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SE–412 96 Göteborg Sweden
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MODELING OF RESISTIVE WALL MODE AND ITS CONTROL IN

EXPERIMENTS AND ITER

YUEQIANG LIU, M.S. CHU, A.M. GAROFALO, Y. GRIBOV, M. GRYAZNEVICH, T.C. HENDER,
D.F. HOWELL, R.J. LA HAYE, M. OKABAYASHI, S.D. PINCHES, H. REIMERDES, P. DE VRIES,

AND EFDA-JET CONTRIBUTORS AND MATS G. LARSON

Abstract. Active control of the resistive wall mode (RWM) for DIII-D [Luxon and
Davis, Fusion Technol. 8, 441(1985)] plasmas is studied using the MARS-F code [Y.Q.
Liu, et al., Phys. Plasmas 7, 3681(2000)]. Control optimization shows that the mode can
be stabilized up to the ideal wall beta limit, using the internal control coils (I-coils) and
poloidal sensors located at the outboard midplane, in combination with an ideal amplifier.
With the present DIII-D power supply model, the stabilization is achieved up to 70% of
the range between no-wall and ideal-wall limits. Reasonably good quantitative agreement
is achieved between MARS-F simulations and experiments on DIII-D and JET (Joint
European Torus) [P.H. Rebut et al., Nucl. Fusion 25, 1011(1985)] on critical rotation for
the mode stabilization. Dynamics of rotationally stabilized plasmas is well described by
a single mode approximation; whilst a strongly unstable plasma requires a multiple mode
description. For ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys.
Controlled Fusion 44, 519(2002)], the MARS-F simulations show the plasma rotation may
not provide a robust mechanism for the RWM stabilization in the advanced scenario.
With the assumption of ideal amplifiers, and using optimally tuned controllers and sensor
signals, the present feedback coil design in ITER allows stabilization of the n = 1 RWM
for plasma pressures up to 80% of the range between the no-wall and ideal-wall limits.

1. Introduction

Advanced tokamaks are economically attractive fusion devices, which aim at steady state op-
eration with a high plasma pressure and a large fraction of bootstrap current [1]. One of the good
features of advanced tokamaks is that the micro-instabilities in the plasma core region are well
damped, which leads to internal transport barriers, and thus improved plasma energy confine-
ment. Moreover, it is expected that in advanced scenarios with low or reversed magnetic shear,
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neoclassical tearing modes, that are a very dangerous magnetohydrodynamic (MHD) instabilities
for long pulse operations for present tokamaks and possibly for ITER, can actually be suppressed.
On the other hand, it is known that the product of the plasma pressure, β = 2µ0〈p〉/〈B2〉, and
the bootstrap current fraction, fbs = Ibs/Ip, (where p is the plasma kinetic pressure, B the total
magnetic field, 〈· · ·〉 defined as the average over plasma volume, Ibs the bootstrap current, Ip total
plasma current) has an upper limit [2]

β fbs <∼ 0.1(1+κ2)(a/R)1/2β2
N,

where βN = β(%)a(m)B0(T )/Ip(MA) is the normalized beta. For advanced scenarios such as
the ITER Scenario-4 [3], with conventional plasma aspect ratio R/a ' 3, and moderate plasma
elongation κ < 2, improvement of the fusion performance requires maximizing βN . However,
rather broad current profiles and highly peaked pressures, typical for advanced plasmas, lead to
relatively low pressure limits due to the instability of long-wavelength (low toroidal mode num-
ber n) ideal MHD kink modes. These pressure-driven, external kink instabilities can in principle
be suppressed by a closely fitted conducting wall surrounding the plasma. In practice, however,
walls have finite resistivity. On the time-scale over which eddy currents in the wall decay re-
sistively, the magnetic perturbations of external modes penetrate the wall, and the stabilization
is lost [4]. The resulting slow-growing, resistive wall modes (RWM) need to be stabilized to
achieve high βN in steady state operations. It is predicted that, for the ITER advanced scenario,
βN can be increased from about 2.5 up to 3.5 or even more, provided the n = 1 RWM is stabilized
[5].

