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Abstract

In the recent years, the graphics processing unit (GPU) has emerged as a popular
platform for performing general purpose calculations. The high computational power
of the GPU has made it an attractive accelerator for achieving increased performance of
computer programs. Although GPU programming has become more tangible over the
years, it is still challenging to program GPUs efficiently to achieve good performance.

The FEniCS Project is a collection of software components for the automated solu-
tion of partial differential equations. It allows users to specify input problems in a
high-level, domain specific language. Novel techniques such as code generation and
just-in-time compilation is used to automate the implementation of complicated code.
This ensures computational efficiency of the software while retaining a high-level user
interface that accepts a wide range of problems as input. To further increase the per-
formance of the software, it is of interest to accelerate certain parts of it via GPUs.

This thesis presents a GPU-accelerated implementation of the FEniCS Project. By
integrating GPU-accelerated libraries for linear algebra, the solution of linear systems
of equations is accelerated. With this implementation, the rate of floating point opera-
tions performed on the GPU is up to six times higher than that of the CPU. This leads
to significant decreases in the time required to solve the linear systems. Throughout,
emphasis was placed on keeping the resulting implementation clean and easy to main-
tain for the software developers. In the spirit of the FEniCS Project, the user interface
remains easy to use, with simple parameters for activating GPU acceleration. The
distribution and compilation of the software is kept simple by extending the FEniCS
build system.

Through this implementation, it is shown that integrating GPU-accelerated libraries
in an existing software system is a viable approach to increase the system’s perfor-
mance. It makes it possible to keep the overall structure and layout of the system
intact while still utilizing the computational power of the GPU.
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1 Introduction

1.1 Problem statement

In the field of scientific computing, programmers have always striven for high perfor-
mance. Fast running code is crucial to be able to solve larger problems, solve problems
of a fixed size faster and implement more complex algorithms. During the last decade,
the graphics processing unit (GPU) has shown itself to be a powerful accelerator for
providing increased performance of general purpose programs. Starting out as a field
for experts and enthusiasts, GPU programming has become more tangible over the
years. However, programming GPUs effectively to achieve good performance is still
very much a challenging and time-consuming task.

The FEniCS Project [12, 76] is a collaborative effort to develop a set of tools for
automated scientific computing. The aim is to provide a framework where the user
can specify any partial differential equation through a simple, high-level user interface
and have its solution computed and visualized with a minimum of programming effort
and computational resources. This is achieved through innovative techniques such
as domain-specific languages and code generation. The FEniCS Project has support
for parallel execution with both distributed and shared memory via MPI [69] and
OpenMP [77]. However, support for parallel computing on GPUs is not present in the
project yet.

As such, a seamless integration of GPU computing in the FEniCS Project is of defi-
nite interest for the scientific computing community. The overall goal of this project is
as follows:

Integrate GPU computing in key components of the FEniCS Project and evaluate
the performance of the resulting implementation. The final implementation should
be made generally available as part of the FEniCS Project.

It should be emphasized that a prototype implementation is not sufficient: the pro-
vided code must be production-ready, in the sense that the code is well-designed,
tested, benchmarked and documented.

Two possible approaches to solve this problem are either to hand-code the de-
sired functionality using GPU computing programming languages, or to utilize GPU-
accelerated libraries in appropriate parts of the software. The approach chosen will
affect the following aspects of the software:
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1 Introduction

Maintenance
How complex it will be to maintain and extend the resulting implementation.

Backward compatibility
How to maintain backward compatibility and at the same time take advantage
of technological advances as programming APIs and hardware evolve.

Overall quality of implementation
How much effort it requires to provide high-quality, production-ready code.

Functionality
How much functionality it can be expected that it is possible to implement.

User interface
How the user interface will be affected by the inclusion of GPU support.

Compilation and distribution
How the compilation and distribution of the software will be affected by the
inclusion of GPU support.

The latter two aspects are in practice completely under the control of the developer,
and will be discussed in Chapter 8. The former four, on the other hand, are to a large
extent affected by the approach taken. These will be discussed in further detail below.

