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PIECEWISE DIVERGENCE FREE DISCONTINUOUS GALERKIN

METHODS

PETER HANSBO AND MATS G. LARSON

Abstract. In this paper we consider different possibilities of using divergence free discon-
tinuous Galerkin methods for Stokes in order to eliminate the pressure from the discrete
problem. We focus on three different approaches: one based on a C0 approximation of
the the stream function in two dimensions (the vector potential in three dimensions),
one based on the nonconforming Morley element (which corresponds to a divergence free
nonconforming Crouzeix-Raviart approximation of the velocities), and one fully discon-
tinuous Galerkin method with a stabilization of the pressure that allows the edgewise
elimination of the pressure variable before solving the discrete system. We limit the anal-
ysis in the stream function case to two spatial dimensions, while the analysis of the fully
discontinuous approach is valid also in three dimensions.

1. Introduction

In the finite element approximation of the Stokes model of incompressible flow, the
incompressibility condition is usually imposed weakly by means of a Lagrange multiplier
whose physical interpretation is that of the pressure in the fluid. Another option that
has sometimes been proposed, e.g., by Thomasset [13] and by Hecht [9], is to directly
construct divergence free bases, or, alternatively, indirectly by use a of stream function
approach, which however leads to a higher order differential equation to be solved. A recent
alternative to these approaches, using a hybridization technique, was given by Cockburn
and Gopalakrishnan [4, 5].

If we directly apply the discontinuous Galerkin (DG) method to the Stokes system using
an elementwise divergence free ansatz, we do not automatically get rid of the pressure since
it is still needed to enforce normal continuity of the velocities. Our aim in this paper is to
consider some different DG approaches that allow the complete elimination of the pressure
from the system. We will consider three different ways of achieving this:

• To use a penalty method for controlling the jump in normal velocity. We then
relate the strength of the penalty parameter so that the consistency error matches
the discretization error.
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• To use the curl of a conforming basis as a divergence free basis. This relates to the
s tream function approach of Baker and Jureidini [1] but with the difference that
we follow the approach of Johnson and Saranen [10] in formulating the problem
in physical variables. As we shall see, the price for avoiding the direct use of the
stream function is a consistency error on the boundary that we again control by
penalty.

• To use the curl of the nonconforming Morley basis [11] as a divergence free basis
(which will reside in the nonconforming Crouzeix-Raviart space [6]). This is related
to the approach of [13], but without the explicit construction of the basis. The
consistency error on the boundary is again handled by penalty.

In Section 2 we formulate the Stokes problem, define the finite element spaces, and for-
mulate the Discontinuous Galerkin methods; in Section 3 we state and prove the basic
analytical results including an error estimate in the energy norm; in Section 4 we show
some numerical results for a smooth and a nonsmooth test problem.

2. Continuous and discrete problems

2.1. The continuous problem. We consider the Stokes problem: Find the velocity u =
(ui)

d
i=1

, with d = 2 or d = 3, and the pressure p such that

−∆u + ∇p = f in Ω,(2.1)

∇ · u = 0 in Ω,(2.2)

u = g on ∂Ω,(2.3)

where f is a given load, g is the given boundary velocity satisfying (n · g, 1)∂Ω = 0, and Ω
is a simply connected domain in Rd with boundary ∂Ω. When f ∈ H−1(Ω), g ∈ H1/2(Γ)
there exists a unique solution (u, p) ∈ H1(Ω) × L2

0(Ω), see [7].
Next we define the curl operator ∇× as follows

∇× ϕ :=

(

∂ϕ

∂x2

,−
∂ϕ

∂x1

)

for d = 2,(2.4)

∇× ϕ :=

(

∂ϕ3

∂x2

−
∂ϕ2

∂x3

,
∂ϕ1

∂x3

−
∂ϕ3

∂x1

,
∂ϕ2

∂x1

−
∂ϕ1

∂x2

)

for d = 3.(2.5)

Since ∇ ·u = 0 there is a unique function ϕ ∈ H(∇×,Ω) = {v ∈ L2(Ω) : ∇× v ∈ L2(Ω)}
such that

