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CONTINUUM GRADIENT BASED SHAPE OPTIMIZATION OF

CONDUCTING SHIELDS FOR POWER FREQUENCY MAGNETIC

FIELD MITIGATION

YUEQIANG LIU, P. SOUSA JR., E. SALINAS, P. CRUZ, J. DAALDER

Abstract. A shape optimization technique for quasi-static field problems has been de-
veloped. The optimization is based on computing the continuum sensitivity function by
solving an adjoint problem. We show how this technique can be used to compute, in a very
efficient way, the optimal shape of a conducting (or ferromagnetic) shielding structure, in
order to minimize the magnetic field in the region of interest. A 2D example of shielding
three-phase underground cables is considered.

1. Introduction

Possible adverse health effects due to power frequency magnetic fields have been an issue of
great concern in the past two decades. Significant amount of research has been carried out on how
to reduce or mitigate the fields [1][2][3][4]. One way is to shield the fields from the sources by
using conducting or ferromagnetic plates. An economical solution is to optimize the shape of the
plates to achieve the maximal field reduction with a minimal amount of shielding material. The
continuum gradient based optimization offers the most efficient way for shape optimization, since
the gradient with respect to all the design parameters is computed with maximum two function
evaluations (one for the direct problem, and the other for the adjoint problem). Minimizing
the number of function evaluations is crucial for solving large (3D) eddy current problems. So
far, the continuum gradient has mostly been used for magnetostatic problems [5][6] [7]. This
paper focuses on shape optimization for quasi-static low frequency problems using continuum
sensitivity computed from the adjoint problems.
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Figure 1. Geometry of the magnetic field shielding using a conductor. A
rectangular initial shape of the conductor is assumed.

2. Problem description

An example of the field mitigation is shown in Fig. 1, where a shielding plate (Ωc) is placed
above a system of three-phase underground cables. The general goal is to reduce the magnetic
field in the region of interest (Ωm). The corresponding eddy current problem is formulated for
thez-component of the magnetic vector potentialAz(x,y)

−∇ ·
1
µ

∇Az+ jωσAz = Jz,(2.1)

whereµ= µc andσ = σc in the shielding plate,µ= µ0 andσ = 0 in other regions (for simplicity
the underground is simulated as free-space),ω = 2π f with f = 50Hz. For an aluminum shielding
plate, we useσc = 3.774e+7S/m andµc = µ0. We assume a uniform distribution of the source
current densityJz in the three-phase cables, withJR

z = J0,JS
z = J0ej120o

,JT
z = J0ej240o

. A total
current of 100A flows in each cable of diameter 0.02m. [The skin depth of aluminum is about
1.16cm at 50Hz.]

We define the objective function as

E = wm
1

2µ0

Z

Ωm

|∇× (Az~z)|
2dΩ+wc

ωσ
2

Z

Ωc

|Az|
2dΩ,(2.2)

where the first term corresponds to the magnetic energy, witha weighting factorwm, in the region
of interestΩm. The second term in Eq. (2.2) is the dissipated energy in the conductorΩc, with a
weightwc.

The general shape of the conductor is defined by the shape of the lower boundary and the
thickness. The former is parameterized as

y1(x) =
N

∑
n=0

dnPn

(

x
x0

)

, −x0 ≤ x≤ x0,(2.3)
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where the basis functionsPn are chosen as Legendre polynomials. [We also tested Fourierfunc-
tions, which sometimes result in a worse convergence.] The thickness (measured perpendicularly
to lower boundary) of the conductor is parameterized using the same basis functions.

h(x) =
M

∑
m=0

gmPm

(

x
x0

)

, −x0 ≤ x≤ x0,(2.4)

The design parameter vector~c is defined as~c ≡ {x0,g0,g1, · · · ,gM,d0,d1, · · · ,dN}. Such a
parameterization allows us to optimize both the shape and position of the shield.

