
FINITE ELEMENT CENTER

PREPRINT 2005–05

A Compiler for Variational Forms

Robert C. Kirby and Anders Logg

Chalmers Finite Element Center

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg Sweden 2005

CHALMERS FINITE ELEMENT CENTER

Preprint 2005–05

A Compiler for Variational Forms

Robert C. Kirby and Anders Logg

Chalmers Finite Element Center
Chalmers University of Technology

SE–412 96 Göteborg Sweden
Göteborg, June 2005

A Compiler for Variational Forms
Robert C. Kirby and Anders Logg
NO 2005–05
ISSN 1404–4382

Chalmers Finite Element Center
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Göteborg, Sweden 2005

A COMPILER FOR VARIATIONAL FORMS

ROBERT C. KIRBY AND ANDERS LOGG

Abstract. As a key step towards a complete automation of the finite element method,
we present a new algorithm for automatic and efficient evaluation of multilinear variational
forms. The algorithm has been implemented in the form of a compiler, the FEniCS Form
Compiler FFC. We present benchmark results for a series of standard variational forms,
including the incompressible Navier–Stokes equations and linear elasticity. The speedup
compared to the standard quadrature-based approach is impressive; in some cases the
speedup is as large as a factor 1000.

1. Introduction

The finite element method provides a general mathematical framework for the solution of
differential equations and can be viewed as a machine that automates the discretization of
differential equations; given the variational formulation of a differential equation, the finite
element method generates a discrete system of equations for the approximate solution.

This generality of the finite element method is seldom reflected in codes, which are often
very specialized and can only solve one particular differential equation or a small set of
differential equations.

There are two major reasons that the finite element method has yet to be fully auto-
mated; the first is the complexity of the task itself, and the second is that specialized codes
often outperform general codes. We address both these concerns in this paper.

A basic task of the finite element method is the computation of the element stiffness
matrix from a bilinear form on a local element. In many applications, computation of
element stiffness matrices accounts for a substantial part of the total run-time of the
code. This routine is a small amount of code, but it can be tedious to get it both correct
and efficient. While the standard quadrature-based approach to computing the element
stiffness matrix works on very general variational forms, it is well-known that precomputing
certain quantities in multilinear forms can improve the efficiency of building finite element
matrices.

Date: June 10, 2005.
Key words and phrases. variational form, compiler, finite element, automation.
Robert C. Kirby, Department of Computer Science, University of Chicago, 1100 East 58th Street,

Chicago, Illinois 60637, USA. Email: kirby@cs.uchicago.edu. This work was supported by the United
States Department of Energy under grant DE-FG02-04ER25650.
Anders Logg, Toyota Technological Institute at Chicago, University Press Building, 1427 East 60th Street,
Chicago, Illinois 60637, USA. Email: logg@tti-c.org.

1

2 ROBERT C. KIRBY AND ANDERS LOGG

The methods discussed in this paper for efficient computation of element stiffness matri-
ces are based on ideas previously presented in [27, 28], where the basic idea is to represent
the element stiffness matrix as a tensor product. A similar approach has been implemented
earlier in the finite element library DOLFIN [21, 22], but only for linear elements. The
current paper generalizes and formalizes these ideas and presents an algorithm for gener-
ation of the tensor representation of element stiffness matrices and for evaluation of the
tensor product. This algorithm has been implemented in the form of the compiler FFC for
variational forms; the compiler takes as input a variational form in mathematical notation
and automatically generates efficient code (C or C++) for computation of element stiffness
matrices and their insertion into a global sparse matrix. This includes the generation of
code both for the computation of element stiffness matrices and local-to-global mappings
of degrees of freedom.

1.1. FEniCS and the Automation of CMM. FFC, the FEniCS Form Compiler, is a
central component of FEniCS [20], a project for the Automation of Computational Mathe-
matical Modeling (ACMM). The central task of ACMM, as formulated in [30], is to create
a machine that takes as input a model Au = f , a tolerance TOL > 0 and a norm ‖ · ‖ (or
some other measure of quality), and produces as output an approximate solution U ≈ u
that satisfies the accuracy requirement ‖U − u‖ < TOL using a minimal amount of work
(see Figure 1). This includes an aspect of reliability (the produced solution should satisfy
the accuracy requirement) and an aspect of efficiency (the solution should be obtained
with minimal work).

Au = f

TOL > 0

U ≈ u

Figure 1. The Automation of Computational Mathematical Modeling.

In many applications, several competing models are under consideration, and one would
like to computationally compare them. Developing separate, special purpose codes for each
model is prohibitive. Hence, a key step of ACMM is the automation of discretization, i.e.,
the automatic translation of a differential equation into a discrete system of equations,
and as noted above this key step is automated by the finite element method. The FEniCS
Form Compiler FFC may then be viewed as an important step towards the automation
of the finite element method, and thus as an important step towards the Automation of
CMM.

FEniCS software is free software. In particular, FFC is licensed under the GNU General
Public License [19]. All FEniCS software is available for download on the FEniCS web
site [20]. In Section 5.6, we return return to a discussion of the different components of
FEniCS and their relation to FFC.

A COMPILER FOR VARIATIONAL FORMS 3

1.2. Current finite element software. Several emerging projects seek to automate im-
portant aspects of the finite element method. By developing libraries in existing languages
or new domain-specific languages, software tools may be built that allow programmers to
define variational forms and other parts of a finite element method with succinct, math-
ematical syntax. Existing C++ libraries for finite elements include DOLFIN [21, 22],
Sundance [31, 32] and deal.II [6]. Projects developing domain-specific languages for finite
element computation include FreeFEM [34] and GetDP [14]. A precursor to the FEniCS
project, Analysa [2], was a Scheme-like language for finite element methods.

While these tools are effective at exploiting modern software engineering to produce
workable systems, we believe that additional mathematical insight will lead to even more
powerful codes with more general approximating spaces and more powerful algorithms.

1.3. Design goals. The primary design goal for FFC is to accept as input “any” multi-
linear variational form and “any” finite element, and to generate code that will run with
close to optimal performance. We will make precise below in Section 3.2 which forms and
which elements the compiler can handle.

A secondary goal for FFC is to create a new standard in form evaluation; hopefully FFC
can become a standard tool for practitioners solving partial differential equations using the
finite element method.

The primary output target of FFC is the C++ library DOLFIN. By default, FFC accepts
as input a variational form and generates code for the evaluation of the variational form
in DOLFIN, as illustrated in Figure 2. Although FFC is tightly integrated with other
components of the FEniCS project, such as DOLFIN, it has been designed to allow for
easy adoption to other systems.

Poisson.hFFCa(v, u) =
∫

Ω
∇v(x) · ∇u(x) dx

Figure 2. The form compiler FFC takes as input a variational form and
generates code for evaluation of the form.

1.4. The compiler approach. It is widely accepted in developing software for scientific
computing that there is a trade-off between generality and efficiency; a software component
that is general in nature, i.e., it accepts a wide range of inputs, is often less efficient than
another software component that performs the same job on a more limited set of inputs.
As a result, most codes used by practitioners for the solution of differential equations are
very specific.

However, by using a compiler approach, it is possible to combine generality and efficiency
without loss of generality and without loss of efficiency. This is possible since our compiler
works on a very small family of inputs (multilinear variational forms) with sharply defined
mathematical properties. Our domain-specific knowledge allows us to generate much better
code than if we used general-purpose compiler techniques.

4 ROBERT C. KIRBY AND ANDERS LOGG

1.5. Outline of this paper. Before presenting the main algorithm, we give a short back-
ground on the implementation of the finite element method and the evaluation of varia-
tional forms in Section 2. The main algorithm is then outlined in Section 3. In Section
4, we compare the complexity of form evaluation for the algorithm used by FFC with the
standard quadrature-based approach. We then discuss the implementation of the form
compiler in some detail in Section 5.