(2.6) u = ∇× ϕ,

where ϕ satisfies ∇ · ϕ = 0 and the following boundary conditions

ϕ = 0 for d = 2,(2.7)

n × ϕ = 0 for d = 3.(2.8)

see [7] for further details.
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2.2. Finite element spaces. Consider a subdivision of Ω into a geometrically conforming
partitioning T = {T} of Ω into shape regular triangles in two dimensions and tetrahedra
in three dimensions. On this subdivision we introduce the finite element space of discon-
tinuous piecewise polynomials of degree p+ 1:

V h = {v : v|T ∈ P p+1(T ), ∀T ∈ T },

then we let the stream function space Sh satisfy

C(Ω) ∩ V h ⊂ Sh ⊂ V h, for d = 2,(2.9)

[C(Ω) ∩ V h]3 ⊂ Sh ⊂ [V h]3, for d = 3 ,(2.10)

and, finally, we define the velocity space by taking the elementwise curl of functions in the
stream function space

W h = {v : v|T = ∇× ϕ, ϕ ∈ Sh}, for d = 2,(2.11)

W h = {v : v|T = ∇× ϕ, ϕ ∈ Sh}, for d = 3 .(2.12)

We note that the velocity space consists of piecewise divergence free polynomials. When
Sh is small we also have normal continuity of the velocity field, which is useful when
extending the method from Stokes to Navier–Stokes equations, cf. [10].

In three dimensions, the use of a stream function is less attractive, due to it being defined
only up to gradients of scalar fields (harmonic fields if an Euclidean gauge is applied). Thus
we limit the analysis to the two-dimensional case for the stream function approach, while
the analysis for the fully discontinuous ansatz holds without modifications also in three
dimensions.

2.3. The discrete problem. To define the finite element method, let ∂TI denote the faces
of the element T neighboring to other elements, ∂TD the faces on ∂Ω, and let h denote the
diameter of T . Further, for x ∈ ∂TI , let [U ] = U+ −U− and 〈U〉 = (U+ + U−)/2, where

U± = lim
ε↓0

U(x ∓ εn),

i.e., U+ belongs to T and U− to its neighbor. For x ∈ ∂TD, we let [U ] = 〈U〉 = U+. On
each face E = ∂T+ ∩ ∂T−, the mesh parameter h is defined by

(2.13) h :=
m(T+) +m(T−)

2m(E)
,

where m(·) denotes the appropriate Lebesgue measure. To each edge E, we associate a
fixed normal vector n := nT+.

The discontinuous Galerkin method then reads: find U ∈ W h such that

(2.14) ah(U , v) = lh(v),
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for all v ∈ W h, where

ah(U , v) =
∑

T∈T

(∇U ,∇v)T(2.15)

− (〈n · ∇U〉, [v])∂TI
− (n · ∇U , v)∂TD

− ([U ], 〈n · ∇v〉)∂TI
− (U ,n · ∇v)∂TD

+
1

2
(
β

h
[U ] , [v])∂TI

+ (
β

h
U , v)∂TD

+
1

2
(
γ

h3
[n · U ] , [n · v])∂TI

+ (
γ

h3
n · U ,n · v)∂TD

,

(2.16) lh(v) =
∑

T∈T

(f , v)T − (g,n · ∇v)∂TD
+ (

β

h
g, v)∂TD

+ (
γ

h3
n · g,n · v)∂TD

,

with (v, w) =
∫

ω
vw, (v,w)ω =

∑d
i=1

(vi, wi), and (∇U ,∇v)T =
∑d

i=1
(∇Ui,∇vi)T .

Remark 1. The penalty term on the normal jumps can be motivated as follows. Let us
define the following nonstandard discrete space for the pressures:

Qh = {q ∈ L2(E) : q|E ∈ P p(E)},

the bilinear form

bh(p, v) :=
∑

T

(

1

2
(p, [n · v])∂T I

+ (p,n · v)∂T∩∂Ω

)

and consider the following consistent finite element method: find (U , P ) ∈ W h ×Qh such
that

(2.17) ah(U , v) − bh(P, v) + bh(q,U) = Lh(v), ∀(v, q) ∈ W h ×Qh.

