
Multimesh / cut FEM simulation

of Stokes flow around a propeller.

[Johansson, Larson, Logg, 2015] Mesh of the Deathstar generated with FEniCS mshr.

Tetrahedral mesh generated from a simple CSG

description with FEniCS mshr.

History
The starting point for the FEniCS Project was the combination of the C++ finite element li-
brary DOLFIN and the FIAT Python module for tabulation of finite element basis functions.
In 2003, the developers of DOLFIN and FIAT joined forces in the creation of the FEniCS
Project, which lead to a rapid development of novel technologies for automated finite element
code generation, realized in the FEniCS components FFC, UFL and UFC. In 2011, version
1.0 was released and accompanied by the 700-page FEniCS book - one of Springer’s most
downloaded and most cited books in the mathematics category in recent years. The release
of 1.0 marked the first stable version of FEniCS and presented to users a well-designed, intui-
tive and effective user interface for solution of general nonlinear systems of partial differential
equations. Since the release of 1.0, most efforts have been directed towards improving the
parallel scaling of FEniCS. With the release of 1.5 in early 2015, FEniCS has matured and of-
fers cutting edge parallel performance on a range of hardware.

Examples

fenicsproject.org

Authors: Martin Alnæs, Simula Research Laboratory | Jan Blechta, Charles University in Prague | Patrick Farrell, University of Oxford | Johan Hake, Simula Research Laboratory | Johan Hoffman, KTH | Johan Jansson, KTH | Niclas Jansson, KTH | August Johansson, Simula Research Laboratory |
Claes Johnson, KTH | Benjamin Kehlet, Simula Research Laboratory | Robert C. Kirby, Baylor University | Matthew Knepley, University of Chicago | Miroslav Kuchta, University of Oslo | Hans Petter Langtangen, Simula Research Laboratory | Anders Logg, Chalmers University of Technology |
Kent-Andre Mardal, University of Oslo and Simula Research Laboratory | Andre Massing, Simula Research Laboratory | Mikael Mortensen, University of Oslo and Simula Research Laboratory | Harish Narayanan, Simula Research Laboratory | Chris Richardson, University of Cambridge |
Johannes Ring, Simula Research Laboratory | Marie Rognes, Simula Research Laboratory | Ridgway Scott, University of Chicago | Ola Skavhaug, Simula Research Laboratory | Andy Terrel, University of Chicago | Garth N. Wells, University of Cambridge | Kristian Ølgaard, Aalborg University |

References: R. C. Kirby. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Transactions on Mathematical Software (2004). R. C. Kirby and A. Logg. A compiler for variational forms, ACM Transactions on Mathematical Software (2006). M. S. Alnæs, A. Logg, K.-A. Mardal, O. Skavhaug and H. P. Langtangen.

Unified framework for finite element assembly, International Journal of Computational Science and Engineering (2009). A. Logg and G. N. Wells. DOLFIN: Automated finite element computing, ACM Transactions on Mathematical Software (2010). K. B. Ølgaard and G. N. Wells. Optimisations for quadrature representations of finite element tensors through

automated code generation, ACM Transactions on Mathematical Software (2010). A. Logg, K.-A. Mardal, G. N. Wells et al. Automated Solution of Differential Equations by the Finite Element Method, Springer (2012). M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, G. N. Wells. Unified Form Language: A domain-specific language for weak formulations of

partial differential equations, ACM Transactions on Mathematical Software (2014). Acknowledgement: We gratefully acknowledge the following grants that have supported the development of FEniCS: Center of Excellence grant awarded to the Center for Biomedical Computing at Simula Research Laboratory by the Research Council of Norway, grant no.

179578/F30. Patient-Specific Mathematical Modeling with Applications to Clinical Medicine: Stroke and Syringomyelia, Research Council of Norway, grant no. 209951. Outstanding Young Investigator Grant: Automation of Error Control with Application to Fluid-Structure Interaction in Biomedicine, Research Council of Norway, grant no. 180450.

Overview
The FEniCS Project is a collaborative project for the development of innovative concepts and
tools for automated scientific computing, with a particular focus on automated solution of
differential equations by finite element methods.

FEniCS has an extensive list of features, including automated solution of finite element
variational problems, automated error control and adaptivity, automated parallelization, a
comprehensive library of finite elements, high performance linear algebra and many more.

FEniCS is organized as a collection of
interoperable components that together
form the FEniCS Project. These compo-
nents include the problem-solving environ-
ment DOLFIN, the form compiler FFC, the
finite element tabulator FIAT, the just-in-
time compiler Instant, the code generation
interface UFC, the form language UFL and
a range of additional components.

The figure illustrates the generic code generation

and linear algebra interfaces of FEniCS.

Automatic code
generation
A unique feature that makes FEniCS stand
out among finite element libraries is its ex-
tensive use of automated code generation.
Code generation is the key to a successful
combination of generality and efficiency:
allowing general systems of nonlinear par-
tial differential equations to be expressed
with ease in a language very close to
mathematics, and to be solved with opti-
mal performance on the most advanced
supercomputers. For any given PDE, FEn-
iCS generates application-specific highly
optimized code targeted specifically to the
given problem and the chosen discretiza-
tion method.