In Section 6, we compare the CPU time for evaluating a series of standard variational
forms using code automatically generated by FFC and hand-coded quadrature-based imple-
mentations. The speedup is in all cases significant, in the case of cubic Lagrange elements
on tetrahedra a factor 100 (Figure 3).

M a s s P o i s s o n N a v i e r � S t o k e s E l a s t i c i t y00 . 20 . 40 . 60 . 8 1
N ormal i zed CPUti me

F F C v s Q u a d r a t u r e a t q = 3 (3 D) Q u a d r a t u r eF F C

Figure 3. Benchmark results for a series of standard variational forms (here
compiled for cubic Lagrange elements on tetrahedra).

Finally, in Section 7, we summarize the current features and shortcomings of FFC and
give directions for future development and research.

2. Background

In this section, we present a quick background on the finite element method. The
material is standard [12, 23, 9, 17], but is included here to give a context for the presentation
of the form compiler and to summarize the notation used throughout the remainder of this
paper.

For simplicity, we consider here only linear partial differential equations and note that
these play an important role in the discretization of nonlinear partial differential equations
(in Newton or fixed-point iterations).

A COMPILER FOR VARIATIONAL FORMS 5

2.1. Variational forms. We work with the standard variational formulation of a partial
differential equation: Find u ∈ V such that

(2.1) a(v, u) = L(v) ∀v ∈ V̂ ,

with a : V̂ × V → R a bilinear form, L : V̂ → R a linear form, and (V̂ , V) a pair of
suitable function spaces. For the standard example, Poisson’s equation −∆u(x) = f(x)
with homogeneous Dirichlet conditions on a domain Ω, the bilinear form a is given by
a(v, u) =

∫

Ω
∇v(x) · ∇u(x) dx, the linear form L is given by L(v) =

∫

Ω
v(x)f(x) dx, and

V̂ = V = H1
0 (Ω).

The finite element method discretizes (2.1) by replacing (V̂ , V) with a pair of (piecewise

polynomial) discrete function spaces. With {ϕ̂i}
M
i=1 a basis for the test space V̂ and {ϕi}

M
i=1

a basis for the trial space V , we can expand the approximate solution U of (2.1) in the

basis functions of V , U =
∑M

j=1 ξjϕj, and obtain a linear system Aξ = b for the degrees

of freedom {ξj}
M
j=1 of the approximate solution U . The entries of the matrix A and the

vector b defining the linear system are given by

Aij = a(ϕ̂i, ϕj), i, j = 1, . . . ,M,

bi = L(ϕ̂i), i = 1, . . . ,M.
(2.2)

2.2. Assembly. The standard algorithm for computing the matrix A (or the vector b) is
assembly ; the matrix is computed by iteration over the elements K of a triangulation T of
Ω, and the contribution from each local element is added to the global matrix A.

To see this, we note that if the bilinear form a is expressed as an integral over the
domain Ω, we can write the bilinear form as a sum of element bilinear forms, a(v, u) =
∑

K∈T aK(v, u), and thus

(2.3) Aij =
∑

K∈T

aK(ϕ̂i, ϕj), i, j = 1, . . . ,M.

In the case of Poisson’s equation, the element bilinear form aK is defined by a(v, u) =
∫

K
∇v(x) · ∇u(x) dx.
Let now {ϕ̂K

i }n
i=1 be the restriction to K of the subset of {ϕ̂i}

M
i=1 supported on K and

{ϕK
i }n

i=1 the corresponding local basis for V . Furthermore, let ι̂(·, ·) be a mapping from
the local numbering scheme to the global numbering scheme (local-to-global mapping) for

the basis functions of V̂ , so that ϕ̂K
i is the restriction to K of ϕι̂(K,i), and let ι(K, ·) be the

corresponding mapping for V . We may now express an algorithm for computation of the
matrix A (Algorithm 1).

Alternatively, one may define the element matrix AK by

(2.4) AK
ij = aK(ϕ̂K

i , ϕK
j) i, j = 1, . . . , n,

and separate the computation on each element K into two steps: computation of the
element matrix AK and insertion of AK into A (Algorithm 2).

6 ROBERT C. KIRBY AND ANDERS LOGG

Algorithm 1 A = Assemble(a, T , V̂ , V)

A = 0
for K ∈ T

for i = 1, . . . , n
for j = 1, . . . , n

Aι̂(K,i)ι(K,j) = Aι̂(K,i)ι(K,j) + aK(ϕ̂K
i , ϕK

j)
end for

end for
end for

Algorithm 2 A = Assemble(a, T , V̂ , V)

A = 0
for K ∈ T

Compute AK according to (2.4)
Add AK to A using the local-to-global mappings (ι̂(K, ·), ι(K, ·))

end for

Separating the two concerns of computing the element matrix AK and adding it to the
global matrix A as in Algorithm 2 has the advantage that one may use an optimized library
routine for adding the element matrix AK to the global matrix A. Sparse matrix libraries
such as PETSc [4, 3, 5] often provide optimized routines for this type of operation. Note
that the cost of adding AK to A may be substantial even with an efficient implementation
of the sparse data structure for A [27].

As we shall see below, we may also take advantage of the separation of concerns of
Algorithm 2 to optimize the computation of the element matrix AK . This step is automated
by the form compiler FFC. Given a bilinear (or multilinear) form a, FFC automatically
generates code for run-time computation of the element matrix AK .

3. Evaluation of multilinear forms

In this section, we present the algorithm used by FFC to automatically generate efficient
code for run-time computation of the element matrix AK .

3.1. Multilinear forms. Let {Vi}
r
i=1 be a given set of discrete function spaces defined on

a triangulation T of Ω ⊂ R
d. We consider a general multilinear form a defined on the

product space V1 × V2 × · · · × Vr:

(3.1) a : V1 × V2 × · · · × Vr → R.

Typically, r = 1 (linear form) or r = 2 (bilinear form), but the form compiler FFC can
handle multilinear forms of arbitrary arity r. Forms of higher arity appear frequently in
applications and include variable coefficient diffusion and advection of momentum in the
incompressible Navier–Stokes equations.

A COMPILER FOR VARIATIONAL FORMS 7

Let now {ϕ1
i }

M1
i=1, {ϕ

2
i }

M2
i=1, . . . , {ϕ

r
i}

Mr

i=1 be bases of V1, V2, . . . , Vr and let i = (i1, i2, . . . , ir)
be a multiindex. The multilinear form a then defines a rank r tensor given by

(3.2) Ai = a(ϕ1
i1
, ϕ2

i2
, . . . , ϕr

ir
).

In the case of a bilinear form, the tensor A is a matrix (the stiffness matrix), and in the
case of a linear form, the tensor A is a vector (the load vector).

As discussed in the previous section, to compute the tensor A by assembly, we need
to compute the element tensor AK on each element K of the triangulation T of Ω. Let
{ϕK,1

i }n1
i=1 be the restriction to K of the subset of {ϕ1

i }
M1
i=1 supported on K and define the

local bases on K for V2, . . . , Vr similarly. The rank r element tensor AK is then defined by

(3.3) AK
i = aK(ϕK,1

i1
, ϕK,2

i2
, . . . , ϕK,r

ir
).