In the case of maintenance and further development, much of the work will be taken
care of by external developers if one chooses to use a library. When using a library,
intimate knowledge about GPU computing programming APIs and the writing of
GPU code is only needed by the library developers. They will be concerned with the
low-level, performance-critical technicalities, which the users of the library will benefit
from.

When it comes to maintenance with respect to backwards-compatibility, one must
establish a policy regarding support for older hardware, old versions of software de-
pendencies, etc. When using a library, many of these considerations are taken care
of by the library developers. Intimate knowledge of hardware and software versions,
compatibility between components and so forth is not needed by the developers us-
ing the library. The process of maintaining the software with respect to such issues
is thus left to experts. When hand-coding a GPU-based implementation on the other
hand, one must pay close attention to the releases of new software and hardware and
establish a policy on how to deal with this.

The aspect of code quality is essentially just a matter of how much effort one puts
into the development. It is always possible to produce production-ready code, given
that enough thought is put into the design, testing, benchmarking and documentation.
When providing a complete implementation without the use of external libraries, all
of this must be taken care of by the developer. When utilizing a library on the other
hand, a lot of this work is outsourced to the library developers. Many libraries are
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1 Introduction

made for use in production settings. By carefully evaluating and choosing a fitting
library, one can achieve production-ready quality of the end-product with less work
compared to a hand-coding approach.

For the code to be made publicly available as part of the FEniCS Project, it must
be merged with the main codebase. For this to be feasible, the code must be clean
and well designed, easy to maintain, and efficient. In this regard, the three aspects
discussed above are important. They all speak in favor of choosing a library approach.
Therefore, I conclude that integration of a library is the approach that will be pursued
in this project.

It remains to investigate what functionality we can expect to accelerate using GPUs.
In order for the library approach to be fruitful, parts of the system that are amenable
to library outsourcing must be identified. In fact, the FEniCS project already makes
heavy use of libraries, especially in the field of numerical linear algebra.

Crucial to the finite element method is the forming (“assembling”) and solution of
linear systems of equations. The current implementation of the FEniCS Project uses
libraries to handle data structures and algorithms for linear algebra. The currently
integrated libraries include PETSc, Trilinos, uBLAS and MTL4. Traditionally, MPI
support has been present in some of these libraries, and the recent popularization of
GPU computing is starting to have an impact on these libraries as well. Hence, a
possible approach for integrating GPU-enhanced functionality in the FEniCS Project
would be to utilize a GPU-accelerated linear algebra library in the assembling and
solution of linear systems.

In conclusion, the following, more specific task is presented:

Investigate the currently available GPU-accelerated linear algebra libraries. Eval-
uate the libraries carefully. If a fitting candidate library can be found, attempt to
integrate it with the FEniCS Project.

Some further comments about functionality will be made in Chapter 8.

1.2 Outline of thesis

The first part of this thesis is devoted to relevant background topics. The basic theory
of the finite element method is covered in Chapter 2. This chapter also provides
a short introduction to the computational considerations of finite element assembly
and a presentation of some selected example problems. A thorough introduction to
the theory and practice of modern general purpose GPU programming is given in
Chapter 3. This chapter also contains a review of the current generation of GPU
hardware architecture. An introduction to the theory of numerical linear algebra is
given in Chapter 4, along with a discussion of important considerations about the
implementation of (sparse) numerical linear algebra on GPUs. Chapter 5 concludes
the review of background topics by introducing the FEniCS Project.
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1 Introduction

The problem statement presented in the previous section is augmented with some
further requirements in Chapter 6. This chapter also contains a review previous work
in this area. A survey of the currently available GPU-accelerated linear algebra li-
braries is given in Chapter 7. Furthermore, it gives a detailed introduction to the
PETSc library. Chapter 8 starts by giving an introduction to the layout of the linear al-
gebra submodule of the FEniCS Project. It then goes through the new implementation,
including the changes necessary to integrate the GPU-accelerated functionality of the
PETSc library into the FEniCS Project. The results from this integration are discussed
in Chapter 9, where the performance of the new implementation is studied. The thesis
is summarized and concluded in Chapter 10, were I also outline possible paths for
future work in this area.
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2 The finite element method

The finite element method is a method for the numerical solution of ordinary and
partial differential equations. This chapter gives an introduction to the basic concepts
of the method. Several books are written on the subject, and this chapter is a summary
of some standard references [4, 6].

