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3 lectures

1. Adaptive FE methods for incompr. fluid flow

2. Hydrodynamic stability

3. Subgrid modeling & multi adaptivity
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Subgrid modeling& Multi adaptivity

� General setting� A posteriori error analysis - balancing
numerical and modeling errors� Dynamic large eddy simulations (DLES)� Previous results on scale similarity subgrid
modeling for convection-diffusion-reaction
problems� Multi adaptivity
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Subgrid modeling

Turbulent flow is pointwise uncomputable on
todays computers for most flows because of

1. unresolvable small-scale features

The finest scales in the flow are finer than the

finest possible computational mesh (

� �� � �

?), so

the computed solution cannot be pointwise

close to the exact solution �
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Subgrid modeling

Turbulent flow is pointwise uncomputable on
todays computers for most flows because of

1. unresolvable small-scale features

Because of the non linearity of NSE, the unre-

solved scales also influence the resolved scales
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Subgrid modeling

Turbulent flow is pointwise uncomputable on
todays computers for most flows because of

1. unresolvable small-scale features

2. large stability factors

Pointwise quantities corresponds to local data in

the linearized dual problem, giving large stability

factors
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Subgrid modeling

Turbulent flow is pointwise uncomputable on
todays computers for most flows because of

1. unresolvable small-scale features

2. large stability factors

Linearizing the dual problem at the irregular tur-

bulent flow � and the computed approximation

gives large stability factors
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Subgrid modeling

A posteriori error estimation by duality of
pointwise quantities in turbulent flow is hard on
todays computers since

1. cannot be pointwise close to � we get a
large linearization error in the dual problem
when we replace � by

2. the dual problem has as fine scales as the
exact solution � itself, making it expensive to
solve
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General setting

Mathematical model:

� � � 	 (MM)
Pertubed problem:


 � 
 � � 	 

(PP)

� � 
 � = data/modeling error
 � � = discretization error

Total error = � � 	 � � 
 � 
 � �
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General setting

Mathematical model:

� � � 	 (MM)
Pertubed problem:


 � 
 � � 	 

(PP)

If

�

is the smallest computationally resolvable

scale and the exact solution � contains smaller

scales than

�

, then a pointwise accurate approxi-

mation of � is impossible.
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General setting

Mathematical model:

� � � 	 (MM)
Pertubed problem:


 � 
 � � 	 

(PP)

Let


 �  � �

be an approx. of the exact solution �

corresponding to a local average of size

�

. We

seek to compute a pointwise accurate approx.

of � �

, and we want to find an equation for � �
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General setting

Mathematical model:

� � � 	 (MM)
Pertubed problem:


 � 
 � � 	 

(PP)

We seek a pertubed equation

 � � � � 	 


by
making an Ansatz of the form


 � � � � 	 � � � � � � � � � � � � � 	 � 	 


where we need to approximate� � � �  � � � � � � � � �

in terms of � �
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General setting

Mathematical model:

� � � 	 (MM)
Pertubed problem:

� 
 � � 
 � � 
 � � 	 �
(PP)

� � � � 	 � � � � � � � � �

has the form of a
generalized covariance


 � � � � � � � � � � is called a subgrid model
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General setting

We solve the Galerkin equation: find � � s.t.

� � � 
 � � �� � � 	 � 
� � � � � � �

We now have

1. a discretization error from solving the
Galerkin equation

2. a modeling error from the subgrid model
 � � � � � � � �
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General setting

How to choose the averaging scale

�
?

We expect that by choosing finer
�

� the modeling error decrease� but the discretization error increase

and we expect that by choosing coarser

�

� the discretization error decrease� but the modeling error increase
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General setting

How to choose the averaging scale

�
?

