

pn1 ds
will be zero.

Obviously, zero drag of a bluff body contradicts experience: All bluff bodies show sub-
stantial drag with the major contribution coming from the pressure distribution around the
body with high pressure in front and low pressure in the back, and not from viscosity. In
particular, we can attribute only a small part of the drag to viscosity and thus experience
clearly indicates substantial drag for inviscid flow. But d’Alemberts computation shows
zero drag.

We shall now see that the trouble with d’Alemberts computation of zero drag is that
the pointwise laminar solution simply does not exist as a stable solution, which makes
the computation meaningless. Instead a turbulent approximate solution develops and this
solution has a substantial drag. If a Maxwell Demon was able to stabilize the laminar
solution, zero drag would result, but such a device seems impossible to realize.

14. Drag of a Square Cylinder

As a basic example we consider the problem of computing the drag of a square cylinder
of diameter D = 0.1 centered at x = (0.5, 0.7, 0.2) and oriented in the x3-direction in a
channel of dimension 2.1×1.4×0.4 oriented in the x1-direction, subject to a uniform inflow
velocity. We use slip boundary conditions both on the cylinder and the channel walls, and
we use a locally refined tetrahedral mesh with 86 904 mesh points, shown in Fig. 1.
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We first determine a potential irrotational solution, not by solving the Euler equations,
but looking for a stationary velocity u = (u1, u2, 0) given by u1 = ∂ϕ

∂x1

, u2 = ∂ϕ
∂x2

, where

ϕ = ϕ(x1, x2) solves Laplace equation ∆φ = 0 in the domain of the fluid restricted to the
x3 = 0 plane with ϕ = 0 at inflow, ϕ = 1 at outflow, and with homogeneous Neumann
conditions on the channel walls and the cylinder. Such a velocity u is irrotational with
∇×u = 0, and satisfies the stationary Euler equations (u·∇)u = 0 and ∇·u = 0 in the fluid
domain, with u · n = 0 on channel walls and the cylinder surface, and has approximately
equal inflow and outflow velocities. Note that the velocity u is two-dimensional with u3 = 0.
The corresponding pressure p is constant. The stationary solution û = (u, p) clearly exists
and is smooth off the corners of the cylinder, and thus û represents a laminar solution with
pointwise zero residual. We note that û is symmetric in the x1-direction modulo the non-
symmetric position of the cylinder. In particular, the flow before and after the cylinder
is symmetric. The drag of this solution is zero since the pressure is constant, without
pressure drop over the cylinder.

In practice we compute ϕ by solving ∆ϕ = 0 using piecewise linear finite elements in the
three-dimensionl fluid volume, and then associate a corresponding piecewise linear velocity
U0 = ∇ϕ by interpolation of the piecewise constant ∇ϕ to the nodes in the mesh. This
produces an approximate potential solution Û0 with R(Û0) being small pointwise except
close to the edges of the cylinder.

We compute an approximate solution Û = (U, P ) to the Euler equations with initial
velocity and inflow data given by U0 using G2 in the form cG(1)cG(1) with continuous
linear trial functions in space-time. We find that the computed velocity U(t) remains equal
to U0 only for a few time steps, then develops non-symmetry in x1 while maintaining two-
dimensionality after which it successively develops into a fully three-dimensional turbulent
solution which is far from irrotational, see Fig. 8. This turbulent solution is similar to
the turbulent solution of the Navier-Stokes equations with small viscosity and with no slip
boundary conditions on the cylinder presented in [2, 3].

In Fig. 2-3 we plot the solution (U, P ) for the first few time steps, using a very small
time step of size 0.1 times the smallest element diameter in the mesh. We find that the
instability of the the initial symmetric solution U(0) = U0 is first expressed in a fluctuating
pressure until a high pressure in front of the cylinder is established, which initializes the
development of a non-symetric velocity eventually going turbulent.

We show results in Fig. 4-8 starting with zero initial velocity, using now time steps of the
same size as the finest element diameter in the mesh. We find again the potential solution
during the first few time steps with the same development into a turbulent solution. In
Fig. 1 we plot the time series of the normalized drag force, corresponding to the drag
coefficient cD, for the Euler solution and a Navier-Stokes solution with ν−1 = 22 000
computed on the same mesh, where we find that the drag is very similar, of the order
2.0-2.5.



