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CONTINUUM GRADIENT BASED SHAPE OPTIMIZATION OF
CONDUCTING SHIELDS FOR POWER FREQUENCY MAGNETIC
FIELD MITIGATION

YUEQIANG LIU, P. SOUSA JR., E. SALINAS, P. CRUZ, J. DAALDER

ABSTRACT. A shape optimization technique for quasi-static field problems has been de-
veloped. The optimization is based on computing the continuum sensitivity function by
solving an adjoint problem. We show how this technique can be used to compute, in a very
efficient way, the optimal shape of a conducting (or ferromagnetic) shielding structure, in
order to minimize the magnetic field in the region of interest. A 2D example of shielding
three-phase underground cables is considered.

1. INTRODUCTION

Possible adverse health effects due to power frequency etiadields have been an issue of
great concern in the past two decades. Significant amouaseérch has been carried out on how
to reduce or mitigate the fields [1][2][3][4]. One way is taedd the fields from the sources by
using conducting or ferromagnetic plates. An economidaitem is to optimize the shape of the
plates to achieve the maximal field reduction with a mininmbant of shielding material. The
continuum gradient based optimization offers the mostiefitavay for shape optimization, since
the gradient with respect to all the design parameters igpated with maximum two function
evaluations (one for the direct problem, and the other ferdtjoint problem). Minimizing
the number of function evaluations is crucial for solvingge (3D) eddy current problems. So
far, the continuum gradient has mostly been used for magtagio problems [5][6] [7]. This
paper focuses on shape optimization for quasi-static leguency problems using continuum
sensitivity computed from the adjoint problems.
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FIGURE 1. Geometry of the magnetic field shielding using a conductor. A
rectangular initial shape of the conductor is assumed.

2. PROBLEM DESCRIPTION

An example of the field mitigation is shown in Fig. 1, where a&khng plate Q) is placed
above a system of three-phase underground cables. Theaygpat is to reduce the magnetic
field in the region of interest},). The corresponding eddy current problem is formulated for
the z-component of the magnetic vector potenfa(x, y)

1 .
(21) —D‘ﬁDAz+JmAZ:Jz,

wherepy = . ando = o¢ in the shielding platgl= o ando = 0 in other regions (for simplicity
the underground is simulated as free-spawe}, 21tf with f = 50Hz. For an aluminum shielding
plate, we use&; = 3.774e+ 7S/m andu; = o. We assume a uniform distribution of the source
current densityl; in the three-phase cables, willf = Jy, 5 = Joei12® JT = Jyei24®. A total
current of 100A flows in each cable of diameter 0.02m. [Thea sldpth of aluminum is about
1.16cm at 50Hz.]

We define the objective function as

1
(2.2) T = W= / 10 % (A2)|2dQ + we X / IA,2dQ,
2P0 Jon 2 Ja.

where the first term corresponds to the magnetic energyamitbighting factow,, in the region
of interestQp,. The second term in EqQ. (2.2) is the dissipated energy indhductorQ., with a
weightwe.

The general shape of the conductor is defined by the shapes dbwrer boundary and the
thickness. The former is parameterized as

(2.3) yi(x) = ngodnpn <%) ) —Xo < X< Xo,
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where the basis functiort®, are chosen as Legendre polynomials. [We also tested Fdunier
tions, which sometimes result in a worse convergence.] fiickriess (measured perpendicularly
to lower boundary) of the conductor is parameterized usiegsme basis functions.

X0

The design parameter vectoris defined a< = {x0,90,91, - ,0m,do,d1,--- ,dn}. Such a
parameterization allows us to optimize both the shape astipo of the shield.

For optimization, we apply linear constraints on the uppemulary of the conductoy,(x) <
Ymax¥X € [—Xo,Xo], and on the thickness of the conductb(x) > hyinvx € [—Xo,X%0]. We also
apply nonlinear constraints on the total area of the cormutudtonguc< Amaxand on the curvature
K(x) of the lower boundary: mak(x)h(x)] < Cmnax. The last constraint prevents the optimizer
from producing incorrect shapes for the conductor.

We define two reference cases with symmetric and asymmaétajpes, respectively. For the
asymmetric casel = 6 in Eg. (2.3). For the symmetric case, only Legendre polyiatsm
with n=0,2,4,6 are included in Eq. (2.3). Other parameters for these twe<are fixed as
Wm =1, W =0.00L M = 0, Ymax= 0.29m hnjn = 0.005m Amax= 0.01m?, Cax= 0.95. We also
study non-reference cases by varying parameéeks, w;, Amax.

M
(2.4) 9= aofn (5 ). osx<
m=0

3. COMPUTING CONTINUUM SENSITIVITY

We give a short derivation of the sensitivity function foetBD case. Our goal is to compute
the first variationdz, of the total energye, with respect to a small normal displacemd#gtof
the boundary of the conducting pldie= 0Qc.

OE :wmim {/Qm [Ox (A;2)-0x (3A2)] dQ}

(3.1) S WewoT] { / A;esAde}erc% / |A,[2dEdr.
Qc r

In Eqg. (3.1),[0 denotes the real part of a complex numbBetenotes complex conjugat®?; is
variation of the solutio\; due to variation of the conductor’s shape. Note that thetéast in
(3.1) is computed straightforward, as soon as we know theisalA;. We compute the first and
the second terms in Eq. (3.1) by solving Eq. (2.1) and an atjbblem.