2.1 Formulation

Using the finite element method to solve a given problem can be divided into four
steps:

i. Formulate the problem in strong form.

ii. Reformulate the problem in weak form.

iii. Discretize by restricting the problem to discrete subspaces.

iv. Derive an algorithm to solve the discretized problem.

Each step is described in more detail below.

Step i.

As an example, we consider Poisson’s equation. First, it is formulated in strong form.
The problem reads: find u “ upxq such that

´ ∆u “ f @ x P Ω, (2.1.1)

where u is our unknown function, f is a given source function and Ω is a domain in Rd,
for some integer d. The Laplace operator ∆ equals the divergence of the gradient; i.e.,
∆u “ ∇ ¨∇u, where ∇ denotes the del operator. More specifically, in three dimensions,
we have

∇ “ x̂
B

Bx
` ŷ

B

By
` ẑ

B

Bz
, (2.1.2)

where tx̂, ŷ, ẑu are the three unit vectors in a Cartesian coordinate system. The system
is completed by the boundary conditions

u “ u0 on ΓD, (2.1.3)

´Bnu “ g on ΓN , (2.1.4)
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2 The finite element method

where Bnu is a shorthand notation for ∇u ¨ n. The boundary BΩ is decomposed into
the Dirichlet boundary ΓD and the Neumann boundary ΓN . At ΓD, u has a prescribed
constant value u0. At ΓN , the value of the normal component of the derivative of u is
determined by the function g.

Step ii.

The weak form is obtained by multiplying (2.1.1) by a so-called test function and inte-
grating over the domain Ω. Using integration by parts, we get

´

ż

Ω
∆uv dx “

ż

Ω
∇u ¨∇v dx´

ż

BΩ
Bnuv dx

“

ż

Ω
∇u ¨∇v dx´

ż

ΓD

Bnuv ds´
ż

ΓN

Bnuv ds

“

ż

Ω
f v dx.

We let the test function vanish on ΓD since the value of u is known there. Using the
Neumann boundary condition, we formulate the variational problem:

Find u in V such that
ż

Ω
∇u ¨∇v dx “

ż

Ω
f v dx´

ż

ΓN

gv ds @ v P V̂.
(2.1.5)

Here, V and V̂ denote the trial and test spaces, respectively.

Step iii

Now, we restrict our problem to discrete subspaces; that is, we let Vh and V̂h be finite
dimensional linear subspaces of V and V̂, respectively. Looking for a solution in the
discrete subspace Vh and enforcing (2.1.5) to hold for all test functions in V̂h, we obtain
the following discrete variational problem:

Find uh in Vh such that
ż

Ω
∇uh ¨∇v dx “

ż

Ω
f v dx´

ż

ΓN

gv ds @ v P V̂h.
(2.1.6)

Step iv

Since Vh and V̂h are linear spaces, there exist bases that span them. We let these bases
be

Vh “ spantφju
N
j“1,

V̂h “ spantφ̂iu
M
i“1.

(2.1.7)
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2 The finite element method

One characteristic of the finite element method is that we choose these basis functions
such that they have local support. This means that they are non-zero only at a small
part of the domain on which they are defined. With this property, the functions are
”nearly orthogonal“ [11, p. 157], because the inner product of two functions is non-
zero only for functions with overlapping support. Here, we let the inner product of
two functions f and g be

x f , gyΩ “

ż

Ω
f ¨ g dx. (2.1.8)

We see that this inner product is precisely the one used in the variational problems.
How to choose what the basis functions look like over their support is dependent on
the problem — different problems benefit from different choices. A common choice is
to let the functions be continuous piecewise polynomials over the domain. One can
for example have continuous piecewise linear or quadratic functions.