Two possible ways have been suggested to stabilize the low n RWM in a tokamak. The sim-
ple way is to rely passively on the plasma rotation. Both toroidal theory [6, 7] and experiments
in DIII-D [8, 9, 10] and JET (Joint European Torus) [11] show that a high-speed toroidal rota-
tion, typically a few percent of the Alfvén speed at the plasma center, is required for complete
stabilization of the mode. One of the key physics issues is understanding of the damping mech-
anisms on the RWM due to the nonlinear interaction between the mode and the (stable) waves
and particles in the plasma.

Another way, first proposed by Bishop [12], exploits active control. This technique is similar
to the routinely used vertical control for elongated plasmas [13]. Feedback control of the RWM
has been carried out in DIII-D [14, 15, 16, 17, 18], HBT-EP (High Beta Tokamak-Extended
Pulse) [19], as well as in EXTRAP T2R reversed field pinch [20, 21], with very encouraging
results. Theoretically, a circuit model [22], cylindrical models [23, 24, 25, 26, 27], and toroidal
models [28, 29, 30, 31, 32, 33] have been developed to study feedback stabilization of the RWM.
One of the key understandings is that sensors, measuring the poloidal component of the magnetic
field perturbations just inside the vacuum vessel, gives superior control performance to sensors
measuring the radial fields [29].

Recent experiments in DIII-D show very efficient stabilization by using internal control coils
(I-coils), installed inside the vacuum vessel and above/below the midplane on the large major ra-
dius side of the torus [18]. This paper reports the feedback simulation results for DIII-D plasmas
using I-coils. Also, a feedback study is made for ITER plasmas in advanced scenarios.

One way to understand the RWM damping is to compare the experimental data with numerical
simulations with various damping models. Two types of experimental data are well documented:
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Figure 1. An equilibrium reconstructed from DIII-D shot 114340 at
1450ms. Shown are the profiles for the safety factor q, plasma pressure (nor-
malized by the toroidal magnetic field pressure) and density (normalized at
the plasma center), and the toroidal plasma rotation frequency (normalized
by the Alfvén frequency). Ψ is the normalized poloidal magnetic flux.

the critical rotation frequency required for marginal stabilization of the RWM, and the amplitude
and phase of the plasma response to an externally applied resonant field (resonant field amplifi-
cation, RFA [34]). This paper reports both types of simulations using the MARS-F code [29],
and compares with experiments in DIII-D and JET.

MARS-F is a linear MHD stability code developed from the MARS code [35, 36], with added
features such as feedback [28] and the kinetic damping model [37]. The latter is based on a
simplified drift-kinetic large-aspect-ratio analysis [38]. Besides the Alfvén continuum damping,
a parallel viscous force [36] is also introduced in the code in order to model the sound wave
damping.

Section II of this paper reports the feedback simulations for DIII-D plasmas using I-coils. Sec-
tion III gives ITER predictions for active control of the RWM. Section IV compares the MARS-F
computed critical rotation with the recent experiments on DIII-D and JET, and gives predictions
for ITER. Section V discusses modeling issues of the plasma response for the resonant field
amplification. The work is summarized in Section VI.

2. Feedback study for DIII-D

To simulate the feedback experiments on DIII-D, we choose a plasma equilibrium recon-
structed from the shot 114340 at 1450ms. The profiles for the safety factor q, the plasma pressure
and density, as well as the plasma toroidal rotation are shown in Fig. 1. For this shot, the plasma
rotation is kept very slow in a large outer region of the plasma. The resistive wall mode is not
stabilized by the plasma rotation. Feedback control, using internal coils (I-coils), keeps the mode
stable for more than 50 ms at low rotation [18].
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2.1. Computing plasma response model. In the simulation, we neglect the plasma rota-
tion. Using the MARS-F code, we compute the plasma response model, defined as a frequency
dependent transfer function [39]

P =
ψs

Ms f I f
,(2.1)

where ψs is the magnetic flux detected by poloidal sensors located at the outboard midplane
just inside the DIII-D vacuum vessel. Ms f is a normalization factor, chosen as the radial field
produced at the sensor position by 1A current flowing in the I-coils in free space. The feedback
current is denoted as I f . The open-loop response P is usually well approximated by a low order
rational function (Padé approximation) [28].