Recent and ongoing developments
Parallel computing
FEniCS supports high performance, distrib-
uted parallel simulations for large-scale appli-
cations, based on efficient implementation of
scalable distributed meshes, distributed mesh
refinement, parallel IO and access to high
performance parallel linear algebra backends,
such as PETSc. Simulations of elliptic prob-
lems with over 12 billion degrees of freedom
have been performed.

The figure shows the weak scaling of a DOLFIN finite element Poisson

solver on a unit cube mesh, with tetrahedral linear elements. Simula-

tions were performed on ARCHER, the UK national supercomputer.

Efficient code generation
Driven by the needs of users applying FEniCS to ever more advanced models, the perfor-
mance of the symbolic framework in UFL and code generation process in FFC has received
a targeted profiling effort. The new FEniCS component UFLACS released as part of FEniCS
1.5 brings dramatic improvements to the performance and memory usage of the symbolic
framework and code generation machinery. In addition, a new approach to code generation
has been introduced in the first release of the UFLACS project. In UFLACS, a clever value
numbering scheme is applied to efficiently deal with large tensor algebra expression trees pro-
duced by the Automatic Differentiation of complicated PDEs such as highly nonlinear solid
mechanics models or fully coupled fluid-structure interaction problems. UFLACS also adds
support for iso-parametric elements to FEniCS.

Parametrized geometries
The release of FEniCS 1.5 introduces the new package mshr, which provides user-friendly
mesh generation in 2D and 3D based on constructive solid geometry (CSG). Generating a
mesh is as easy as

	 csg = Sphere(Point(0,0,0), 1) * Sphere(Point(1,1,1), 1)
	 mesh = generate_mesh(csg, resolution=10)

I addition to the mesh generation functionality of mshr, FEniCS provides a script for convert-
ing from a number of file formats to the native FEniCS file format.

Multimesh finite element methods
With version 1.5 of FEniCS, initial support has been added for the formulation of multimesh
finite element methods. These are finite element methods formulated on two or more dis-
tinct, nonmatching, and potentially overlapping meshes. The multimesh framework allows
for the formulation of efficient finite element methods on complex and dynamic geometries,
by removing the need for costly mesh generation and regeneration. Multimesh support in
FEniCS includes special integration measures for expressing stabilized finite element meth-
ods involving integrals on cut cells, interfaces and overlaps involving many meshes.

Installation and packaging
Binary packages for Debian, Ubuntu and Mac
FEniCS is available directly from the official repositories of
Debian and Ubuntu GNU/Linux. For Mac users, a standard
point-and-click installation package is provided.

Building from source
While FEniCS can be built from source using standard build systems (CMake, distutils),
compiling the whole FEniCS software stack including dependencies can be a daunting task,
both for users and developers. For this reason, HashDist has been adopted as a simple, reli-
able, efficient, and reproducible tool for building FEniCS software stacks from source. A
simple script [fenics-install.sh] allows users to automatically build a FEniCS software
stack via a one-line command:

	 curl -s http://fenicsproject.org/fenics-install.sh | bash

This one-liner will download HashDist, instruct HashDist to install FEniCS and finally set up
a custom Unix environment for easy access to the FEniCS HashDist installation.

Docker
FEniCS provides various Docker containers as a simple way to get a customized FEniCS
installation. Using Docker, everyone in a team can run an identical image for development
before seamlessly transferring the environment to an HPC or a cloud computing environ-
ment such as Amazon AWS for full production runs. Because of Docker’s lightweight con-
tainer technology, nearly 100% of the underlying performance of the hardware is retained, in
contrast with traditional virtualization approaches. Using Docker, users may install the latest
version of FEniCS via a one-line command:

	 docker run -t -i fenicsproject/stable-ppa:latest /bin/bash

Even more options
As if that were not enough, FEniCS can also be installed using virtualization techniques such
as Vagrant and Virtualbox, and via package managers such as Conda and MacPorts. With a
multitude of options available, ranging from assisted source installation to package managers
to virtualization, FEniCS can be installed with ease on most platforms, including the latest
supercomputers.

Mesh

Variational form

Linear algebra backend

PETSc Epetra Eigen uBLAS

Finite element assembler

UFC interface

Linear algebra interface

Finite element

Form compiler

User

Simulation of hemodynamics in cerebral aneurysms.

[Evju, Valen-Sendstad, Mardal, 2013]

Elastic simulation of a gas turbine rotor.

[Wells and Siahaan, 2013]

Limiting streamlines in a simulation of

the flow past a rudimentary landing gear.

[Vilela De Abreu, Jansson, Hoffman, 2014]

The figure illustrates the code generation process for a

hyperelastic model problem (actual generated code).

Code generation is the key to combining

generality (expressiveness) with efficiency.

Gr
ap

hi
c

de
si

gn
: S

CH
! s

ch
-f

or
m

.c
om