Now, we make an ansatz for uh that it can be expressed as a linear combination of
these basis functions:

uh “

N
ÿ

j“1

Ujφjpxq. (2.1.9)

We next take v “ φ̂i in (2.1.6) for i “ 1, 2, . . . , M and insert our ansatz for uh. This gives
us

N
ÿ

j“1

Uj

ż

Ω
∇φj ¨∇φ̂i dx “

ż

Ω
f φ̂i dx´

ż

ΓN

gφ̂i ds, for i “ 1, . . . , M.

We see that this can be formulated as a linear system of equations with the unknowns
U “ pU1, . . . , UNq

T. Hence, our problem is reduced to

AU “ b, (2.1.10)

Aij “

ż

Ω
∇φj ¨∇φ̂i dx, (2.1.11)

bi “

ż

Ω
f φ̂i dx´

ż

ΓN

gφ̂i ds, (2.1.12)

where A P RM,N , U P RN and b P RM. This demonstrates that the finite element
method can be viewed as a method for approximating the solution of a partial differ-
ential equation by transforming it into a linear system of equations. We note here that
it is common in practice to let the trial and test spaces be equal, such that the resulting
matrix A is square.
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2 The finite element method

2.1.1 Abstract formulation and canonical form

In the present example, the bilinear and linear forms are

apu, vq “
ż

Ω
∇u ¨∇v dx, (2.1.13)

Lpvq “
ż

Ω
f v dx´

ż

ΓN

gv ds, (2.1.14)

respectively. We may now formulate the problem in a canonical form:

Find u in V such that

apu, vq “ Lpvq @ v P V̂.
(2.1.15)

This notation is useful when conducting existence and uniqueness analysis of the
problem. It will also be used extensively in the next section about finite element
assembly. Combining (2.1.11), (2.1.13) and (2.1.12), (2.1.14), it follows that

Aij “ a
`

φj, φ̂i
˘

, (2.1.16)

bi “ L
`

φ̂i
˘

. (2.1.17)

We see that the matrix depends on the problem-specific bilinear form and the bases
for the chosen trial and test spaces. In this example, the operator A is a matrix, which
is a rank 2 tensor. Generally, a may be a multilinear form of arity ρ, which makes the
corresponding A a tensor of rank ρ.

Here, we also note that A is a sparse matrix, which means that only some of its
entries are non-zero. This is due to the previously noted fact that the basis functions
are chosen to have local support. To see this mathematically, we let Ωi and Ωj denote
the parts of Ω on which φ̂i ‰ 0 and φj ‰ 0, respectively. By the definition of the matrix
A, we see that

Ωi XΩj “ Hñ Aij “ 0, (2.1.18)

where X denotes set intersection and H denotes the empty set.

2.2 Finite element assembly

We now seek to derive an algorithm for constructing the matrix A. This process is
called assembling A, or simply “assembly”. The following discussion will be restricted
to bilinear forms, still using Poisson’s quation as an example. A general discussion of
assembly is given by Logg, Mardal, and Wells [13].

Before describing the algorithm, we must introduce the concept of computational
meshes. A mesh is a partition of the domain Ω into cells. These cells can for example
be triangles or quadrilaterals if the mesh is two-dimensional, or tetrahedra if the mesh
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2 The finite element method
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Figure 2.1: Local and global numbering of the nodes on two cells [9].

is three-dimensional. The support of a basis function will thus typically consist of
several cells.

A straightforward assembly algorithm would be to iterate over all indices i and j
and compute the bilinear form for every combination of test and trial basis functions.
This algorithm has two major disadvantages. First, it does not take into account that
A in general is a sparse tensor. Second, it does not take into account that each entry in
A is a sum of contributions from the cells that form the support of the basis functions.
Hence, each cell is visited several times.

An alternative algorithm is a cell-based one. Rather than iterating over indices, this
algorithm iterates over the cells and computes the contribution to the global tensor A
from each cell. This contribution is often called the local cell tensor. This algorithm
represents an improvement because the number of total iterations decreases when we
only visit each cell of the mesh once. The local cell tensor is inserted into the global
tensor in each iteration using the so-called local-to-global mapping, which relates the
indices of the local cell tensor to the indices of the global tensor.