We compute transfer functions PU and PL for both sets of I-coils above and below the midplane,
respectively. The poloidal sensors at the midplane is used for both sets of I-coils. Assuming the
sensor signal is fed back to two sets of I-coils via the same controller K, and with opposite
toroidal phase shift ±φP (the total phasing between the upper and lower coil sets becomes 2φP),
the total transfer function is

P = PU exp( jφP)+PL exp(− jφP),

where j is the imaginary unit.

2.2. Control optimization. The control optimization is performed, that (1) gives stabiliza-
tion of the RWM, (2) meets certain prescribed criteria on the control performance. We assume a
simple PD-controller with proportional (P) and derivative (D) actions

K(s) = Kp
1+Tds

1+Tds/ξ
,

where s is the Laplace variable. Kp is the proportional gain, generally chosen as a complex
number with phase φK . [φK corresponds to a toroidal phase shift between the control signal
and the sensor signal.] Td (real number) is the derivative gain. An additional parameter ξ > 1
is chosen to prevent unphysical behavior at very high frequencies. The control performance is
measured by control activity ||KS||∞ and sensitivity ||S||∞ [40]

S( jω) =
1

1+K( jω)P( jω)
, ||KS||∞ = sup

ω
|K( jω)S( jω)|, ||S||∞ = sup

ω
|S( jω)|,

where ω is the real frequency belonging to a chosen frequency band. In the control optimization,
we minimize the control activity ||KS||∞ while applying constraints on the sensitivity ||S||∞ ≤ 2.0.
Three strategies are tested with respect to the choice of the optimization variables c:
(1) c = {Kp,Td,ξ}, where Kp is real (i.e. φK = 0), fix φP = 150o,
(2) c = {Kp,Td,ξ,φP}, fix φK = 0,
(3) c = {Kp,Td,ξ,φP}, where Kp is complex (i.e. also optimize φK).

We perform a control study for both ideal power amplifiers (with zero time delay and infinite
bandwidth) and the DIII-D experimental amplifiers.
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Figure 2. Transfer functions plotted on the complex plane, for real fre-
quencies −103 ≤ ωτw ≤ 103. Solid (dashed) line denotes positive (negative)
ω. ’o’ denotes ω = 0, and ’x’ denotes |ωτw| = 103. Shown a case for the
plasma close to the ideal wall beta limit with Cβ = 0.9. An ideal amplifier is
assumed. (a) Plasma response to the internal control coils (I-coils) above the
midplane. (b) Plasma response to the I-coils below the midplane. (c) Plasma
response to both sets of I-coils connected to the same optimal PD controller
with real feedback gains. Toroidal phase difference between upper and lower
sets is 300o. (d) Plasma response to both sets of I-coils connected to the same
optimal PD controller with complex feedback gains. Both toroidal phasings
of feedback gains and I-coil sets are also optimized.

2.3. Control with Ideal amplifier. Figure 2 shows the control results for a plasma close
to the ideal wall limit at Cβ ≡ (β−βno−wall)/(βideal−wall −βno−wall) = 0.9. The instability of
the RWM and the possibility of its feedback control is usually well correlated to the parameter
Cβ. Figures 2(a) and (b) show, in the complex plane, the computed transfer function PU( jω)

and PL( jω), with real frequencies (normalized by the wall time) ωτw ∈ [−103,103]. Figure 2(c)
shows the transfer function K( jω)P( jω) for the optimal controller K according to the optimiza-
tion strategy (1). The corresponding result for the optimization strategy (3) is shown in Fig.
2(d).