Examples:� DNS = no averaging� LES = averaging over the finest spatial scales� RANS = coarse averaging (in space and time)
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General setting

� We want to accurately balance the errors
from modeling and discretization
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General setting

� We want to accurately balance the errors
from modeling and discretization� We can achieve this balance using a
posteriori error estimates
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A posteriori error analysis

Galerkin equation: find � � such that

� � � 
 � � �� � � 	 � 
� � � � � � � �

To estimate

��� � �

, � 	 � � � and � , write

� � � � � � � 	 �
�

�
��� 
 � � � � � � � � � � ���

�
� � � � � � � � � � � � � � �  � � � �� � �
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A posteriori error analysis

Let then � solve (the dual problem)� � � � �� ��� � � 	 �� � �� �� �
Observe that� the dual problem now is linearized at � �

and
not � itself!� The linearization error � � �

could be
expected to be smaller than � � , since � �

do not contain any subgrid scales� the dual problem is indep. of � � � � and


 � � �
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A posteriori error analysis

Let then � solve (the dual problem)� � � � �� ��� � � 	 �� � �� �� �
Setting � 	 � gives the error representation��� � � 	 � � � � �� � � � � 	 � � � � � � � �� �

	 � 
 � � � � � � � �� �

�

since
� � � � � � � � 	 
 �

	 � 
 � � � � 
 � � �� � � 
 � � � � � � � �� �

	 � 
 � �� � � 
 � � � � � � � �� �
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A posteriori error analysis

��� � � 	 � 
 � �� � � 
 � � � � � � � �� �

� 
 � � 	 
 � � � � 
 � � �
is the computable

residual related to the discretization error
from the Galerkin equation� 
 � � � � � � � � is a residual related to the
quality of the subgrid model


 � � � � � � � � ,
which has to be estimated
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A posteriori error analysis

If we compute without subgrid model, we get

��� � � 	 � 
 � �� � � � � � � �� �

We can then use the subgrid model


 � � � �

� � � � to estimate the modeling residual � � � � in

the a posteriori error estimate, to balance model-

ing and discretization errors
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Simpleexample

� � � ��� � 	 �� � � ��! � �! �

centered in � , side length
�

(commutes with space & time differentiation)
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Simpleexample

� � � ��� � 	 �� � � ��! � �! �

centered in � , side length
�

(commutes with space & time differentiation)� � � � 	 � " 	 � ��� � 	 # $&% " � � �(' � �

( � ��� � 	 # $&% � � �' � �
)
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Simpleexample

� � � ��� � 	 �� � � ��! � �! �

centered in � , side length
�

(commutes with space & time differentiation)� � � � 	 � " 	 � ��� � 	 # $&% " � � �(' � �

( � ��� � 	 # $&% � � �' � �
)

� � � � � " 	 � � " � �
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Simpleexample

� � � ��� � 	 �� � � ��! � �! �

centered in � , side length
�

(commutes with space & time differentiation)� � � � 	 � " 	 � ��� � 	 # $&% " � � �(' � �

( � ��� � 	 # $&% � � �' � �
)

� 
 � � � � 	 � � � � " � � � � 	 �

� � � � 	 � � " � � � � � � � "
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�
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� ) � �
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� ) � � ) � �
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� , � � - � �

large!
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Lar gemodelingerror!
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Lar geEddy Simulation (LES)

� �� . � 	 / � �10 � � �243 � . 	0 � 	 �

� ��� � � � 	 � ���� �
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Lar geEddy Simulation (LES)

� �� . � 	 / � �10 � � �243 � . 	0 � 	 �

� ��� � � � 	 � ���� �

� � �� . � � 0 � � � � 	

0 � � 	 �

� � ��� � � � 	 � � � ��� �

0 � � � � 	 0 5 �

5 �67 	 � � 6 � 7 � � � � � 6 � �7 (Reynolds stresses)
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How to choosethe subgrid model
8 �?

� � � � � contains the effect of unresolvable
scales on resolvable scales
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How to choosethe subgrid model
8 �?