For optimization, we apply linear constraints on the upper boundary of the conductor:y2(x)≤
ymax∀x ∈ [−x0,x0], and on the thickness of the conductor:h(x) ≥ hmin∀x ∈ [−x0,x0]. We also
apply nonlinear constraints on the total area of the conductor: Aconduc≤Amaxand on the curvature
κ(x) of the lower boundary: maxx[κ(x)h(x)] ≤Cmax. The last constraint prevents the optimizer
from producing incorrect shapes for the conductor.

We define two reference cases with symmetric and asymmetric shapes, respectively. For the
asymmetric case,N = 6 in Eq. (2.3). For the symmetric case, only Legendre polynomials
with n = 0,2,4,6 are included in Eq. (2.3). Other parameters for these two cases are fixed as
wm = 1,wc = 0.001,M = 0,ymax= 0.29m,hmin = 0.005m,Amax= 0.01m2,Cmax= 0.95. We also
study non-reference cases by varying parametersN,M,wc,Amax.

3. Computing continuum sensitivity

We give a short derivation of the sensitivity function for the 2D case. Our goal is to compute
the first variation,δE , of the total energyE , with respect to a small normal displacementdξ of
the boundary of the conducting plateΓ ≡ ∂Ωc.

δE = wm
1
µ0

ℜ
{

Z

Ωm

[

∇× (A∗
z~z) ·∇× (δAz~z)

]

dΩ
}

+wcωσℜ
{

Z

Ωc

A∗
z ·δAzdΩ

}

+wc
ωσ
2

Z

Γ
|Az|

2dξdΓ.(3.1)

In Eq. (3.1),ℜ denotes the real part of a complex number,∗ denotes complex conjugate,δAz is
variation of the solutionAz due to variation of the conductor’s shape. Note that the lastterm in
(3.1) is computed straightforward, as soon as we know the solutionAz. We compute the first and
the second terms in Eq. (3.1) by solving Eq. (2.1) and an adjoint problem.

The direct problem (2.1) is solved using finite element formulation

L (Az,Φ) ≡

Z

Ω

1
µ

∇Az ·∇Φ+ jωσAz ·ΦdΩ =

Z

Ωs

Jz ·ΦdΩ,(3.2)

whereΦ is a testing basis function. Note that the operatorL is symmetric with respect to its
arguments. [Assuming that the outer boundary of the computational domainΩ is far away, we
apply the magnetic isolation boundary conditionAz = 0 at∂Ω.] Knowing the solutionAz from
Eq. (3.2), we solve an adjoint equation

L (Aa
z,Φ) = wm

1
µ0

Z

Ωm

∇A∗
z ·∇ΦdΩ+wcωσ

Z

Ωc

A∗
z ·ΦdΩ.(3.3)
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The adjoint equation has exactly the same bilinear operatorL as the direct equation, but with
different source terms. It can be shown, in a similar way as inRef. [8], that the first variation
of our objective function, with respect to the shape displacementdξ, is computed as a surface
integral from solutions to the direct and the adjoint equations (3.2)-(3.3)

δE =

Z

Γ

{

ℜ
[

1
µ0

∇Az ·∇Aa
z−

1
µc

∇Az ·∇Aa
z− jωσAzA

a
z

]

+wc
ωσ
2
|Az|

2
}

dξdΓ.(3.4)

Note that due to the field discontinuity (whenµc 6= µ0), the first two terms in the integrand in
(3.4) should be evaluated separately from the air and the conductor side of the boundaryΓ.
This continuous formulation works for both conducting and ferromagnetic shielding materials.
However, in our numerical example, we consider only a conducting shield withµc = µ0.

For a given parameterization such as (2.3)-(2.4), the gradient with respect to the design pa-
rameters~c is computed using the chain rule

∂E
∂ck

= ∑
i

∂E
∂ξi

∂ξi

∂ck
,(3.5)

where the summation is performed for all (discretized) segments along the conductor boundary
Γ.