The stability of this method is an issue in itself, but we now consider modifying the discrete
problem by adding an inconsistent stabilizing term to obtain the problem of finding (U , P ) ∈
W h ×Qh such that

(2.18) ah(U , v) − bh(P, v) + bh(q,U) −
∑

E∈E

h3(P, q)E = Lh(v), ∀(v, q) ∈ W h ×Qh.

This allows for the direct elimination of the pressure; since [n ·U ]|E ∈ P p(E) we immedi-
ately obtain

P |E := h−3[n · U ],

and we regain the method (2.14).
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3. Error estimate

The method (2.14) is not consistent in general. Instead we may use Green’s formula to
derive the following modified orthogonality relation.

Proposition 1. Let u, p be the solution to (2.1) and U the solution to (2.14). Then the
following identity holds

ah(u − U , v) =
∑

T∈T

(1

2
(p, [n · v])∂TI

+ (p,n · v)∂TD

)

,

for all v ∈ W h and for u and p sufficiently regular.

We thus note that the method is consistent when the functions in W h have continuous
normal components. Consequently, the stream function approach with a C0 approximation
is consistent if we apply the boundary conditions strongly on the stream function itself.
This is indeed possible, and not too technically difficult in two dimensions even for multi-
connected domains, cf. the discussion in [12]. Here we take the alternative approach
of imposing prescribed velocities weakly on the boundary, which is technically easier to
implement. The price to pay is that we must then retain the O(h−3) penalty term on
the boundary. We first consider the cases of the full DG and of the C0 stream function
approximation. The nonconforming stream function approach is discussed in Remark 2.

We shall measure the error in the following mesh dependent norm

(3.1)

|‖v‖|2 =
∑

T∈T

‖∇v‖2
T + ‖h1/2〈n · ∇v〉‖2

∂TI
+ ‖h1/2n · ∇v‖2

∂TD

+‖h−1/2[v]‖2
∂TI

+ ‖h−1/2[v]‖2
T∂D

+‖h−3/2[n · v]‖2
∂TI

+ ‖h−3/2n · v‖2
∂TD

,

where ‖w‖2
ω =

∫

ω
w2 is the L2(ω)-norm. With respect to the norm (3.1) we have the

following coercivity and continuity result which can be proved using standard arguments,
see [8] for details.

Proposition 2. If β is large enough and γ ≥ 0 then the bilinear form is coercive, i.e.,

(3.2) m|‖v‖|2 ≤ ah (v, v) for all v ∈ W h,

for some constant m > 0 independent of the meshsize h. Furthermore, we the bilinear form
is continuous

(3.3) ah (v,w) ≤ |‖v‖| |‖w‖| for all v,w ∈
[

H1(Ω)
]d

+ W h.

The exact convergence properties will depend on whether or not the approximation
contains the Brezzi-Douglas-Marini space BDM0 of full polynomial approximations with
normal continuity and zero elementwise divergence (cf. [2] for the definition of BDM).

Proposition 3. The following a priori error estimates hold:
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• If ϕ ∈ H2+α then

(3.4) |‖u − U‖| ≤ C (hα|ϕ|2+α + h‖p‖1) ,

with 0 ≤ α ≤ p− 1, if ϕ ∈ H2+α.
• If BDM0 ⊆ W h and u ∈ H1+α then

(3.5) |‖u − U‖| ≤ C (hα|u|1+α + h‖p‖1) ,

with 0 ≤ α ≤ p.

Proof. We first split the error u−U = (u−V )+(V −U ), where V an arbitrary function
in W h. Using the triangle inequality we have

(3.6) |‖u − U‖| = |‖u − V ‖| + |‖V − U‖|.

Here the first term is an interpolation error term. To estimate the second term we employ
the coercivity estimate (3.2) in Proposition 2, followed by the Galerkin orthogonality in
Proposition 1, to get

m|‖V − U‖|2 ≤ ah(V − U ,V − U )(3.7)

≤ ah(V − u,V − U) + ah(u − U ,V − U )(3.8)

≤ ah(V − u,V − U)(3.9)

+
∑

T∈T

1

2
(p, [n · (V − U)])∂TI

+ (p,n · (V − U ))∂TD
.