According to the Cauchy principle of phase variation, the closed loop is stable if the Nyquist
curves, shown in Fig. 2, encircle -1 once in the counter clock-wise direction, as the frequency
ω varies from −∞ to +∞. In our case, both closed-loops from Fig. 2(c) and (d) are stable, with
rather good stability margin. [A quantitative measure of the stability margin is the sensitivity
||S||∞. The shortest distance between -1 and the Nyquist curve for K( jω)P( jω) is equal to
1/||S||∞, since according to the definition, 1/max |S( jω)| = min |1+K( jω)P( jω)|.]

The similarity of Figures 2(c) and (d) indicates that the ad-hoc choice of φP = 150o is close to
the optimal, and feedback with real gains is good enough for this case. Indeed, the quantitative
measures of the control activity ||KS||∞ and sensitivity ||S||∞ are quite close, as shown in Fig. 3,
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Figure 3. Optimal control results with ideal amplifiers. Solid curves cor-
respond to real feedback gains and fixed toroidal phasing at 300o between
upper and lower I-coil sets. Dashed curves correspond to real gains and op-
timal phasing for I-coils. Dash-dotted curves correspond to optimal phasing
for both complex gains and I-coil sets. Shown are (a) the optimal control ac-
tivity ||KS||∞, and (b) the achieved stability margin ||S||∞, versus the plasma
pressure Cβ. Controller optimization is made for each Cβ individually.

for all three optimization strategies. The control optimization is made individually for each Cβ
value. We conclude also that, with an ideal amplifier, the I-coils can provide full stabilization of
the RWM up to the ideal wall beta limit, with good performance.

The optimal controller gains Kp and Td are shown in Fig. 4(a) and (b), respectively. The
optimal value for parameter ξ is generally much larger than unity. We note that the derivative
action is almost not required. The phase angles φK and φP are shown in Fig. 5(a) and (b),
respectively. The optimal phasing between two sets of I-coils can be as low as 240o at low
pressure. The fact that the optimal control results are only slightly better than the ad-hoc choice
of 300o indicates, that the control is not very sensitive to the choice of φP.

2.4. Control with DIII-D amplifier. We use the following transfer function to specify the
DIII-D switching power amplifiers, which were installed in 2000 [41]

Pa(s) =
Ω1

s+Ω1
×

Ω2
s+Ω2

× exp(−sτd),

where Ω1 = 5373−8205 jsec−1, Ω2 = 2692+960 jsec−1, τd = 65µs.
The total open-loop transfer function P(s) is now replaced by P(s)Pa(s). We perform again the

control optimization for all Cβ. Figure 6 shows the results for Cβ = 0.7 in Nyquist diagrams. At
this plasma pressure, the optimal controller can marginally stabilize the mode, with rather poor
performance. No optimal controller is found at Cβ = 0.8 that can still stabilize the mode.

Figure 7 shows the optimal control results for varying plasma pressures. At Cβ > 0.3, the
control performance specification ||S||∞ ≤ 2.0 can no longer be satisfied, as shown in Fig. 7(b).
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Figure 4. The same cases as in Fig. 3. Shown are optimal controller gains
(amplitude) for (a) proportional action Kp, and (b) derivative action Td.
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Figure 5. The same cases as in Fig. 3. Shown are (a) toroidal phasings
(in degrees) for optimal feedback gains, and (b) half of toroidal phasing (in
degrees) between upper and lower sets of I-coils.

The optimal control gains are shown in Fig. 8(a-b). Larger derivative gains (about 10% of the
proportional gain) are generally required in order to compensate the phase delay caused by the
power supply. The optimal phase angles for φK and φP varies with varying plasma pressure (Fig.
9), which does not lead to significant variation of the control results.

3. Feedback study for ITER

We also studied active control of the n = 1 RWM for the ITER steady state scenario (Scenario-
4) [3, 5]. This scenario has weak negative magnetic shear and a highly shaped plasma. The total
plasma current is 9MA, with about 340MW fusion power production at Q = 5. The design
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Figure 7. Optimal control results with the DIII-D amplifier. The curves
notation follows Fig. 3.

plasma is marginally unstable without the wall. We scaled the plasma pressure up to the ideal-
wall limit for the inner wall, keeping the total plasma current at 9MA.