In 3D, the continuum sensitivity is derived in a similar way.The final expression reads

δE =
Z

Γ

{

ℜ
[

1
µ0

∇×~A∗ ·∇×~Aa−
1
µc

∇×~A∗ ·∇×~Aa

− jωσ~A ·~Aa
]

+wc
ωσ
2
|~A|2

}

dξdΓ,

where~A and~Aa are solutions to the direct and the adjoint 3D eddy current problems, respectively.
These 3D problems can be efficiently solved using an ungaugedAV formulations with edge
elements [10].

We emphasize that the continuum gradient (3.5) is computed by solving the direct and the
adjoint problems (3.2)-(3.3)once at each iteration, whereas to obtain the gradient by finite dif-
ferencing, we need to solve the direct problem (3.2) as many times as the total number of design
parameters. Furthermore, continuum sensitivity does not introduce numerical errors due to finite
differencing. These errors may make the searching direction not optimal, especially when the
solution is close to the (local) extreme point.

4. Numerical results

Equations (3.2) and (3.3) are solved using the commercial software FEMLAB [9], with qua-
dratic Lagrange finite elements. For optimization, we use the Matlab routine ’fmincon’ which
pursues constrained optimization based on the sequential quadratic programming (SQP) method.

Figure 2 shows the total energy, defined by Eq. (2.2), versus the number of function evalua-
tions, in the optimization process for the reference case with a symmetric shape. The total energy
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Figure 2. Compare the optimization process with continuum gradients
(solid line) and with gradients by finite differencing (dashed line). The total
energy is plotted against the accumulated number of function evaluations at
each iteration.

is reduced by more than 40 times with the optimal shape. For comparison, we also plot results
with the gradient computed by finite differencing. The continuum sensitivity shows clear advan-
tage in terms of computational efficiency. This becomes evenmore pronounced as the number
of design parameters increases.

The optimal shape for the above case is shown in Fig. 3(a). Shown also is the amplitude of the
eddy current density induced in the shield. The optimal shape (and position) of the conductor is
significantly different from the initial one. In fact, the optimal solution tries to push the shield
close to the region of interest, instead of shielding the sources. The linear constraint on the
highest position along they-axis, as well as the nonlinear constraint on the total area of the
conductor, is reached. For a comparison, Fig. 3(b) shows theoptimal shape using the asymmetric
parameterization.

Figure 4 shows the amplitude of the magnetic field along the bottom line of the region of
interest. Four cases are compared – without the shield, withthe initial rectangular shield, with
optimal symmetric shield, and with optimal asymmetric shield. For the two reference cases,
optimal shielding reduces the field by about 20 times compared with the no-shield field, and by
about 5-6 times compared with the field using the initial rectangular shield. The asymmetric
shape yields (in average) slightly better shielding than the symmetric one. On the other hand, the
latter does not depend on the phase configuration (RST vs. RTS) of the source current.

By varying the numberN of basis functions representing the conductor shape (keeping a uni-
form thickness), we find that for the symmetric (asymmetric)case, the first 4 (7) Legendre poly-
nomials give good enough results. Further increasingN does not improve the results.

We also find that the minimum total energy is not sensitive to the parameterM from Eq. (2.4),
as shown by Fig. 5. However, the optimal shape becomes more complicated with increasingM.

In Fig. 6 and 7, we vary the total area of conductorAmax, while keeping four symmetric
basis functions for the shape andM = 0. The optimal shape and the achieved field reduction are
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Figure 3. The optimal shape of the conducting plate for two reference
cases, with symmetric (top) and asymmetric (bottom) parameterization, re-
spectively.

very sensitive to the total area. Decreasing the amount of the shielding material results in more
complicated optimal shape with thinner plate. It is interesting to observe that the minimum total
energy is well approximated byE ∝ A−1.8

max .