3.2. Evaluation by tensor representation. The element tensor AK can be efficiently
computed by representing AK as a special tensor product. Under some mild assumptions
which we shall make precise below, the element tensor AK can be represented as the tensor
product of a reference tensor A0 and a geometry tensor GK :

(3.4) AK
i = A0

iαGα
K ,

or more generally a sum AK
i = A0,k

iα Gα
K,k of such tensor products, where i and α are

multiindices and we use the convention that repetition of an index means summation over
that index. The rank of the reference tensor is the sum of the rank r = |i| of the element
tensor and the rank |α| of the geometry tensor GK . As we shall see, the rank of the
geometry tensor depends on the specific form.

Our goal is to develop an algorithm that converts an abstract representation of a multi-
linear form into (i) the values of the reference tensor A0 and (ii) an expression for evaluating
the geometry tensor GK for any given element K. Note that A0 is fixed and independent
of the element K and may thus be precomputed. Only GK has to be computed on each
element. As we shall see below in Section 4, for a wide range of multilinear forms, this
allows for computation of the element tensor AK using far fewer floating-point operations
than if the element tensor AK were computed by quadrature on each element K.

To see how to obtain the tensor representation (3.4), we fix a small set of operations,
allowing only multilinear forms that can be expressed through these operations, and observe
how the tensor representation (3.4) transforms under these operations. As we shall see
below, this covers a wide range of multilinear forms (but not all).

As basic elements, we take the local basis functions {ϕγ}γ = ∪i{ϕ
K,i
j }ni

j=1 for a set of
finite element spaces Vi, i = 1, 2, . . ., including the finite element spaces V1, V2, . . . , Vr on
which the multilinear form is defined. Allowing addition ϕ1 + ϕ2 and multiplication with
scalars αϕ, we obtain a vector space A of linear combinations of basis functions. Since
ϕ1 − ϕ2 = ϕ1 + (−1)ϕ2 and ϕ/α = (1/α)ϕ, we can easily equip the vector space with
subtraction and division by scalars.

We next equip our vector space with multiplication between elements of the vector space.
We thus obtain an algebra A of linear combinations of products of basis functions. Finally,

8 ROBERT C. KIRBY AND ANDERS LOGG

we extend A by adding differentiation ∂/∂xi with respect to a coordinate direction xi,
i = 1, . . . , d, on K, to obtain

(3.5) A = {v : v =
∑

c(·)

∏ ∂|(·)|ϕ(·)

∂x(·)

},

where (·) represents some multiindex.
To summarize, A is the algebra of linear combinations of products of basis functions

or derivatives of basis functions that is generated from the set of basis functions through
addition (+), subtraction (−), multiplication (·), including multiplication with scalars,
division by scalars (/), and differentiation ∂/∂xi. Note that if the basis functions are
vector-valued (or tensor-valued), the algebra is generated from the set of scalar components
of the basis functions.

We may now state precisely the multilinear forms that the form compiler FFC can
handle, namely those multilinear forms that can be expressed as integrals over K (or the
boundary of K) of elements of the algebra A. Note that not all integrals over K of elements
of A are multilinear forms; in particular, each product needs to be linear in each argument
of the form.

The tensor representation (3.4) now follows by a standard change of variables using an
affine mapping FK : K0 → K from a reference element K0 to the current element K
(see Figure 4). With {Φγ}γ the basis functions on the reference element corresponding to
{ϕγ}γ , defined by Φγ = ϕγ ◦ FK , we obtain the following representation of the element

tensor AK corresponding to vi =
(

∑

c(·)

∏ ∂|(·)|ϕ(·)

∂x(·)

)

i
:

AK
i = aK(ϕK,1

i1
, ϕK,2

i2
, . . . , ϕK,r

ir
) =

∫

K

vi dx

=

(
∫

K

∑

c(·)

∏ ∂|(·)|ϕ(·)

∂x(·)

dx

)

i

=
∑

(

c(·)

∫

K

∏ ∂|(·)|ϕ(·)

∂x(·)

dx

)

i

=
∑

(

c(·) det F ′
K

∏ ∂X(·)

∂x(·)

)

α

(
∫

K0

∏ ∂|(·)|Φ(·)

∂X(·)

dX

)

iα

= A0,k
iα Gα

K,k,

(3.6)

where

A0,k
iα =

(

∫

K0

∏ ∂|(·)|Φ(·)

∂X(·)
dX

)

iα
,(3.7)

Gα
K,k =

(

c(·) det F ′
K

∏ ∂X(·)

∂x(·)

)

α
.(3.8)

Note that the expression for the geometry tensor GK,k implicitly contains a summation
if an index is repeated twice. Also note that the geometry tensor contains any variable
coefficients appearing in the form.

As we shall see below in Section 5, the representation of a multilinear form as an integral
over K of an element of A is automatically available to the form compiler FFC, since a
multilinear form must be specified using the basic operations that generate A.

A COMPILER FOR VARIATIONAL FORMS 9

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = FK(X)

FK

x1

x2

x3

K0

K

Figure 4. The affine mapping FK from the reference element K0 to the
current element K.

3.3. Test cases. To make these ideas concrete, we write down the explicit tensor repre-
sentation (3.4) of the element tensor AK for a series of standard forms. We return to these
test cases below in Section 6 when we present benchmark results for each test case.

Test case 1: the mass matrix. As a first simple example, we consider the computation of
the mass matrix M with Mi1i2 = a(ϕ1

i1
, ϕ2

i2
) and the bilinear form a given by

(3.9) a(v, u) =

∫

Ω

v(x)u(x) dx.

By a change of variables given by the affine mapping FK : K0 → K, we obtain

(3.10) AK
i =

∫

K

ϕK,1
i1

(x)ϕK,2
i2

(x) dx = det F ′
K

∫

K0

Φ1
i1
(X)Φ1

i2
(X) dX = A0

i GK ,

where A0
i =

∫

K0
Φ1

i1
(X)Φ2

i2
(X) dX and GK = det F ′

K . In this case, the reference tensor

A0 is a rank two tensor (a matrix) and the geometry tensor GK is a rank zero tensor
(a scalar). By precomputing the reference tensor A0, we may thus compute the element
tensor AK on each element K by just multiplying the precomputed reference tensor with
the determinant of (the derivative of) the affine mapping FK .

Test case 2: Poisson’s equation. As a second example, consider the bilinear form for Pois-
son’s equation,

(3.11) a(v, u) =

∫

Ω

∇v(x) · ∇u(x) dx.

10 ROBERT C. KIRBY AND ANDERS LOGG

By a change of variables as above, we obtain the following representation of the element
tensor AK :

AK
i =

∫

K

∇ϕK,1
i1

(x) · ∇ϕK,2
i2

(x) dx

= det F ′
K

∂Xα1

∂xβ

∂Xα2

∂xβ

∫

K0

∂Φ1
i1
(X)

∂Xα1

∂Φ2
i2
(X)

∂Xα2

dX = A0
iαGα

K ,

(3.12)

where A0
iα =

∫

K0

∂Φ1
i1

(X)

∂Xα1

∂Φ2
i2

(X)

∂Xα2
dX and Gα

K = det F ′
K

∂Xα1

∂xβ

∂Xα2

∂xβ
. We see that the reference

tensor A0 is here a rank four tensor and the geometry tensor GK is a rank two tensor (one
index for each derivative appearing in the form).

Test case 3: Navier–Stokes. Consider now the nonlinear term u · ∇u of the incompressible
Navier–Stokes equations,

u̇ + u · ∇u − ν∆u + ∇p = f,

∇ · u = 0.
(3.13)

To solve the Navier–Stokes equations by fixed-point iteration (see for example [18]), we
write the nonlinear term in the form u · ∇u = w · ∇u with w = u and consider w as fixed.
We then obtain the following bilinear form:

(3.14) a(v, u) = aw(v, u) =

∫

Ω

v(x) · (w(x) · ∇)u(x) dx.