The side correction coils have been used for the RWM feedback control. These are supercon-
ducting coils, located along the outboard midplane and external to the ITER walls (at a radial
distance of about 3a, where a the plasma minor radius), with three pairs of toroidally opposite
coils connected to produce the n = 1 magnetic field.

Using internal poloidal sensors and assuming an ideal amplifier, MARS-F calculations have
shown that the present design of feedback coils allow stabilization of the n = 1 RWM up to
Cβ ' 60% with proportional actions alone. Better results can be achieved by using optimally
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Figure 9. Optimal toroidal phasings assuming the DIII-D amplifier. No-
tations are the same as in Fig. 5.

tuned PID (proportional, integral and derivative) controllers and improved sensor signals. We
have optimized the PID gains to achieve the minimum peak voltage for a reference event, where
the controller is turned on after the field reaches 1.5 mT.

In Ref. [37], we have shown that, with the design voltage limit of 300 V/turn for the amplifier,
the RWM can be controlled with good performance (||S||∞ = 2) for Cβ <∼ 65%, and with moderate
performance (||S||∞ = 2.5) for Cβ <∼ 70%. The peak voltage is further reduced if we use internal
poloidal sensor signals compensated by an optimally chosen signal. The RWM can be stabilized,
with good performance, up to Cβ >∼ 80%.
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Figure 10. Equilibrium profiles reconstructed for the DIII-D shot 121611
at 1165.5ms, for the safety factor q, plasma pressure P (normalized at
the plasma center) and surface averaged current density J (normalized by
B0/(µ0R0), where B0 is the toroidal vacuum field, R0 the major radius, and
µ0 the vacuum permeability), and toroidal rotation Ωrot (normalized at the
plasma center). Two rotation profiles are considered: before applying the
external field (dashed curve) and after the magnetic braking (solid curve),
when the critical rotation is measured.

4. Critical rotation for RWM stabilization

4.1. Simulations for DIII-D. On DIII-D, the critical rotation, required for stabilization of
the RWM, is measured by applying an external error magnetic field to gradually slow the plasma
rotation. One example is the shot 121611, which is part of a DIII-D/JET comparison of RWM
physics [42]. Figure 10 shows the equilibrium profiles reconstructed at high beta shortly before
the onset of the RWM. The rotation profile (normalized at the plasma center) at this moment is
shown as solid line. Shown also is the rotation profile measured before applying the external
field (dashed line), when the plasma is stabilized by the rotation.

The MARS-F computed critical rotation (evaluated at the plasma center) is shown in Fig. 11,
for both rotation profiles. The kinetic damping model is assumed. The computed critical rotation
with magnetic braking (profile 2) is close to the experimental value, as shown by the solid line.
The computed critical rotation at the plasma center is reduced by about 40% for the case without
magnetic braking (profile 1). This comparison shows that the critical rotation, as defined at the
plasma center, is sensitive to the rotation profile.

We also compute the critical rotation for the equilibrium that was used in the feedback study
described in Section II. The equilibrium and rotation profiles are shown in Fig. 1. In Fig. 12, we
plot the ratio of the computed critical rotation to the experimental value, for increasing plasma
pressures. The plasma pressure in the experiment corresponds to Cβ about 0.35. The RWM at
this pressure is predicted to be unstable, which confirms the experimental observations.



RUNNING TITLE 11

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω
rot

(r=0)/ω
A

C
β

1 2 

DIII−D121611 

expr. 

Figure 11. Computed critical rotation versus the plasma pressure Cβ, for
both rotation profiles shown in Fig. 10. The kinetic damping model is used
in MARS-F calculations. Shown also the critical rotation measured in the
magnetic braking experiment.
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Figure 12. Computed critical rotation versus the plasma pressure Cβ for
the DIII-D shot 114340. The equilibrium and rotation profiles are shown in
Fig. 1.