5. Conclusion

We have developed a continuum sensitivity based formulation for the shape optimization of
shielding plates, in order to minimize the magnetic field at power frequencies. This formulation
has been tested on a 2D example of reducing the magnetic field from a system of three-phase un-
derground cables. The continuum gradient based optimization is very efficient. For the reference
cases considered here, the optimally shaped conductor reduces the field amplitude by a factor of
20, compared with the no-field field. The optimal asymmetric shape works only slightly better
than the symmetric one. The optimization yields good results with few number of Legendre basis
functions. Increasing the amount of shielding material results in a significant field reduction.
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Figure 4. Amplitude of the magnetic field plotted along the bottom line
of the region of interest (y = 0.3m), for four cases: without the shield, with
initial rectangular-shaped shield, with optimal symmetrically shaped shield,
and with optimal asymmetrically shaped shield.
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boundary of the conductor is 4. The number of parameters for the thickness
M increases from 0 to 3.
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the constraint on the total area. Symmetric parameterization is considered.
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2003–03 Nitsche’s method for coupling non-matching meshes in fluid-structure vibration prob-
lems
Peter Hansbo and Joakim Hermansson

2003–04 Crouzeix–Raviart and Raviart–Thomas elements for acoustic fluid–structure interac-
tion
Joakim Hermansson

2003–05 Smoothing properties and approximation of time derivatives in multistep backward
difference methods for linear parabolic equations
Yubin Yan

2003–06 Postprocessing the finite element method for semilinear parabolic problems
Yubin Yan

2003–07 The finite element method for a linear stochastic parabolic partial differential equa-
tion driven by additive noise
Yubin Yan

2003–08 A finite element method for a nonlinear stochastic parabolicequation
Yubin Yan

2003–09 A finite element method for the simulation of strong and weak discontinuities in elas-
ticity
Anita Hansbo and Peter Hansbo

2003–10 Generalized Green’s functions and the effective domain of influence
Donald Estep, Michael Holst, and Mats G. Larson

2003–11 Adaptive finite element/difference method for inverse elastic scattering waves
Larisa Beilina

2003–12 A Lagrange multiplier method for the finite element solutionof elliptic domain decom-
position problems using non-matching meshes
Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli

2003–13 A reduced P1–discontinuous Galerkin method
R. Becker, E. Burman, P. Hansbo, and M.G. Larson

2003–14 Nitsche’s method combined with space–time finite elements for ALE fluid–structure
interaction problems
Peter Hansbo, Joakim Hermansson, and Thomas Svedberg

2003–15 Stabilized Crouzeix–Raviart element for the Darcy-Stokesproblem
Erik Burman and Peter Hansbo

2003–16 Edge stabilization for the generalized Stokes problem: a continuous interior penalty
method
Erik Burman and Peter Hansbo

2003–17 A conservative flux for the continuous Galerkin method basedon discontinuous en-
richment
Mats G. Larson and A. Jonas Niklasson



12 YUEQIANG LIU, P. SOUSA JR., E. SALINAS, P. CRUZ, J. DAALDER

2003–18 CAD–to–CAE integration through automated model simplification and adaptive mod-
elling
K.Y. Lee, M.A. Price, C.G. Armstrong, M.G. Larson, and K. Samuelsson

2003–19 Multi-adaptive time integration
Anders Logg

2003–20 Adaptive computational methods for parabolic problems
Kenneth Eriksson, Claes Johnson, and Anders Logg

2003–21 The FEniCS project
T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg, and R. Scott

2003–22 Adaptive finite element methods for LES: Computation of the mean drag coefficient in
a turbulent flow around a surface mounted cube using adaptivemesh refinement
Johan Hoffman

2003–23 Adaptive DNS/LES: a new agenda in CFD
Johan Hoffman and Claes Johnson

2003–24 Multiscale convergence and reiterated homogenization of parabolic problem
Anders Holmbom, Nils Svanstedt, and Niklas Wellander