Note that we may alternatively think of this as a trilinear form, a = a(v, u, w).
Let now {wK

α }α be the expansion coefficients for w in a finite element basis on the current
element K, and let v[i] denote component i of a vector-valued function v. Furthermore,
assume that u and w are discretized using the same discrete space V = V2. We then obtain
the following representation of the element tensor AK :

AK
i =

∫

K

ϕK,1
i1

(x) · (w(x) · ∇)ϕK,2
i2

(x) dx

= det F ′
K

∂Xα3

∂xα1

wK
α2

∫

K0

Φ1
i1

[β](X)Φ2
α2

[α1](X)
∂Φ2

i2
[β](X)

∂Xα3

dX = A0
iαGα

K ,

(3.15)

where A0
iα =

∫

K0
Φ1

i1
[β](X)Φ2

α2
[α1](X)

∂Φ2
i2

[β](X)

∂Xα3
dX and Gα

K = det F ′
K

∂Xα3

∂xα1
wK

α2
. In this case,

the reference tensor A0 is a rank five tensor and the geometry tensor GK is a rank three
tensor (one index for the derivative, one for the function w, and one for the scalar product).

Test case 4: linear elasticity. Finally, consider the strain-strain term of linear elasticity,

a(v, u) =

∫

Ω

1

4
(∇v + (∇v)⊤) : (∇u + (∇u)⊤) dx

=

∫

Ω

1

4

∂vi

∂xj

∂ui

∂xj

dx +
1

4

∂vi

∂xj

∂uj

∂xi

dx +
1

4

∂vj

∂xi

∂ui

∂xj

dx +
1

4

∂vj

∂xi

∂uj

∂xi

dx.

(3.16)

A COMPILER FOR VARIATIONAL FORMS 11

Note that because of symmetry, the second and third terms may be grouped together. Con-
sidering here only the first term, a change of variables leads to the following representation
of the element tensor AK,1:

AK,1
i =

∫

K

1

4

∂ϕK,1
i1

[β1](x)

∂xβ2

∂ϕK,2
i2

[β1](x)

∂xβ2

dx

=
1

4
det F ′

K

∂Xα1

∂xβ2

∂Xα2

∂xβ2

∫

K0

∂Φ1
i1

[β1](X)

∂Xα1

∂Φ2
i2

[β1](X)

∂Xα2

dX = A0,1
iα Gα

K,1,

(3.17)

where A0,1
iα =

∫

K0

∂Φ1
i1

[β1](X)

∂Xα1

∂Φ2
i2

[β1](X)

∂Xα2
dX and Gα

K,1 = 1
4
det F ′

K

∂Xα1

∂xβ2

∂Xα2

∂xβ2
. Here, each refer-

ence tensor A0,k is a rank four tensor and each geometry tensor GK,k is a rank two tensor
(one index for each derivative).

3.4. Extensions. The current version of FFC supports affinely mapping function spaces.
It is interesting to consider the generalization of our approach to other kinds of function
spaces such as Raviart-Thomas [35] elements for H(div) and curvilinear mappings such as
arise in isoparametric elements.

Implementing H(div) or H(curl) elements requires two kinds of generalizations to FFC.
First of all, the basis functions are mapped to the reference element by the Piola trans-
form [11] rather than the standard change of coordinates. With FK : K0 → K the standard
affine mapping for an element K, F ′

K the Fréchet derivative of the mapping and detF ′
K

its determinant, the Piola mapping is defined by FK(Ψ) = 1
det F ′

K

F ′
K(Ψ ◦ (FK)−1). Since

our tools already track Jacobians and determinants for differentiating through affine map-
pings, it should be straightforward to support the Piola mapping. Second, defining the
mapping between local and global degrees of freedom becomes more complicated, as we
must contend with the directions of vector components.

As an example of using the Piola transform, we consider the Raviart-Thomas elements
of the lowest order with the standard (vector-valued) nodal basis {Ψi}

d
i=1 on the reference

element. We compute the mass matrix M with Mi1i2 = a(ψi1 , ψi2) and the bilinear form a
given by

(3.18) a(v, u) =

∫

Ω

v(x) · u(x) dx.

On K, the basis functions are given by ψK
i = FK(Ψi) and computing the element tensor

AK , we obtain

AK
i =

∫

K

ψK
i1

(x) · ψK
i2

(x) dx

=
1

det F ′
K

∂xβ

∂Xα1

∂xβ

∂Xα2

∫

K0

Ψi1 [α1]Ψi2 [α2] dX = A0
iαGα

K ,

(3.19)

where A0
iα =

∫

K0
Ψi1 [α1]Ψi2 [α2] dX and Gα

K = 1
det F ′

K

∂xβ

∂Xα1

∂xβ

∂Xα2
. We see that, like for Poisson,

the reference tensor A0 is rank four and the geometry tensor GK is rank two.

12 ROBERT C. KIRBY AND ANDERS LOGG

The possibility of extending our techniques to isoparametric elements is less obvious.
While the Piola mapping is more complicated than the standard affine mapping, it still
leads to geometric data that is constant over each cell and can be pulled out of the integrals
to set up tensor products. In the case of isoparametric elements, however, FK varies
spatially within a cell. Moreover, the determinant factor often appears in a denominator,
leading to a rational function. It is not clear how to proceed, but it may be possible
to make suitably accurate polynomial approximations and hence recover the structure of
tensor products.

3.5. Optimization. We consider here three different kinds of optimization that could be
built into FFC in the future. For one, the current code is generated entirely straightline
as a sequence of arithmetic and assignment. It should is possible to store the tensor A0 in
a contiguous array. Moreover, each GK may be considered as a tensor or flattened into a
vector. In the latter case, the action of forming the element matrix for one element may
be written as a matrix-vector multiply using the level 2 BLAS. Once this observation is
made, it is straightforward to see that we could form several GK vectors and make better
use of cache by computing several element matrices at once by a matrix-matrix multiply
and the level 3 BLAS.

This corresponds to a coarse-grained optimization. In other work [27, 28], we have seen
that for many forms, the entries in A0 are related in such ways that various entries of the
element matrices may be formed in fewer operations. For example, if two entries of A0 are
close together in Hamming distance, then the contraction of one entry with GK can be
computed efficiently from the other. As our code for optimization, FErari, evolves, we will
integrate it with FFC as an optimizing backend. It will be simple to compare the output
of FErari to the best performance using the BLAS, and let FFC output the best of the
two (which may be highly problem-dependent).

Finally, optimizations that arise from the variational form itself will be fruitful to ex-
plore in the future. For example, it should be possible to detect when a variational form
is symmetric within FFC, as this leads to fewer operations to form the associated matrix.
Moreover, for forms over vector-valued elements that have a Cartesian product basis (each
basis function has support in only one component), other kinds of optimizations are ap-
propriate. For example, the viscosity operator for Navier-Stokes is the vector Laplacian,
which can be written as a block-diagonal matrix with one axis for each spatial dimension.
By ”taking apart” the basis functions, we hope to uncover this block structure, which will
lead to more efficient compilation and hopefully more efficient code.

4. Complexity of form evaluation

We now compare the proposed algorithm based on tensor representation to the standard
quadrature-based approach. As we shall see, tensor representation can be much more
efficient than quadrature for a wide range of forms.

4.1. Basic assumptions and notation. To analyze the complexity of form evaluation,
we make the following simplifying assumptions:

A COMPILER FOR VARIATIONAL FORMS 13

• the form is bilinear, i.e., r = |i| = 2;
• the form can be represented as one tensor product, i.e., AK

i = A0
iαGα

K ;
• the basis functions are scalar;
• integrals are computed exactly, i.e., the order of the quadrature rule must match

the polynomial order of the integrand.