4.2. Simulations for JET. Figure 13 shows comparison of the MARS-F computed critical
rotation against the experimental data on JET. The calculations assume either parallel sound
wave damping (dashed curves), with various values for adjustable damping coefficient κ||, or the
kinetic damping (solid curve). A series of JET equilibria, reconstructed from JET shot 62366,
has been used in calculations [37]. The kinetic damping gives quantitatively correct predictions
for the critical rotation.
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Figure 13. The critical rotation frequency at the q = 2 surface, normal-
ized by Alfvén frequency, versus the plasma pressure Cβ. Plotted are JET
experimental data (dots) and the MARS-F results with parallel sound wave
damping (dashed curves) and semi-kinetic damping (solid curve) models.

4.3. The q95 scaling. Using the kinetic damping model, it has been computed in Ref. [37],
that the critical rotation, measured at the plasma center, decreases with increasing q95. The
dependence follows an approximate scaling as 1/q2

95 as shown in Fig. 14. In the same Figure,
we also plot the critical rotation at the q = 2 surface versus q95. No explicit dependence is seen.
Both observations are also made in experiments in DIII-D, JET and NSTX [42]. One possible
explanation for this is the variation of rotation profiles between different machines, as shown in
Fig. 15. [For a similar q-profile from two machines and a similar critical rotation at the q = 2
surface, a more strongly peaked rotation profile (in DIII-D as compared to JET, for example)
could give a larger critical rotation evaluated at the plasma center.] Even with a fixed rotation
profile, the dependence can be different for the critical rotation at the plasma center compared
with that at the q = 2 surface, as shown by the computed data for DIII-D 110634 in Fig. 14.
This is because increasing q95 shifts the q = 2 surface inward into the plasma, where the rotation
speed is higher.

Figure 14 also shows the critical rotation predicted for the ITER advanced plasmas from
Scenario-4. Transport calculations in Ref. [3] indicate that the ITER plasma rotation speed
is close to the MARS-F computed critical value (less than 2% of the Alfvén speed at the plasma
center). Therefore, ITER plasma rotation may not provide a robust stabilization mechanism for
the RWM.

5. Dynamics of stable RWM

The transfer function, defined in Eq. (2.1), can also be used to describe the dynamics of a
stable plasma, where the RWM is stabilized by fast plasma rotation. The current I f produces
a resonant error field, that can be amplified by the stable plasma [34]. We try to establish how
many poles (modes) are required to adequately represent the plasma response.
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the calculations in Fig. 14 for various equilibria. The rotation profile for
ITER is predicted by transport calculations [3].

We choose a test toroidal equilibrium with the JET-like shape, and compute the plasma re-
sponse with various rotation speeds. The RWM for the chosen equilibrium (with the plasma
pressure βN at the middle between the no-wall and the ideal-wall limits) is stabilized by a critical
rotation ωcr.

rot/ωA = 0.017 at the plasma center. Figure 16 shows the Nyquist plot for the plasma
response for four rotation speeds: ωrot/ωA = 0.0,0.01,0.03,0.06. In the first two cases (solid
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Figure 16. Nyquist plot of transfer functions for both unstable (solid
curves) and stable (dashed curves) plasma response. A test toroidal equilib-
rium with JET-like shape and Cβ = 0.5 is considered. The RWM is unstable
at low plasma rotation and eventually stabilized by a rotation frequency
larger than 0.017ωA at the plasma center.

curves), the plasma is unstable. A minimum of 3 poles are required to reach a good approxima-
tion of the plasma response computed by the MARS-F. The Nyquist curves for the last two cases
(dashed), where the plasma is stable, are very close to circles. Such a response is well described
by a single pole transfer function.

As an example, the plasma response at ωrot/ωA = 0.01 is well approximated by a transfer
function

P(s) =
1.5046+0.1124 j

s−1.3586−0.7745 j
+

1.3205+0.4451 j
s+1.4399+0.1298 j

+
−2.1849−0.5422 j

s+3.6456−0.4760 j
.