� � � � � contains the effect of unresolvable
scales on resolvable scales� We want to choose


 � only based on
resolvable scales
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Subgrid modelsin turb ulence

� Eddy viscosity models (EVM)
( 5 �

modelled as an extra viscosity)

The classical Smagorinsky model:

5 67 � � � 5:9 9 	 � �<; = > 67 � � � �� ; = 	 � ? � � " �> � � � � �

where ? is the Smagorinsky constant.
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Subgrid modelsin turb ulence

� Eddy viscosity models (EVM)
( 5 �

modelled as an extra viscosity)

In dynamic variants the constant ? is computed

by fitting the model on a coarser mesh using a

fine mesh solution as reference
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Subgrid modelsin turb ulence

� Eddy viscosity models (EVM)
( 5 �

modelled as an extra viscosity)� Scale Similarity Models (SSM)
( 5 �

prop. to 5 �

of the resolved field)

Here one seeks to extrapolate 5 � � � � from 5 @ � � �

with A �

and � a solution computed on mesh�

from a scale similarity Ansatz
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Subgrid modelsin turb ulence

� Eddy viscosity models (EVM)
( 5 �

modelled as an extra viscosity)� Scale Similarity Models (SSM)
( 5 �

prop. to 5 �

of the resolved field)� Mixed Models = EVM + SSM
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Scalesimilarity in turb ulent flow?

� Kolmogorov (1941): “ � ��B C � � � � B �ED C � F �
”� Scotti, Meneveau & Saddoughi (1995):

“Experimental findings of fractal scaling of
velocity signals in turbulent flow”� Papanicolaou (1999): “Experimental
aerothermal data scale similar with respect to
wavelet (Haar) analysis”� ...
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ScaleSimilarity Models

5 �67 � � � 	 � � 6 � 7 � � � � � 6 � �7 � 5 @67 � � � �

� 	 �

, 	 �

(Bardina,...)� A �

, D �

(Liu,...)� A �

, 	 � � � �
(Dynamic model)

5 �67 has the form of a covariance

� �� � � � � �� �
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ScaleSimilarity Ansatz

We base a subgrid model on the Ansatz

� � � � 	 � �� � � � � �� � ��� � � ��� � � G HJI K

where the coefficients

��� �
and L ��� �

have to be

extrapolated from coarser scales
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ScaleSimilarity Ansatz

We base a subgrid model on the Ansatz

� � � � 	 � �� � � � � �� � ��� � � ��� � � G HJI K

� � � � �M � � � � � �� " � � � � �� + � � � � � �
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ScaleSimilarity Ansatz

We base a subgrid model on the Ansatz

� � � � 	 � �� � � � � �� � ��� � � ��� � � G HJI K

� � � � �M � � � � � �� " � � � � �� + � � � � � �

M ��N � O� P � 	 � � � � P � O + �
O + � � N + � � * Q � O + � � N + �

P � O + �
O + � � N + � � �

( R corresponds to the finest scale in �)
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ScaleSimilarity Ansatz

We base a subgrid model on the Ansatz

� � � � 	 � �� � � � � �� � ��� � � ��� � � G HJI K

In particular, we have used the p.w. constant Haar

basis as filter (averaging operator), which is gen-

erated from mesh refinements
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ScaleSimilarity Ansatz
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ScaleSimilarity Ansatz

� We test the Ansatz for the Couette flow
undergoing transition to turbulence.� We plot the sum of the Haar coefficients on
each scale (

� �� � �� S �

with
� 	 � TVU �

) for 5 �� � on
a part of the domain� Regular decrease in the sum of coefficients
can be observed (at least in average)� The test suffers from a too coarse mesh and
not being fully turbulent
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ScaleSimilarity Ansatz
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ScaleSimilarity Ansatz

We have previously tested this approach for
convection-diffusion-reaction problems, where
this type of scale similarity has been introduced
through data

We are working on the extension to Dynamic

Large Eddy Simulations (DLES)
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Previous results

Convection-Diffusion-Reaction system/ � � > � 0 � 	 � � ��� �� � � � 	 � ���� �

� Convection-Diffusion-Reaction systems with
scale similar (fractal) initial data� Convection-Diffusion-Reaction systems with
scale similar (fractal) convection field
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Example: ScaleSimilar Function

Weierstrass function

WYXZ ��� � 	 [ ��� � \
7^] �

� * 7 Z HJI K # $% � � 7 0 � ' � �

� Amplitude at scale

_ �
is

� * Z
less than at

_

(Scale similarity)� `

determine the amount of fine scales in WYXZ� Typically [ 	 ` 	 �a �
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2D WeierstrassFunction ( , � b
)
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Ex 1: Volterra-Lotka with diffusion