2.2.1 Local-to-global mapping

We previously stated that the basis functions are chosen to have local support. Fur-
thermore, we often let them form a nodal basis. Mathematically, we say that

φipxjq “ δij, 1 (2.2.19)

where δij denotes the Kronecker delta, which is zero for i ‰ j and one for i “ j. Here, xj
is one of the nodes of the mesh; these are typically points on each cell, as illustrated in
Figure 2.1. Hence, the basis functions have value 1 at a single node in the mesh and
vanishes at all other nodes.

1 This expression is valid only when choosing your degrees of freedom in a certain way. Ciarlet’s definition
of a finite element precisely defines the degrees of freedom [4, ch. 3, 9]. A thorough discussion of
different choices for the degrees of freedom is given by Kirby and Logg [9].

13



2 The finite element method

There exists a local numbering of the nodes (and basis functions) on each cell of
the mesh. The local-to-global mapping relates this numbering scheme to the global
numbering of the nodes. We take the mesh in Figure 2.1 as an example, where we
denote the left and right cells by T and T1, respectively. They have 6 nodes each,
numbered by an index i “ 1, . . . , 6. The nodes of the mesh are numbered globally by
an index g “ 1, . . . , 9. The local-to-global mapping can be viewed as a list of integers
ι, where the i-th entry in the list gives the global number g for local node number i.
Hence, in this example, we have:

ιT “ p1, 2, 4, 9, 8, 5q,

ιT1 “ p2, 3, 4, 7, 9, 6q.

The mappings for adjacent cells have to agree on common nodes, which we see that
they do in this case:

ιTp2q “ ιT1p1q “ 2,

ιTp4q “ ιT1p5q “ 9,

ιTp3q “ ιT1p3q “ 4.

In general, we let φT
i denote the i-th basis function in the local numbering scheme of

cell T. Using the local-to-global mapping, we obtain the following relationship:

φιTpiq|T “ φT
i ô φg|T “ φT

ι´1
T pgq

. (2.2.20)

Given this relationship, we are equipped with the necessary tools to derive the assem-
bly algorithm.

2.2.2 The assembly algorithm

We first define T as the mesh (or triangulation) of the domain Ω. The derivation of
the cell-based algorithm starts by assuming that the bilinear may be rewritten as

apu, vq “
ÿ

TPT
aTpu, vq, (2.2.21)

where aT is the contribution to the bilinear form a from the cell T. We also define the
local element tensor,

AT
ij “ aTpφ

T
j , φ̂T

i q, (2.2.22)

which is typically a dense matrix. We let Tij Ă T be the set of cells T such that

φjpx̂q ‰ 0 and φ̂ipx̂q ‰ 0

for at least one point x̂ in T. Equivalently, we may use the notation from (2.1.18) and
write

Tij “ tT P T : TXΩi XΩj ‰ Hu. (2.2.23)
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2 The finite element method

We may then write the global element tensor as a sum of these local element tensors,

Aij “ a
`

φj, φ̂i
˘

“
ÿ

TPT
aT

`

φj, φ̂i
˘

By assumption (2.2.21)

“
ÿ

TPTij

aT
`

φj, φ̂i
˘

By definition of Tij

“
ÿ

TPTij

aT

´

φT
ι´1
T pjq

, φ̂T
ι´1
T piq

¯

(2.2.20)

“
ÿ

TPTij

AT
ι´1
T piq,ι´1

T pjq
. (2.2.22)

Given this expression, it is natural to let the algorithm iterate over each cell T, compute
the local element tensor and add it to the global element tensor. An outline of the
assembly algorithm is given in Algorithm 2.1.

Algorithm 2.1 The assembly algorithm

A “ 0
for T P Th

(1) Compute ιT

(2) Compute ATpmˆ nq

for i “ 1, . . . , m
for j “ 1, . . . , n

AιTpiq,ιTpjq` “ AT
ij

end for
end for

end for

The dimensions m and n of the local cell tensor are given by the dimension of the
function space on each cell. While all global basis functions are indeed defined on
each cell, only a limited number of them are non-zero there. In the present example,
each cell has 6 nodes, so 6 of the basis functions have non-zero values somewhere on
that cell. Hence, the local function space has dimension 6, which makes the local cell
tensor a 6ˆ 6 matrix. The test and trial spaces are equal in this example, so the matrix
becomes square. In general, the matrix may be rectangular.