2003–25 On the relationship between some weak compactnesses with different numbers of
scales
Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander

2003–26 A posteriori error estimation in computational inverse scattering
Larisa Beilina and Claes Johnson

2004–01 Computability and adaptivity in CFD
Johan Hoffman och Claes Johnson

2004–02 Interpolation estimates for piecewise smooth functions inone dimension
Anders Logg

2004–03 Estimates of derivatives and jumps across element boundaries for multi-adaptive
Galerkin solutions of ODEs
Anders Logg

2004–04 Multi-adaptive Galerkin methods for ODEs III: Existence and stability
Anders Logg

2004–05 Multi-adaptive Galerkin methods for ODEs IV: A priori errorestimates
Anders Logg

2004–06 A stabilized non-conforming finite element method for incompressible flow
Erik Burman and Peter Hansbo

2004–07 On the uniqueness of weak solutions of Navier-Stokes equations: Remarks on a Clay
Institute prize problem
Johan Hoffman and Claes Johnson

2004–08 A new approach to computational turbulence modeling
Johan Hoffman and Claes Johnson

2004–09 A posteriori error analysis of the boundary penalty method
Kenneth Eriksson, Mats G. Larson, and Axel Mlqvist

2004–10 A posteriori error analysis of stabilized finite element approximations of the helmholtz
equation on unstructured grids
Mats G. Larson and Axel Mlqvist

2004–11 Adaptive variational multiscale methods based on a posteriori error estimation
Mats G. Larson and Axel Mlqvist

2004–12 Multi-adaptive Galerkin methods for ODEs V: Stiff problems
Johan Jansson and Anders Logg



2004–13 Algorithms for multi-adaptive time-stepping
Johan Jansson and Anders Logg

2004–14 Simulation of mechanical systems with individual time steps
Johan Jansson and Anders Logg

2004–15 Computational modeling of dynamical systems
Johan Jansson, Claes Johnson, and Anders Logg

2004–16 Adaptive variational multiscale methods based on a posteriori error estimation: Du-
ality techniques for elliptic problems
Mats G. Larson and Axel Mlqvist

2004–17 Ultraconvergence of an interpolated finite element method for some fourth-order el-
liptic problems
Andrey B. Andreev and Milena R. Racheva

2004–18 Adaptive variational multiscale methods based on a posteriori error estimation: en-
ergy norm estimates for elliptic problems
Mats G. Larson and Axel Mlqvist

2004–19 Stabilized Lagrange multiplier methods for elastic contact with friction
Per Heintz and Peter Hansbo

2005–01 A posteriori error estimates for mixed finite element approximations of elliptic prob-
lems
Mats G. Larson and Axel Mlqvist

2005–02 On the numerical modeling of quasi-static crack growth in linear elastic fracture me-
chanics
Per Heintz

2005–03 Irreversibility in reversible systems I: the compressibleEuler equations in 1d
Johan Hoffman and Claes Johnson

2005–04 Irreversibility in reversible systems II: the incompressible Euler equations
Johan Hoffman and Claes Johnson

2005–05 A Compiler for Variational Forms
Robert C. Kirby and Anders Logg

2005–06 Topological optimization of the evaluation of finite element matrices
Robert C. Kirby, Anders Logg, L. Ridgway Scott and Andy R. Terrel

2005–07 Modeling of resistive wall mode and its control in experiments and ITER
Yueqiang Liu, M.S. Chu, A.M. Garofalo, Y. Gribov, M. Gryaznevich, T.C. Hender,
D.F. Howell, R.J. La Haye, M. Okabayashi, S.D. Pinches, H. Reimerdes, P. de Vries,
and EFDA-JET contributors

2005–08 Continuum gradient based shape optimization of conductingshields for power fre-
quency magnetic field mitigation
Yueqiang Liu, P. Sousa Jr., E. Salinas, P. Cruz and J. Daalder

These preprints can be obtained from

www.phi.chalmers.se/preprints