We proceed with estimates of the two terms on the right hand side beginning with the
second term. Using the Cauchy Schwartz inequality followed by a trace inequality we
obtain

(3.10)

(p, [n · (V − U)])∂TI
≤ ‖p‖∂TI

‖[n · (V − U)]‖∂TI

≤ C
(

h−1‖p‖2
T + h‖∇p‖2

T

)1/2

‖[n · (V − U)]‖∂TI

≤
C2h3

ε

(

h−1‖p‖2
T + h‖∇p‖2

T

)

+
ε

4h3
‖[n · (V − U)]‖2

∂TI
,

where ε is at our disposal. Now we can use kickback on the last term and estimate the
first term as follows:

(3.11)
∑

T∈T

h2(‖p‖2
T + h2‖∇p‖2

T ) ≤ h2‖p‖2
1.

The boundary term is handled in the same way. Next, we turn to the first term on the
right hand side of (3.9). Using standard arguments we have

(3.12) ah(V − u,V − U) ≤
C

ε
|‖V − u‖|2 +

ε

4
|‖V − U‖|2,

where we can use kickback on the last term. Collecting the estimates (3.6), (3.9), (3.10),
and (3.12) we arrive at

(3.13) |‖u − U‖|2 ≤ C(|‖u − V ‖|2 + h2‖p‖1),
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and it thus remains to estimate |‖u−V ‖|. Using the trace inequality ‖w‖∂T ≤ C‖w‖T,1/2,
we obtain the following estimate

|‖u − V ‖|2 ≤ C
∑

T∈T

‖u − V ‖2
1,T + h‖u − V ‖2

T,3/2 + h−1‖u − V ‖2
T,1/2(3.14)

+ h−3‖[n · (u − V )]‖2
∂TI ,1/2 + h−3‖n · (u − V )‖2

∂TD,1/2.

To prove the first estimate (3.4) we choose V = ∇ × πSZϕ, with πSZ the standard Scott-
Zhang interpolation operator (cf. [3]) modified so that the boundary conditions (2.7) or
(2.8) hold depending on the dimension. From the fact that the interpolant satisfies the
boundary conditions it follows that n · ∇SZϕ = 0 as well and thus the contribution from
the normal trace vanishes at the boundary. Furthermore, the continuity of πSZϕ implies
that ∇ × πSZϕ has a continuous normal component. Using the standard interpolation
error estimates we then get

(3.15) |‖∇ × ϕ −∇× πSZϕ‖| ≤ Chα|ϕ|2+α,

which together with (3.13) proves (3.4). When W h is large enough, so that BDM0 ⊆ W h

we can instead chose V = πBDMu. Starting from (3.14) and using standard interpolation
error estimates, see [2], together with the fact that the BDM interpolant also has a vanishing
normal trace we obtain the estimate

(3.16) |‖u − πBDMu‖| ≤ Chα|u|1+α,

which proves (3.5). �

Remark 2. For the nonconforming Morley approximation of the stream function, the norm
in which the problem is analyzed must be modified, since it is not possible to obtain full
normal continuity on the boundary, and we face the difficulty of the interpolation in the
terms

∑

T

‖h−3/2[n · u]‖2
∂TI

+
∑

T

‖h−3/2n · u‖2
∂TD

,

which cannot be done without destroying the error estimate. For the internal faces, the
corresponding term can be dropped from the norm. Since the curl of the Morley approxi-
mation resides in the Crouzeix-Raviart space (cf. Brenner [3]), the velocities will have zero
mean jump on the edges of the elements, and we can modify (3.10) to

(3.17)

(p, [n · (V − U)])∂TI
= (p− π0p, [n · (V − U)])∂TI

≤ C‖h1/2(p− π0p)‖∂TI
‖h−1/2[V − U ]‖∂TI

≤ Ch‖∇p‖T‖h
−1/2[V − U ]‖∂TI

≤
C2h

2ε
‖∇p‖2

T +
ε

2
‖h−1/2[V − U ]‖2

∂TI
,

where π0 is the projection onto constants on ∂T and ε is at our disposal. We can then
proceed as above without the stronger interior penalty term. On the boundary, we must
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instead replace the strong penalty by a weakened version: we modify the penalty terms in
(2.15) and (2.16) to