Note here that the bilinear and linear forms may also contain terms that imply inte-
gration over facets, which are the boundaries between cells. In the case of two dimen-
sional meshes, the facets are the edges of the triangles or quadrilaterals. We see this
in (2.1.14), where the second term involves integration over the mesh boundary, called

15



2 The finite element method

exterior facets, denoted ds. Integration over the facets that are not on the boundary,
called the interior facets, is denoted dS.

This concludes the discussion of the theoretical aspects of the finite element method.
Now follows a presentation of a few example problems.

2.3 Example problems

A set of example problems will be used to test the implementation later on. These
are divided into linear and nonlinear problems and are presented here one by one.
Throughout this section, we let Vh and V̂h denote the trial and test spaces, respectively.
As usual, apu, vq and Lpvq denote the bilinear and linear forms.

2.3.1 Linear problems

Poisson’s equation

The first linear problem is Poisson’s equation, which has already been thoroughly
introduced. We have the following forms and function spaces for this equation:

apu, vq “
ż

Ω
∇u ¨∇v dx “ x∇u,∇vyΩ, (2.3.24)

Lpvq “
ż

Ω
f v dx´

ż

ΓN

gv ds “ x f , vyΩ ´ xg, vyΓN , (2.3.25)

Vh “ tv P CGk : v|ΓD “ u0u , (2.3.26)

V̂h “ tv P CGk : v|ΓD “ 0u . (2.3.27)

Here, u0 is the Dirichlet (or essential) boundary condition, as in (2.1.3). CGk denotes
the space of continuous piecewise polynomials of degree k. We will let k “ 1, 2, 3 in
our test runs.

Poisson’s equation will be solved in two and three spatial dimensions, on a unit
square and unit cube, respectively. The meshes of these domains will vary in reso-
lution, to vary the number of unknowns in the resulting linear systems. Poisson’s
equation results in a symmetric linear system, since apu, vq “ apv, uq.

16



2 The finite element method

Static, linear elasticity

The second problem is the equation for static, linear elasticity, which governs the
deformation of elastic media. For this problem, we have:

apu, vq “
ż

Ω
σpuq : εpvq dx “ xσpuq, εpvqyΩ, (2.3.28)

Lpvq “
ż

Ω
f ¨ v dx`

ż

ΓN

g ¨ v ds “ x f , vyΩ ` xg, vyΓN , (2.3.29)

Vh “
!

v P CGd
k : v|ΓD “ vD

)

, (2.3.30)

V̂h “
!

v P CGd
k : v|ΓD “ 0

)

. (2.3.31)

Here, CGd
k is the space of continuous piecewise vector valued polynomials (of length

d) of degree k. We will let k “ 1, 2, 3 in our test runs for this problem as well. We also
have the following definitions:

σpuq “ 2µ ¨ εpuq ` λ ¨ tr pεpuqq I,

εpuq “
1
2

´

∇u`∇uT
¯

,

trpAq “
n
ÿ

i“1

Aii @ A P Rnˆn,

A : B “
n
ÿ

i“1

n
ÿ

j“1

aijbij @ A, B P Rnˆn.

Here, µ and λ are the Lamé parameters: these are positive constants that describe the
elastic properties of the material under deformation.

The elasticity problem will be solved on the same domains as Poisson’s equation. It
also results in a symmetric linear system, since the bilinear form is symmetric.

DG discretization of pure advection

Discontinuous Galerkin (DG) discretizations involve discontinuous basis functions, as
opposed to the continuous functions used in the previous problems. When introduc-
ing the notation used for this problem, we assume that we have two cells, denoted T`

and T´, that share a single facet S. Given a function v, the values v` and v´ denote
the values of v on the facet S as seen from the cells T` and T´, respectively. The jump
of v, denoted JvK, is the difference in function value across the facet S:

JvK “ v` ´ v´.