/ � �� � > � �� 	 � �� � � � � �" � � � � � �/ � �" � > � �" 	 � �" � � �� � � � � � � � "

� � ��� � � � 	 � �� � �� � 	 � * c� �d 3 e 	 � * f� 	 �� ��� �

fractal Weierstrass function

�

� � � � � 	 � � � � � " � � � �� � �"

� � � � " 	 � � " � � � � � � �" � ��
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Err ors:

� - � �

� No model (computed on

�

): (blue *)� No model (computed on

� T �
): (blue o)

� 
 � � 
 � � � 	 " � � 
 � � �

: (green <)
This corresponds to an assumption that �

contains no finer scales than

� T �
.

� 
 � � 
 � � � 	M � � � 
 � � �� " � � 
 � � �� + � � 
 � � � �

: (red +)
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First component �, in �-norm
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Secondcomponent � , in �-norm
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Ex 2: VL with convection& diffusion

/ � �� � > � �� 	 � �� � � � � �" � � � � � �/ � �" � > � �" � 0 � �" 	 � �" � � �� � � � � � � � "

� � ��� � � � 	 � �" j� � �� 	 �

��� �� � " � 	 � � # $&% � ' � � �lk m # � ' � " �� �k m # � ' � � � # $&% � ' � " � �

(convection of order
�

)
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First component �, in �-norm
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Ex 3: Fractal Convection

/ � � � > � � � 0 � � 	 � � � � �� n �� � o "qp � �� � ��r � �
r R �IVs ] � XIVt ] � 	 �� � � �Is ] � XIVt ] �� � � ��� � � � 	 ��

> 	 � � * �

, 	 � " j� " j �
(

�d 3 e 	 � * u

)

� � � � 	 � 0 � � � � � � 0 � � �

(non divergence form)
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�-err. with(r) & without(b) s.g.mod.

0 2 4 6 8 10 12 14 16
0

0.002

0.004

0.006

0.008

0.01

0.012

Claes Johnson and Johan Hoffman – Chalmers Finite Element Center – Nasa/VKI course – p.68/80



Summary

� Subgrid scales introduces a modeling error
which we have to estimate or model� Linearize at � �

instead of � in the dual
problem, gives a natural split between a
modeling error and a discretization error in
terms of corresponding residuals in a
posteriori error estimates� Want to balance these two errors� Scale similarity model proposed and tested
for simple model problems
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Summary - Many openends

� Extend subgrid model to DLES� Mixed models� Scale sim. models on divergence form or not?� �0 � � � � � � �0 � � �

or 0 � � � � � � � � � � � �
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Multi-adapti vity (A.Logg)

Solve the ODE initial value problem

/ � �wv � 	 � � �wv �� v �� v � � �� o �� � � � 	 � ��
for �x n �� o \

with adaptive and individual
time-steps for the different components � 6 �wv �

to
achieve efficient and reliable control of the global
error at time

v 	 .
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Indi vidual Time-Steps

PSfrag replacements
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Indi vidual PiecewisePolynomials

PSfrag replacements

6 �v �
7 �wv �
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Ordinary Galerkin

Ordinary Galerkin k ��| �

for

/ � 	 :=
� � / � � � �v 	 =
� � � � 0 �� � � �v � � � �

with � ,

� � � 	 � �and the trial and test
spaces defined as

	 } � � \ � n �� o � x � 6 �~�� � � � y 7 �� �	 } � x � 6 � ~�� � � * � � y 7 �� a
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Multi-Adapti veGalerkin

Multi-adaptive Galerkin �k ��| �

:=
� � / � � � �v 	 =
� � � � 0 �� � � �v � � � �

with � ,

� � � 	 � �and the trial and test
spaces now defined as

	 } � � \ � n �� o � x � 6 � ~�� � � � � � � y 67 �� �	 } � x � 6 � ~�� � � � � � * � � y 67 �� a
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Ex: The Solar System
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The Dual
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Err or Growth
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Err or Growth: mcG(2)
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ChalmersFinite ElementCenter

More on subgrid modeling, multi-adaptivity,...

www.phi.chalmers.se
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