(
γ

h3
π0n · U , π0n · v)∂TD

and (
γ

h3
π0n · g, π0n · v)∂TD

,

respectively, and define

(3.18)
|‖U‖|2∗ :=

∑

T∈T

‖∇U‖2
T + ‖h1/2〈n · ∇U〉‖2

∂TI
+ ‖h1/2n · ∇U‖2

∂TD

+‖h−1/2[U ]‖2
∂TI

+ ‖h−1/2[U ]‖2
T∂D

+ ‖h−3/2π0n · U‖2
∂TD

,

for which Proposition 2 still holds. It is then straightforward to find a Morley interpolant
such that the interpolation error in the last term vanishes and, using the interpolation
estimates from [11], we obtain the following a priori estimate: If ϕ ∈ H 4(Ω), then

(3.19) |‖u − U‖|∗ ≤ Ch (‖ϕ‖3 + h‖ϕ‖4 + ‖p‖1) .

4. Numerical examples

In this section we give some numerical examples in two dimensions. In all examples
we used γ = 10. The stream function is determined up to a constant, which was set by
enforcing zero mean value for the stream function.

To give an impression of the vector bases implied by the P 2 and the Morley approxi-
mations, we give, in Figs. 1, 2, the appearance of a corner (lower left corner) and edge
(bottom edge) basis function. Note the pure shear and curl appearance of the vector basis.

Figure 1. Implied basis vectors for a corner (left) and an edge (right) for
the P 2–approximation.
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Figure 2. Implied basis vectors for a corner (left) and an edge (right) for
the Morley approximation.

4.1. A smooth problem. We consider the unit square with exact flow solution given by
u = (20 x y3, 5 x4 − 5 y4). The problem is driven by boundary data, f = 0. Isolines of the
corresponding stream function are given in Fig. 3

Figure 3. Smooth stream function.

In Figure 4 we compare the convergence obtained with the three methods in L2(Ω) and
in the broken H1–norm. We note that the methods give the same optimal behaviour and
are rather close in accuracy on a fixed mesh.
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Figure 4. Convergence for the smooth problem.

4.2. A non-smooth problem. We consider a problem on an L-shaped domain (from
Verfürth [14]) with exact solution given, in polar coordinates, by

u(r, φ) = rλ

[

(1 + λ) sin(φ)ψ(φ) + cos(φ)ψ′(φ)
sin(φ)ψ′(φ) − (1 + λ) cos(φ)ψ(φ)

]

,

where
ψ(φ) = sin((1 + λ)φ) cos(λω)/(1 + λ) − cos((1 + λ)φ)

− sin((1 − λ)φ) cos(λω)/(1− λ) + cos((1 − λ)φ),

ω = 3π/2 and λ is the smallest positive root to

sin(λω) + λ sin(ω) = 0,

yielding λ ≈ 0.54448373678246. Again, the problem is driven by boundary data, f = 0.
For this problem u 6∈ H2(Ω), and we expect a corresponding decrease in convergence. In
Fig. 5 we shw the isolines of the corresponding stream function, and in Fig. ?? we show
the L2(Ω)–convergence of the different methods. Note that we now obtain only first order
convergence due to the singularity at the reentrant corner.

5. Concluding remarks

We have analyzed discontinuous Galerkin methods for the incompressible Stokes system
using stream functions, where normal continuity of the ansatz is guaranteed, and a fully
discontinuous approach, where normal continuity must be enforced using a stronger penalty
in order to control the consistency error. Optimal convergence is observed for all the
proposed methods.

In the case of a stream function approach, it is well known that the condition number
is increased to O(h−4) as compared to O(h−2) for the standard FEM applied to second
order partial differential equations. Interestingly, this effect cannot be avoided in the DG
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Figure 5. Stream function in the non-smooth case.

Figure 6. Convergence in a non-smooth case.

setting: the penalty necessary to control the consistency error for a fully discontinuous
piecewise linear ansatz in order to retain the convergence properties of linear elements
is of O(h−3) which corresponds to a condition number of O(h−4) for the system matrix.
Thus, nothing can be gained with respect to conditioning. On the other hand, the fully
discontinuous approach is much easier to implement than the stream function approach in
three dimensions.
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