IRREVERSIBILITY IN REVERSIBLE SYSTEMS II 15

4 6 8 10 12 14 16 18
1

1.5

2

2.5

3

3.5

4

Figure 1. Normalized drag force for solutions to the Euler equations (’-’)
and the Navier-Stokes equations with ν−1 = 22 000 (’:’), and the corre-
sponding computational mesh in the x1x2-plane (upper) and the x1x3-plane
(lower).



16 JOHAN HOFFMAN AND CLAES JOHNSON

Figure 2. Magnitude of the computed velocity from initial data U(0) =
∇ϕ, for time steps no 1, 2, 4, 5, 6, 7, 20, 37.
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Figure 3. Computed pressure correspondig to the initial data U(0) = ∇ϕ,
for time steps no 1, 2, 4, 5, 6, 7, 20, 37.
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Figure 4. Magnitude of the computed velocity corresponding to zero initial
data, for time steps 2, 4, 5, 6, 7, 8, 16, 32.
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Figure 5. Magnitude of the computed velocity corresponding to zero initial
data, for time t = 0.75, 1, 1.5, 2, 2.5, 11, 15, 16.
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Figure 6. Pressure corresponding to zero initial data, for time steps 2, 4,
5, 6, 7, 8, 16, 32.
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Figure 7. Pressure corresponding to zero initial data, for time t =
0.75, 1, 1.5, 2, 2.5, 11, 15, 16.
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Figure 8. Isosurfaces for the magnitude of vorticity of the order 20-50,
corresponding to zero initial data, for time t = 0.75, 1, 1.5, 2, 2.5, 11, 15, 16.
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15. Temperature

In a reasonable theory there are no dimensionless numbers whose values are only
empirically determinable. (Einstein)

The total energy e is the sum of the kinetic energy and the internal energy i:

(15.1) e =
1

2
|u|2 + i,

where the internal energy i = cvθ represents heat, which we assume to be proportional
to the temperature θ with constant heat capacity cv. Conservation of the total energy is
expressed by the conservation law

(15.2) ė + ∇ · (eu + pu) = 0.

Having computed û = (u, p) from the incompressible Euler equations, we can solve for
the total energy e in the linear equation (15.2) with u and p given, to obtain the internal
energy/temperature from (15.1). In Fig. 9-10 we show the computed temperature starting
from zero temperature at initial time and letting the inflow temperature be equal to zero.
We notice that the temperature is elevated in the turbulent wake, with the heat being
generated by the turbulent dissipation (represented by the weighted least squares term
in G2). We notice that the generated heat is transported by the turbulent velocity u in
a process of turbulent diffusion of heat, which most likely will dominate any molecular
diffusion of heat (which we effectively set to zero in the computation). We are thus able to
compute a temperature distribution in a turbulent flow with the only information that the
coefficients of viscosity and molecular heat diffusion are very small. This is very good news
since precise quantitative determination of very small viscosities or heat conductivitities
is very difficult both theoretically and experimentally. From the computations we get the
message that the precise values of these (small) quantities are irrelevant, if the quantities
of interest are certain mean values.

We have been led to the conclusion that, up to the scaling of the temperature, the Euler
equations may be used as a working model of thermodynamics, where no physical constants
appear. This corresponds to a complete mathematization of a branch of physics, which
thus does not require any input from experiments. Such a World is equal to the Euler
equations solved by G2. The only parameter in this World is the mesh size h in G2, and
the observable World seems to be almost independent of h if only h is small [4].

16. Conclusion

We have presented an example of a resolution of the classical paradox of irreversibility in
formally reversible models, in the form of the Euler equations for incompressible inviscid
flow. We used a computational approach based on a Generalized Galerkin G2 method
computing a solution with residual being small in weak sense and with a weighted least
squares control of the residual. We observed that the irreversibility arises because the
Euler equations lack stable pointwise solutions and because the turbulent solutions which
emerge in G2 computations necessarily and irreversibly loose energy in the dissipative
least squares stabilization. The irreversibility in G2 is thus a necessary consequence of
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the the non-existence of stable pointwise solutions to the Euler equations. We conjecture
that Nature has to handle the dilemma of non-existence in some similar form of analog
computation. We continue our study in [6, 7].

Figure 9. Total energy e, for time t = 4, 4.5, 5, 5.5, 6, 11, 15, 16.
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Figure 10. Internal energy i = cvθ, for time t = 4, 4.5, 5, 5.5, 6, 11, 15, 16.
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