Furthermore, we define u˚ as

u˚ “
u ¨ n` |u ¨ n|

2
,

17



2 The finite element method

where n is the normal to each facet. We may then state the forms and function spaces:

apφ, vq “ x∇v,´u ¨ φyΩ ` xJvK, u`˚ ¨ φ
` ´ u´˚ ¨ φ

´ydS ` xv, u˚ ¨ φyΓN , (2.3.32)

Lpvq “ xv, f yΩ, (2.3.33)

Vh “
!

v P DG1 : v|ΓD “ u0

)

, (2.3.34)

V̂h “
!

v P DG1 : v|ΓD “ 0
)

, (2.3.35)

where x¨, ¨ydS denotes integration over interior facets. The trial function is denoted φ

in this problem. The function u is a prescribed velocity field. The space DG1 is the
space of discontinuous piecewise polynomials of degree 1. For more details about DG
discretizations in general, and in particular applied to this problem, see the paper by
Ølgaard, Logg, and Wells [30].

2.3.2 Nonlinear problems

Hyperelasticity

The only nonlinear example problem is the three-dimensional, anisotropic hyperelas-
ticity problem. It will not be benchmarked in detail, but rather be solved once to
demonstrate that it can be correctly and efficiently computed by the new implementa-
tion. Details about this specific problem are given by Usyk, LeGrice, and McCulloch
[33].
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Since the 1960s, the evolution of central processing units (CPUs) has been governed
by the famous Moore’s law. It states that the number of transistors possible to put
on a CPU doubles approximately every two years [29].1 Increasing the clock speed of
processors has for years been a reliable way to increase the current performance of
computing.

However, engineers have been forced to look elsewhere for increased performance
due to physical limitations in how integrated circuits are produced. The solution has
been to increase the number of processor cores rather than the speed of each processor
core itself. Today, almost all computers in the consumer market ship with CPUs with
at least two cores, and the number of cores on a chip increases steadily.

Parallel to the evolution of CPUs, the architecture of graphics processing units
(GPUs) has undergone major changes. Starting out as an accelerator for 3D graphics in
computer games and simulation and visualization applications, the current generation
of GPUs is a hybrid one, well suited for both graphics and general purpose computa-
tions. This chapter aims to give the reader a good understanding of what GPUs are,
what the architecture looks like, and why GPUs are suitable for doing general purpose
computations as well as graphics rendering. First, the basic concepts of 3D graphics
will be explained, to give an understanding of why the architecture looks the way it
does. It will be shown why and how the GPU can be programmed for doing general
computations, and the current generation of GPU hardware will be reviewed. Here,
it will also be shown how the GPU programming model maps to the components of
the hardware. Furthermore, some problems that map well to the GPU architecture
will be discussed. Last, some theory about performance of parallel programs will be
presented.

3.1 The graphics rendering pipeline

When writing an application for rendering 3D graphics, one starts with some repre-
sentation of a scene. A scene typically consists of geometric models, lighting, a camera
with a viewpoint, and a view frustum. A frustum is a perspective box containing the
elements of the scene. The programmer also defines the transformations that define
how these input elements should be placed in relation to each other. This input is then

1 In his 1965 paper, Moore stated that transistor counts doubled every year. He later increased this
estimate to every two years.
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Figure 3.1: The three main stages of the graphics rendering pipeline.

processed through the graphics rendering pipeline [1, p. 11], which is a series of com-
putational stages that transform the scene into a 2D image for displaying on a screen.
These computational stages can be divided into three main stages, as shown in Figure
3.1. They are described in further detail in the following.

3.1.1 The application stage

The first stage of the graphics rendering pipeline is the application stage, in which the
programmer defines the scene and transformations. This stage is purely a software
stage, over which the programmer has full control. The output of this stage contains
all information needed by the later stages to produce a complete 2D image of the
scene.

The geometric models that are defined in this stage consist of vertices and primi-
tives. A vertex is a point in 3D space, with associated attributes such as color and
normal vector. Several vertices constitute a primitive, such as a line, a triangle or a
quadrilateral.