The direct problem (2.1) is solved using finite element faatian

1
(3.2) L(AZ,GD)E/ ﬁDAZ-anJrjwoAZ.q:dQ:/ 3,-0dQ,
Q Qs

where® is a testing basis function. Note that the operatois symmetric with respect to its
arguments. [Assuming that the outer boundary of the contipu domainQ is far away, we
apply the magnetic isolation boundary conditish= 0 atdQ.] Knowing the solutiorA; from
Eqg. (3.2), we solve an adjoint equation

1
(3.3) L (AR D)= wine | DA: - OddQ +wcwo/QA; - ddQ.
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The adjoint equation has exactly the same bilinear operatas the direct equation, but with
different source terms. It can be shown, in a similar way aReh [8], that the first variation
of our objective function, with respect to the shape disptaentd¢, is computed as a surface
integral from solutions to the direct and the adjoint equadi(3.2)-(3.3)

1 1 -
r Ho He

wo
(3.4) +W07|AZ|2} ddr.

Note that due to the field discontinuity (Wh@g # o), the first two terms in the integrand in
(3.4) should be evaluated separately from the air and theustar side of the boundary.
This continuous formulation works for both conducting arddmagnetic shielding materials.
However, in our numerical example, we consider only a cotidgshield withp: = Lo.

For a given parameterization such as (2.3)-(2.4), the graidvith respect to the design pa-
rameter< is computed using the chain rule

0E < O0F 0§
(35) 3~ 208 3o,

where the summation is performed for all (discretized) sagmalong the conductor boundary
r.
In 3D, the continuum sensitivity is derived in a similar wae final expression reads

1 - - 1 — —
6%2/{D {—DXA*-DXAa——DXA*-DXAa
r Ho He

~ juoA. A7 +WC%\5\|2}dEdF,

whereA andA? are solutions to the direct and the adjoint 3D eddy curresttlems, respectively.
These 3D problems can be efficiently solved using an unga@dyefbrmulations with edge
elements [10].

We emphasize that the continuum gradient (3.5) is compuyesblving the direct and the
adjoint problems (3.2)-(3.3)nce at each iteration, whereas to obtain the gradient by finite di
ferencing, we need to solve the direct problem (3.2) as mamgstas the total number of design
parameters. Furthermore, continuum sensitivity doesmaiduce numerical errors due to finite
differencing. These errors may make the searching dinectai optimal, especially when the
solution is close to the (local) extreme point.

4. NUMERICAL RESULTS

Equations (3.2) and (3.3) are solved using the commercialrare FEMLAB [9], with qua-
dratic Lagrange finite elements. For optimization, we useMatlab routine 'fmincon’ which
pursues constrained optimization based on the sequenadrgtic programming (SQP) method.

Figure 2 shows the total energy, defined by Eq. (2.2), vetsasitimber of function evalua-
tions, in the optimization process for the reference caie asymmetric shape. The total energy
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FiGURE 2. Compare the optimization process with continuum gradients

(solid line) and with gradients by finite differencing (dashed line). The total

energy is plotted against the accumulated number of function evaluations at
each iteration.

is reduced by more than 40 times with the optimal shape. Fmpenison, we also plot results

with the gradient computed by finite differencing. The coatim sensitivity shows clear advan-
tage in terms of computational efficiency. This becomes ewere pronounced as the number
of design parameters increases.

The optimal shape for the above case is shown in Fig. 3(aw&htso is the amplitude of the
eddy current density induced in the shield. The optimal si{apd position) of the conductor is
significantly different from the initial one. In fact, the tpal solution tries to push the shield
close to the region of interest, instead of shielding thers®a The linear constraint on the
highest position along thg-axis, as well as the nonlinear constraint on the total afehe
conductor, is reached. For a comparison, Fig. 3(b) showsgtimal shape using the asymmetric
parameterization.

Figure 4 shows the amplitude of the magnetic field along th&boline of the region of
interest. Four cases are compared — without the shield, tivtlnitial rectangular shield, with
optimal symmetric shield, and with optimal asymmetric &hieFor the two reference cases,
optimal shielding reduces the field by about 20 times contpatith the no-shield field, and by
about 5-6 times compared with the field using the initial @agular shield. The asymmetric
shape yields (in average) slightly better shielding tha&stymmetric one. On the other hand, the
latter does not depend on the phase configuration (RST vs) &TBe source current.

By varying the numbeN of basis functions representing the conductor shape (kgepuni-
form thickness), we find that for the symmetric (asymmetage, the first 4 (7) Legendre poly-
nomials give good enough results. Further increadlmpes not improve the results.

We also find that the minimum total energy is not sensitivéeopgarametel from Eq. (2.4),
as shown by Fig. 5. However, the optimal shape becomes morplmated with increasinyl.

In Fig. 6 and 7, we vary the total area of conduct@tax, While keeping four symmetric
basis functions for the shape aWd= 0. The optimal shape and the achieved field reduction are
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FI1GURE 3. The optimal shape of the conducting plate for two reference
cases, with symmetric (top) and asymmetric (bottom) parameterization, re-
spectively.

very sensitive to the total area. Decreasing the amounteo$hirelding material results in more
complicated optimal shape with thinner plate. It is intéregsto observe that the minimum total
energy is well approximated by 0 A L8,

5. CONCLUSION

We have developed a continuum sensitivity based formuidbo the shape optimization of
shielding plates, in order to minimize the magnetic field@awer frequencies. This formulation
has been tested on a 2D example of reducing the magneticriogtdef system of three-phase un-
derground cables. The continuum gradient based optiroizativery efficient. For the reference
cases considered here, the optimally shaped conductaresdoe field amplitude by a factor of
20, compared with the no-field field. The optimal asymmethniape works only slightly better
than the symmetric one. The optimization yields good reswith few number of Legendre basis
functions. Increasing the amount of shielding materialitesn a significant field reduction.



RUNNING TITLE 7

y=0.3m

-

10

B [uT]

opt.shape(sym.)

opt.shape(asym.)\"\ -

~ -

-0.2 —0.‘15 —0‘.1 —0.65 f) ! OA‘OS Ojl 0}15 0.2
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