We shall use the following notation: q is the polynomial order of the basis functions
on every element, p is the total polynomial order of the integrand of the form, d is the
dimension of Ω, n is the dimension of the function space on an element, and N is the
number of quadrature points needed to integrate polynomials of degree p exactly.

Furthermore, let nf be the number of functions appearing in the form. For test cases 1–4
above, nf = 0 in all cases except test case 3 (Navier–Stokes) where nf = 1. We use nD to
denote the number of differential operators. For test cases 1–4, we have nD = 0 in case 1
(the mass matrix), nD = 2 in case 2 (Poisson), nD = 1 in case 3 (Navier–Stokes), and
nD = 2 in case 4 (linear elasticity).

4.2. Complexity of tensor representation. The element tensor AK has n2 entries.
The number of basis functions n for polynomials of degree q in d dimensions is ∼ qd. To
compute each entry AK

i of the element tensor AK using tensor representation, we need
to compute the tensor product between A0

i· and GK . The geometry tensor GK has rank
nf + nD and the number entries of GK is nnf dnD . The cost for computing the n2 entries
of the element tensor AK using tensor representation is thus

(4.1) TT ∼ n2nnf dnD ∼ (qd)2(qd)nf dnD ∼ q2d+nf ddnD .

Note that there is no run-time cost associated with computing the tensor representation
(3.4), since this is computed at compile-time. Also note that we have not taken into account
any of the optimizations discussed in Section 3.5. These optimizations can in some cases
significantly reduce the operation count.

4.3. Complexity of quadrature. To compute each entry AK
i of the element tensor AK

using quadrature, we need to evaluate an integrand of total order p at N quadrature points.
The number of quadrature points needed to integrate polynomials of order p exactly in
d dimensions is N ∼ pd. Since the form is bilinear with basis functions of order q, the
total order is p = 2q + nfq − nD. It is difficult to estimate precisely the cost of evaluating
the integrand at each quadrature point, but a reasonable estimate is nf + nDd + 1. Note
that we assume that all basis functions and their derivatives have been pretabulated at all
quadrature points on the reference element.

We thus obtain the following estimate of the total cost for computing the n2 entries of
the element tensor AK using quadrature:

TQ ∼ n2N(nf + nDd + 1) ∼ (qd)2pd(nf + nDd + 1)

∼ q2d(2q + nfq − nD)d(nf + nDd + 1).
(4.2)

14 ROBERT C. KIRBY AND ANDERS LOGG

4.4. Tensor representation vs. Quadrature. Comparing tensor representation with
quadrature, the speedup of tensor representation is

(4.3) TQ/TT ∼
(2q + nfq − nD)d(nf + nDd + 1)

qnf ddnD
.

We immediately note that there can be a significant speedup for nf = 0, since TT /n2

is then independent of the polynomial degree q. In particular, we note that for the mass
matrix (nf = nD = 0) the speedup is TQ/TT ∼ (2q)d, and for Poisson’s equation (nf = 0,
nD = 2) the speedup is TQ/TT ∼ (2q − 2)d(2d + 1)/d2. As we shall see below, the speedup
for test cases 1–4 is significant even for q = 0.

On the other hand, we note that quadrature may be more efficient if nf is large. One
may thus imagine an intelligent system that automatically makes the choice between tensor
representation and quadrature in each specific situation.

5. Implementation

We now discuss a number of important aspects of the implementation of the form com-
piler FFC. We also write down the forms for the test cases discussed above in Section 3.3
in the language of the form compiler FFC. Basically, we can consider FFC’s functionality
broken into three phases. First, it takes an expression for a multilinear form and generates
the tensor A0. While doing this, it derives an expression for evaluation of the element
tensor GK from the affine mapping and the coefficients of the form. Finally, it generates
code for evaluating GK and contracting it with A0, and for constructing the local-to-global
mapping.

5.1. Parsing of forms. The form compiler FFC implements a domain-specific language
(DSL) for variational forms, using Python as the host language. A language of varia-
tional forms is obtained by overloading the appropriate operators, including addition +,
subtraction -, multiplication (*), and differentiation .dx(·) for a hierarchy of classes cor-
responding to the algebra A discussed above in Section 3.2. FFC thus uses the built-in
parser of Python to process variational forms.

5.2. Generation of the tensor representation. The basic elements of the algebra
are objects of the class BasisFunction, representing (derivatives of) basis functions of
some finite element space. Each BasisFunction is associated with a particular finite ele-
ment space and different BasisFunctions may be associated with different finite element
spaces. Products of scalars and (derivatives of) basis functions are represented by the class
Product, and sums of such products are represented by the class Sum. In addition, we
include a class Function, representing linear combinations of basis functions (coefficients).
In the diagrams of Tables 1 and 2, we summarize the basic unary and binary operators
respectively implemented for the hierarchy of classes.

Note that by declaring a common base class for BasisFunction, Product, Sum, and
Function, some of the operations can be grouped together to simplify the implementation.
As a results, the result of most operators will directly yield a Sum. Also note that the
algebra of Sums is closed under the operations listed above.

A COMPILER FOR VARIATIONAL FORMS 15

op B F P S
- P S P S
.dx(·) P S S S

Table 1. Unary operators and their results for the classes BasisFunction
(B), Function (F), Product (P), and Sum (S).

+/- B F P S
B S S S S
F S S S S
P S S S S
S S S S S

* B F P S
B P S P S
F S S S S
P P S P S
S S S S S

Table 2. Binary operators and their results for the classes BasisFunction
(B), Function (F), Product (P), and Sum (S).

By associating with each object one or more indices, implemented by the class Index,
an object of type Sum automatically represents a tensor, and by differentiating between
different types of indices, an object of type Sum automatically encodes the tensor represen-
tation (3.4). FFC differentiates between four different types of indices: primary, secondary,
auxiliary, and fixed. A primary index (i) is associated with the multiindex of the element
tensor AK , a secondary index (α) is associated with the multiindex of the geometry tensor
GK , and thus the secondary indices indicate along which dimensions to compute the tensor
product A0

iαGα
K . Auxiliary indices (β) are internal indices within the reference tensor A0 or

the geometry tensor GK and must be repeated exactly twice; summation is performed over
each auxiliary index β before the tensor product is computed by summation over secondary
indices α. Finally, a fixed index is a given constant index that cannot be evaluated. Fixed
indices are used to represent for example a derivative in a fixed coordinate direction.

Implicit in our algebra is a grammar for multilinear forms. We could explicitly write an
EBNF grammar and use tools such as lex and yacc to create a compiler for a domain-
specific language. However, by limiting ourselves to overloaded operators, we successfully
embed our language as a high-level library in Python.

To make this concrete, consider test case 2 of section 3.3, Poisson’s equation. The tensor
representation AK

i = A0
iαGα

K is then given by

A0
iα =

∫

K0

∂Φ1
i1
(X)

∂Xα1

∂Φ2
i2
(X)

∂Xα2

dX,

Gα
K = det F ′

K

∂Xα1

∂xβ

∂Xα2

∂xβ

.

(5.1)

There are here two primary indices (i1 and i2), two secondary indices (α1 and α2), and one
auxiliary index (β).

16 ROBERT C. KIRBY AND ANDERS LOGG

5.3. Evaluation of integrals. Once the tensor representation (3.4) has been generated,
FFC computes all entries of the reference tensor(s) by quadrature on the reference element.
The quadrature rule is automatically chosen to match the polynomial order of each inte-
grand. FFC uses FIAT [25, 26] as the finite element back-end; FIAT generates the set of
basis functions, the quadrature rule, and evaluates the basis functions and their derivatives
at the quadrature points.