Figure 17(a) shows the three poles in the complex plane, together with the growth rates (filled
’o’) of the unstable RWM with increasing the rotation frequency, as well as the damping rates
(’x’) of the stable RWM at no rotation. The unstable pole coincides with the growth rate of the
unstable RWM. The two stable poles lump the contribution from all the stable RWMs. Note that
these two stable poles are located close to the origin, giving a significant contribution to the total
plasma response.

At ωrot/ωA = 0.03, the plasma is stable. We obtain the following function by including two
poles

P(s) =
1.8283−0.1822 j

s+0.5530−0.7080 j
+

−1.2261−0.4807 j
s+6.2110+4.3657 j

.

The poles are plotted in Fig. 17(b), together with the growth/damping rates of the RWM com-
puted by MARS-F. Note that the first stable pole corresponds to the damping rate of the RWM



RUNNING TITLE 15

−5 −4 −3 −2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Re[γτ
w
]

Im
[γ

τ w
]

ω
ROT

/ω
A

 =0.01

ω
rot

/ω
A

=0 

0.01 

0.068 

−7 −6 −5 −4 −3 −2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

Re[γτ
w
]

Im
[γ

τ w
]

ω
ROT

/ω
A

 =0.03

ω
rot

/ω
A

=0 

0.03 

0.068 

Figure 17. Poles (filled ’o’) in the rational function approximation for the
unstable (stable) plasma response at plasma rotation ωrot/ωA = 0.01(0.03).
As for a reference, shown are also growth rates (solid lines) of the unstable
RWM with increasing the rotation frequency, as well as damping rates (’x’)
of the stable RWM at no rotation.

stabilized by the plasma rotation. The second, lumped pole is rather far from the origin, giving a
minor contribution to the total plasma response. [The contribution from the second pole becomes
significant only at higher frequencies out of the frequency range for the RWM.] Therefore, we
conclude that a single pole can give a good approximation for the response of stable plasmas.
This explains why a single mode model works well in interpreting the experimental data from
the RFA experiments [43].

6. Conclusions and discussions

Using the MARS-F code, feedback stabilization of the RWM is simulated for DIII-D plasmas.
Control optimization has been performed based on the computed plasma response models. The
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DIII-D I-coils, with outboard midplane internal poloidal sensors and ideal amplifiers, can pro-
vide stabilization of the RWM up to the ideal wall beta limit. With the DIII-D switching power
amplifiers, the stabilization up to Cβ = 0.7 can be achieved.

Reasonably good quantitative agreement is achieved between MARS-F simulations and ex-
periments on DIII-D and JET, on the critical rotation for the mode stabilization. The computed
q95 scaling is also confirmed by the experimental measurements. The kinetic damping model is
an essential ingredient for achieving the agreement. Calculations for DIII-D plasmas also show
that the critical rotation is sensitive to the rotation profile.

Dynamics of rotationally stabilized plasmas, the so-called resonant field amplification, is well
described by a single mode approximation; whilst a strongly unstable plasma requires a multiple
mode description.

According to the kinetic damping model, the ITER plasma rotation is close to the predicted
critical value, and thus may not provide a robust mechanism for the RWM stabilization in the
advanced Scenario 4. Active control of the mode using feedback is an alternative way to stabilize
the RWM in ITER.

With the present feedback coil design for ITER, it is possible to stabilize the n = 1 RWM for
plasma pressures up to Cβ = 0.8, using optimally tuned PID controllers and optimally compen-
sated internal poloidal sensor signals.

For more realistic prediction of the feedback performance in ITER, other issues such as 3D
wall effects, system noise and the superconducting coil AC losses, need to be addressed.

Acknowledgments

This work was partly conducted under the European Fusion Development Agreement and
partly funded by EURATOM, the Swedish Research Council, the UK Engineering and Physical
Sciences Research Council, and the US Department of Energy. YQL gratefully acknowledge
discussions with Dr. E.J. Strait during preparation of the manuscript.

References

[1] C. Kessel, J. Manickam, G. Rewoldt, and W. M. Tang, Phys. Rev. Lett. 72, 1212(1994).
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