Although FIAT supports many families of finite elements, the current version of FFC
only supports general order continuous/discontinuous Lagrange finite elements and first
order Crouzeix–Raviart finite elements on triangles and on tetrahedra (or any other finite
element with nodes given by pointwise evaluation). Support for other families of finite
elements will be added in future versions.

Computing integrals is the most expensive step in the compilation of a form. The typical
run-time (of the compiler) ranges between 0.1 and 30 seconds, depending on the type of
form and finite element.

5.4. Generation of code. When a form has been parsed, the tensor representation has
been generated, and all integrals computed, code is generated for evaluation of geometry
tensors and tensor products. The form compiler FFC has been designed to allow for
generation of code in multiple different languages. Code is generated according to a specific
format (which is essentially a Python dictionary) that controls the output code being
generated, see Figure 5. The current version of FFC supports three output formats: C++
(DOLFIN [21, 22]), LATEX (for verification and presentation purposes) and a raw format
that just lists the values of the reference tensors. FFC can be easily extended with new
output formats, including for example Python, C, or Fortran.

Figure 5. Diagram of the components of the form compiler FFC.

5.5. Input/output. FFC can be used either as a Python package or from the command-
line. We here give a brief description of how FFC can be called from the command-line to
generate C++ code for DOLFIN. To use FFC from the command-line, one specifies the
form in a text file in a special language for variational forms, which is simply Python with
equipped with the hierarchy of classes and operators discussed above in Section 5.1. In
Table 3 we give the complete code for the specification of test case 2, Poisson’s equation.

A COMPILER FOR VARIATIONAL FORMS 17

Note that FFC uses tensor-notation, and thus the summation over the index i is implicit.
Also note that the integral over an element K is denoted by *dx.

element = FiniteElement("Lagrange", "tetrahedron", 3)

v = BasisFunction(element)

u = BasisFunction(element)

f = Function(element)

a = v.dx(i)*u.dx(i)*dx

L = v*f*dx

Table 3. The complete code for specification of test case 2, Poisson’s equa-
tion, with piecewise cubics on tetrahedra in the language of FFC.

Assuming that the form has been specified in the file Poisson.form, the form can be
compiled using the command ffc Poisson.form. This generates the C++ file Poisson.h
to be included in a DOLFIN program. In Table 4, we include part of the output generated
by FFC with input given by the code from Table 3. In addition to this code, FFC generates
code for the mapping ι(·, ·) from local to global degrees of freedom for each finite element
space associated with the form. Note that the values of the 10 × 10 element tensor AK

(in the case of cubics on triangles) are stored as one contiguous array (block), since this
is what the linear algebra back-end of DOLFIN (PETSc) requires for assembly.

void eval(double block[], const AffineMap& map) const

{

// Compute geometry tensors

double G0_0_0 = map.det*(map.g00*map.g00 + map.g01*map.g01);

double G0_0_1 = map.det*(map.g00*map.g10 + map.g01*map.g11);

double G0_1_0 = map.det*(map.g10*map.g00 + map.g11*map.g01);

double G0_1_1 = map.det*(map.g10*map.g10 + map.g11*map.g11);

// Compute element tensor

block[0] = 4.249999999999996e-01*G0_0_0 + 4.249999999999995e-01*G0_0_1 +

4.249999999999995e-01*G0_1_0 + 4.249999999999995e-01*G0_1_1;

block[1] = -8.749999999999993e-02*G0_0_0 - 8.749999999999995e-02*G0_0_1;

block[2] = -8.750000000000005e-02*G0_1_0 - 8.750000000000013e-02*G0_1_1;

...

block[99] = 4.049999999999997e+00*G0_0_0 + 2.024999999999998e+00*G0_0_1 +

2.024999999999998e+00*G0_1_0 + 4.049999999999995e+00*G0_1_1;

}

Table 4. Part of the code generated by FFC for the input code from Table 3.

18 ROBERT C. KIRBY AND ANDERS LOGG

5.6. Completing the toolchain. With the FEniCS project [20], we have the beginnings
of a working system realizing (in part) the Automation of Computational Mathematical
Modeling, and the form compiler FFC is just one of several components needed to complete
the toolchain. FIAT automates the generation of finite element spaces and FFC automates
the evaluation of variational forms. Furthermore, PETSc [4, 3, 5], automating the solution
of discrete systems, is used as the solver back-end of FEniCS. A common C++ interface
to the different FEniCS components is provided by DOLFIN.

A complete automation of CMM, as outlined in [30], is a major task and we hope that
by a modular approach we can contribute to this automation.

6. Benchmark results

As noted above, the speedup for the code generated by the form compiler FFC can in
many cases be significant. Below, we present a comparison with the standard quadrature-
based approach for the test cases discussed above in Section 3.3.

The forms were compiled for a range of polynomial degrees using FFC version 0.1.6. This
version of FFC does not take into account any of the optimizations discussed in Section
3.5, other than not generating code for multiplication with zero entries of the reference
tensor.

For the quadrature-based code, all basis functions and their derivatives were pretabu-
lated at the quadrature points using FIAT. Loops for all scalar products were completely
unrolled.

In all cases, we have used the ”collapsed-coordinate” Gauss-Jacobi rules described by
Karniadakis and Sherwin [24]. These take tensor-product Gaussian integration rules over
the square and cube and map them to the reference simplex. These rules are not the best
known (see, for example, [15]), but they are fairly simple to generate for arbitrary degree.
Eventually, these rules will be integrated with FIAT, but even if we reduce the number of
quadrature points by a factor of five, FFC still outperforms quadrature.

The codes were compiled with gcc (g++) version 3.3.6 and the benchmark results pre-
sented below were obtained on an Intel Pentium 4 (CPU 3.0 GHz, 2GB RAM) running
Debian GNU/Linux. The times reported are for the computation of each entry of the
element tensor on one million elements (scaled). The total time can be obtained by multi-
plying with n2, the number of entries of the element tensor. The complete source-code for
the benchmarks can be obtained from the FEniCS web site [20].

6.1. Summary of results. In Table 5, we summarize the results for test cases 1–4. In all
cases, the speedup TQ/TT is significant, ranging between a factor 10–1500.

From Section 4, we know that the speedup for the mass matrix should grow as qd, but
from Table 5 it is clear that the speedup is not quadratic for d = 2 and for d = 3, an
optimum seems to be reached around q = 8.

The reason that the predicted speedups are not obtained in practice is that the com-
plexity estimates presented in Section 4 only account for the number of floating-point
operations. When the polynomial degree q grows, the number of lines of code generated
by the form compiler grows. FFC unrolls all loops and generates one line of code for each

A COMPILER FOR VARIATIONAL FORMS 19

entry of the element tensor to be computed. For a bilinear form, the number of entries is
n2 ∼ q2d. With q = 8, the number of lines of code generated is about 25, 000 for the mass
matrix and Poisson in 3D, see Figure 6. As the number of lines of code grows, memory
access becomes more important and dominates the run-time. Using BLAS to compute
tensor products as discussed above might lead to more efficient memory traffic.

1 2 3 4 5 6 7 81 0 2
1 0 3

1 0 4
1 0 5

Li nesof cod e
L i n e s o f c o d e g e n e r a t e dM a s s m a t r i x 2 DM a s s m a t r i x 3 DP o i s s o n 2 DP o i s s o n 3 DN a v i e r 2 S t o k e s 2 DN a v i e r 2 S t o k e s 3 DE l a s t i c i t y 2 DE l a s t i c i t y 3 D

q

Figure 6. Lines of code generated by the form compiler FFC as function
of the polynomial degree q.

Note however that although the optimal speedup is not obtained, the speedup is in all
cases significant, even at q = 1.

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

Mass 2D 12 31 50 78 108 147 183 232
Mass 3D 21 81 189 355 616 881 1442 1475
Poisson 2D 8 29 56 86 129 144 189 236
Poisson 3D 9 56 143 259 427 341 285 356
Navier–Stokes 2D 32 33 53 37 — — — —
Navier–Stokes 3D 77 100 61 42 — — — —
Elasticity 2D 10 43 67 97 — — — —
Elasticity 3D 14 87 103 134 — — — —

Table 5. Speedups TQ/TT for test cases 1–4 in 2D and 3D.

6.2. Results for test cases. In Figures 7–10, we present the results for test cases 1–
4 discussed above in Section 3.3. In connection to each of the results, we include the
specification of the form in the language used by the form compiler FFC.

20 ROBERT C. KIRBY AND ANDERS LOGG

1 2 3 4 5 6 7 81 0 	 11 0 01 0 11 0 21 0 31 0 4
CPUti me/ s M a s s m a t r i x 2 D (1 m i l l i o n t r i a n g l e s)Q u a d r a t u r eF F C

1 2 3 4 5 6 7 81 0 	 11 0 01 0 11 0 21 0 31 0 41 0 5CPUti me/ s M a s s m a t r i x 3 D (1 m i l l i o n t e t r a h e d r o n s)Q u a d r a t u r eF F C
q

Figure 7. Benchmark results for test case 1, the mass matrix, specified in
FFC by a = v*u*dx.

1 2 3 4 5 6 7 81 0 @ 11 0 01 0 11 0 21 0 31 0 4
CPUti me/ s P o i s s o n 2 D (1 m i l l i o n t r i a n g l e s)Q u a d r a t u r eF F C

1 2 3 4 5 6 7 81 0 01 0 11 0 21 0 31 0 41 0 5CPUti me/ s P o i s s o n 3 D (1 m i l l i o n t e t r a h e d r o n s)Q u a d r a t u r eF F C
q

Figure 8. Benchmark results for test case 2, Poisson’s equation, specified
in FFC by a = v.dx(i)*u.dx(i)*dx.

7. Concluding remarks and future directions

We have demonstrated a proof-of-concept form compiler that for a wide range of vari-
ational forms can generate code that gives significant speedups compared to the standard
quadrature-based approach.

A COMPILER FOR VARIATIONAL FORMS 21

1 1 . 5 2 2 . 5 3 3 . 5 41 0 01 0 11 0 21 0 31 0 4
CPUti me/ s N a v i e r � S t o k e s 2 D (1 m i l l i o n t r i a n g l e s)Q u a d r a t u r eF F C

1 1 . 5 2 2 . 5 3 3 . 5 41 0 01 0 11 0 21 0 31 0 41 0 5CPUti me/ s N a v i e r � S t o k e s 3 D (1 m i l l i o n t e t r a h e d r o n s)Q u a d r a t u r eF F C
q

Figure 9. Benchmark results for test case 3, the nonlinear term of
the incompressible Navier–Stokes equations, specified in FFC by a =

v[i]*w[j]*u[i].dx(j)*dx.

1 1 . 5 2 2 . 5 3 3 . 5 41 0 01 0 11 0 21 0 31 0 4
CPUti me/ s E l a s t i c i t y 2 D (1 m i l l i o n t r i a n g l e s)Q u a d r a t u r eF F C

1 1 . 5 2 2 . 5 3 3 . 5 41 0 01 0 11 0 21 0 31 0 41 0 5CPUti me/ s E l a s t i c i t y 3 D (1 m i l l i o n t e t r a h e d r o n s)Q u a d r a t u r eF F C
q

Figure 10. Benchmark results for test case 4, the strain-strain term of lin-
ear elasticity, specified in FFC by a = 0.25*(v[i].dx(j) + v[j].dx(i))

* (u[i].dx(j) + u[j].dx(i)) * dx.

22 ROBERT C. KIRBY AND ANDERS LOGG

The form compiler FFC is still in its early stages of development but is already in
production use. A number of basic modules based on FFC have been implemented in
DOLFIN and others are currently being developed (Navier–Stokes and updated elasticity).
This will serve as a test bed for future development of FFC.

Future plans for FFC include adding support for integrals over the boundary (adding
the operator *ds to the language), support for automatic differentiation of nonlinear forms
and automatic generation of dual problems and a posteriori error estimators [16, 7], op-
timization through FErari [27, 28], adding support for new families of finite elements, in-
cluding elements that require non-affine mappings from the reference element. In addition
to general order continuous/discontinuous Lagrange finite elements and Crouzeix–Raviart
[13] finite elements, the plan is to add support for Raviart–Thomas [35], Nedelec [33],
Brezzi–Douglas–Marini [10], Brezzi–Douglas–Fortin–Marini [11], Arnold–Winther [1], and
Taylor–Hood [8, 9] elements.

We also plan to investigate the use of BLAS for evaluation of tensor products as an
alternative to generating explicit unrolled code. Other topics of interest include automatic
verification of the correctness of the code generated by the form compiler [29].

Acknowledgment

We wish to thank the FEniCS team, in particular Johan Hoffman, Johan Jansson, Claes
Johnson, Matthew Knepley, and Ridgway Scott, for substantial suggestions and comments
regarding this paper.

References

[1] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 92 (2002),
pp. 401–419.

[2] B. Bagheri and R. Scott, Analysa. http://people.cs.uchicago.edu/~ridg/al/aa.html.
[3] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision
2.1.5, Argonne National Laboratory, 2004.

[4] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,

B. F. Smith, and H. Zhang, PETSc, 2001. http://www.mcs.anl.gov/petsc/.
[5] S. Balay, V. Eijkhout, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management

of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997, pp. 163–202.

[6] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations Analysis Li-
brary. http://www.dealii.org.

[7] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in
finite element methods, Acta Numerica, 10 (2001).

[8] D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal.,
34 (1997), pp. 664–670.

[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-
Verlag, 1994.

[10] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second
order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.

A COMPILER FOR VARIATIONAL FORMS 23

[11] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol. 15 of Springer Series in
Computational Mathematics, Springer-Verlag, New York, 1991.

[12] P. G. Ciarlet, Numerical Analysis of the Finite Element Method, Les Presses de l’Universite de
Montreal, 1976.

[13] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for
solving the stationary stokes equations, RAIRO Anal. Numér., 7 (1973), pp. 33–76.

[14] P. Dular and C. Geuzaine, GetDP: a General environment for the treatment of Discrete Problems.
http://www.geuz.org/getdp/.

[15] D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, In-
ternat. J. Numer. Methods Engrg., 21 (1985), pp. 1129–1148.

[16] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for
differential equations, Acta Numerica, (1995), pp. 105–158.

[17] , Computational Differential Equations, Cambridge University Press, 1996.
[18] K. Eriksson, D. Estep, and C. Johnson, Applied Mathematics: Body and Soul, vol. III, Springer-

Verlag, 2003.
[19] Free Software Foundation, GNU GPL. http://www.gnu.org/copyleft/gpl.html.
[20] J. Hoffman, J. Jansson, C. Johnson, M. Knepley, R. C. Kirby, A. Logg, and L. R. Scott,

FEniCS. http://www.fenics.org/.
[21] J. Hoffman, J. Jansson, and A. Logg, DOLFIN. http://www.fenics.org/dolfin/.
[22] J. Hoffman and A. Logg, DOLFIN: Dynamic Object oriented Library for FINite element compu-

tation, Tech. Rep. 2002–06, Chalmers Finite Element Center Preprint Series, 2002.
[23] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,

Prentice-Hall, 1987.
[24] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for CFD, Numerical Mathe-

matics and Scientific Computation, Oxford University Press, New York, 1999.
[25] R. C. Kirby, FIAT: A new paradigm for computing finite element basis functions, ACM Trans. Math.

Software, 30 (2004), pp. 502–516.
[26] , Optimizing FIAT with the level 3 BLAS, submitted to ACM Trans. Math. Software, (2005).
[27] R. C. Kirby, M. Knepley, A. Logg, and L. R. Scott, Optimizing the evaluation of finite

element matrices, To appear in SIAM J. Sci. Comput., (2005).
[28] R. C. Kirby, M. Knepley, and L. R. Scott, Evaluation of the action of finite element operators,

submitted to BIT, (2005).
[29] R. C. Kirby, M. M. Strout, P. Hovland, and L. R. Scott, Verification of scientific code using

rationality analysis, in preparation.
[30] A. Logg, Automation of Computational Mathematical Modeling, PhD thesis, Chalmers University of

Technology, Sweden, 2004.
[31] K. Long, Sundance. http://csmr.ca.sandia.gov/~krlong/sundance.html.
[32] , Sundance, a rapid prototyping tool for parallel PDE-constrained optimization, in Large-Scale

PDE-Constrained Optimization, Lecture notes in computational science and engineering, Springer-
Verlag, 2003.

[33] J.-C. Nédélec, Mixed finite elements in R
3, Numer. Math., 35 (1980), pp. 315–341.

[34] O. Pironneau, F. Hecht, and A. L. Hyaric, FreeFEM. http://www.freefem.org/.
[35] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in

Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.),
Rome, 1975), Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606.

A COMPILER FOR VARIATIONAL FORMS 25

Chalmers Finite Element Center Preprints

2003–01 A hybrid method for elastic waves
Larisa Beilina

2003–02 Application of the local nonobtuse tetrahedral refinement techniques near
Fichera-like corners
L. Beilina, S. Korotov and M. Kř́ıžek

2003–03 Nitsche’s method for coupling non-matching meshes in fluid-structure vibration
problems
Peter Hansbo and Joakim Hermansson

2003–04 Crouzeix–Raviart and Raviart–Thomas elements for acoustic fluid–structure
interaction
Joakim Hermansson

2003–05 Smoothing properties and approximation of time derivatives in multistep back-
ward difference methods for linear parabolic equations
Yubin Yan

2003–06 Postprocessing the finite element method for semilinear parabolic problems
Yubin Yan

2003–07 The finite element method for a linear stochastic parabolic partial differential
equation driven by additive noise
Yubin Yan

2003–08 A finite element method for a nonlinear stochastic parabolic equation
Yubin Yan

2003–09 A finite element method for the simulation of strong and weak discontinuities
in elasticity
Anita Hansbo and Peter Hansbo

2003–10 Generalized Green’s functions and the effective domain of influence
Donald Estep, Michael Holst, and Mats G. Larson

2003–11 Adaptive finite element/difference method for inverse elastic scattering waves
Larisa Beilina

2003–12 A Lagrange multiplier method for the finite element solution of elliptic domain
decomposition problems using non-matching meshes
Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli

2003–13 A reduced P 1–discontinuous Galerkin method
R. Becker, E. Burman, P. Hansbo, and M.G. Larson

2003–14 Nitsche’s method combined with space–time finite elements for ALE fluid–
structure interaction problems
Peter Hansbo, Joakim Hermansson, and Thomas Svedberg

2003–15 Stabilized Crouzeix–Raviart element for the Darcy-Stokes problem
Erik Burman and Peter Hansbo

2003–16 Edge stabilization for the generalized Stokes problem: a continuous interior
penalty method
Erik Burman and Peter Hansbo

2003–17 A conservative flux for the continuous Galerkin method based on discontinuous
enrichment
Mats G. Larson and A. Jonas Niklasson

26 ROBERT C. KIRBY AND ANDERS LOGG

2003–18 CAD–to–CAE integration through automated model simplification and adaptive
modelling
K.Y. Lee, M.A. Price, C.G. Armstrong, M.G. Larson, and K. Samuelsson

2003–19 Multi-adaptive time integration
Anders Logg

2003–20 Adaptive computational methods for parabolic problems
Kenneth Eriksson, Claes Johnson, and Anders Logg

2003–21 The FEniCS project
T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg, and
R. Scott

2003–22 Adaptive finite element methods for LES: Computation of the mean drag coef-
ficient in a turbulent flow around a surface mounted cube using adaptive mesh
refinement
Johan Hoffman

2003–23 Adaptive DNS/LES: a new agenda in CFD
Johan Hoffman and Claes Johnson

2003–24 Multiscale convergence and reiterated homogenization of parabolic problem
Anders Holmbom, Nils Svanstedt, and Niklas Wellander

2003–25 On the relationship between some weak compactnesses with different numbers
of scales
Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander

2003–26 A posteriori error estimation in computational inverse scattering
Larisa Beilina and Claes Johnson

2004–01 Computability and adaptivity in CFD
Johan Hoffman och Claes Johnson

2004–02 Interpolation estimates for piecewise smooth functions in one dimension
Anders Logg

2004–03 Estimates of derivatives and jumps across element boundaries for multi-
adaptive Galerkin solutions of ODEs
Anders Logg

2004–04 Multi-adaptive Galerkin methods for ODEs III: Existence and stability
Anders Logg

2004–05 Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates
Anders Logg

2004–06 A stabilized non-conforming finite element method for incompressible flow
Erik Burman and Peter Hansbo

2004–07 On the uniqueness of weak solutions of Navier-Stokes equations: Remarks on
a Clay Institute prize problem
Johan Hoffman and Claes Johnson

2004–08 A new approach to computational turbulence modeling
Johan Hoffman and Claes Johnson

2004–09 A posteriori error analysis of the boundary penalty method
Kenneth Eriksson, Mats G. Larson, and Axel Målqvist

2004–10 A posteriori error analysis of stabilized finite element approximations of the
helmholtz equation on unstructured grids
Mats G. Larson and Axel Målqvist

2004–11 Adaptive variational multiscale methods based on a posteriori error estimation
Mats G. Larson and Axel Målqvist

2004–12 Multi-adaptive Galerkin methods for ODEs V: Stiff problems
Johan Jansson and Anders Logg

2004–13 Algorithms for multi-adaptive time-stepping
Johan Jansson and Anders Logg

2004–14 Simulation of mechanical systems with individual time steps
Johan Jansson and Anders Logg

2004–15 Computational modeling of dynamical systems
Johan Jansson, Claes Johnson, and Anders Logg

2004–16 Adaptive variational multiscale methods based on a posteriori error estimation:
Duality techniques for elliptic problems
Mats G. Larson and Axel Målqvist

2004–17 Ultraconvergence of an interpolated finite element method for some fourth-order
elliptic problems
Andrey B. Andreev and Milena R. Racheva

2004–18 Adaptive variational multiscale methods based on a posteriori error estimation:
energy norm estimates for elliptic problems
Mats G. Larson and Axel Målqvist

2004–19 Stabilized Lagrange multiplier methods for elastic contact with friction
Per Heintz and Peter Hansbo

2005–01 A posteriori error estimates for mixed finite element approximations of elliptic
problems
Mats G. Larson and Axel Målqvist

2005–02 On the numerical modeling of quasi-static crack growth in linear elastic fracture
mechanics
Per Heintz

2005–03 Irreversibility in reversible systems I: the compressible Euler equations in 1d
Johan Hoffman and Claes Johnson

2005–04 Irreversibility in reversible systems II: the incompressible Euler equations
Johan Hoffman and Claes Johnson

2005–05 A Compiler for Variational Forms
Robert C. Kirby and Anders Logg

These preprints can be obtained from

www.phi.chalmers.se/preprints