The rest of the pipeline consists of some fixed-function steps [1, p. 26] as well as
programmable shaders. As opposed to the programmable shaders, the fixed function
steps are not programmable. This implies that the computations in those stages are
hard-coded in the hardware, and cannot be affected by the programmer. The pro-
grammable stages, on the other hand, can be controlled by custom shader programs.
The first generations of GPU architectures were purely fixed-function, without any
programmer control at all. The degree of programmability has grown gradually with
newer generations [1, p. 26].

3.1.2 The geometry stage

The next stage of the pipeline is the geometry stage. It performs geometric transfor-
mations of the vertices and primitives of the geometric models defined in the scene.
The vertex shader program performs transform and lighting operations on each vertex.
In the model transform, the spatial coordinates of the models are transformed by affine
transformations. 4ˆ 4 floating point matrices are used to rotate, scale, shear and trans-
late the coordinates. This defines the position of the models in the global coordinate
system. In addition, the view transform defines the position of the camera in the global
coordinate system.
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Following the transformations, a lighting model is evaluated per vertex. Based on all
the lighting set up in the scene and the color and the orientation of the object, the light-
ing model calculates the color at each vertex. The color is then linearly interpolated
over the primitive.

Following the per-vertex operations, the geometry shader is executed per primitive.
It outputs zero or more primitives, hence, extra primitives may be generated at this
stage. See the book by Akenine-Möller, Haines, and Hoffman [1, p. 40-42] for several
use cases for the geometry shader.

When the geometry is processed, we have a scene defined in a perspective view
frustum; that is, objects further away from the camera are smaller than those closer
to the camera. The projection transformation maps this sheared box into a clip space,
which is a cubic box containing the scene. The parts of the scene that fall outside the
box are clipped away, and are not processed further. The vertices that are not clipped
are then transformed into the screen space, which means that they are given a pixel
position on the screen, as well as a z-value.

3.1.3 The rasterizer stage

The last stage is the rasterizer stage. In this stage, a fragment is generated for each
screen pixel that is covered by a primitive. The fragment shader processes each of these
fragments. The shader program gives the fragments colors, or applies texture images.
They may also alter the z-value assigned in the previous stage.

Each fragment is then exposed to a series of tests to determine if it should be dis-
carded or not. These tests are programmable and include the z-test, which discards
fragments that lie behind others.

After this final stage, the 2D image is ready for displaying on the screen. To update
the image, a new pass through the pipeline is needed in order to generate the next
frame.

3.2 General purpose GPU programming

The parallel nature of the pipeline stages is apparent: all vertices can be transformed
independently of each other, the same goes for primitives. Also, all pixels can be col-
ored independently of each other. This allows for parallel execution of vertex shaders
for several vertices at once, fragment shaders for several fragments at once, and so
forth. Hence, one can use several processors at each pipeline stage to process the data
in parallel.

In real time rendering, high performance means rendering many high resolution
images per second. In computer games, a typical frame rate can be 60 frames per
second. If each frame consists of, say, 1600ˆ 1200 pixels, the GPU must process 115
million pixels per second, in addition to processing vertices, primitives, etc. for each
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frame. This demands large amounts of computational power.
To handle such massive workloads, the GPU has been shaped into a throughput

oriented architecture: an architecture made for processing large amounts of data in
parallel. This feature of has attracted the attention of computational scientists seeking
to improve the performance of programs performing computations other than graph-
ics. The first attempts at this was undertaken using graphics APIs [10, p. 7], where
the programmers had to “disguise” their problems as graphics problems in order to
utilize the GPU.

During the last decade, specialized APIs for general purpose GPU programming
have emerged, with CUDA [57] and OpenCL [71] being the most notable. In order to
fully understand the potential of general purpose GPU programming, it is important
to have an understanding of the programming model these APIs are based on. This
includes learning about the limitations of the programming model and the hardware,
and thus the considerations one must take when programming GPUs. The following
sections go through the fundamental concepts and terminology of these APIs. CUDA
terminology is used throughout, as this project uses CUDA-based libraries (see Section
7.4). The concepts are the same for OpenCL, but the terminology differs [10, ch. 11].

3.2.1 Kernels, threads and blocks

When programming in CUDA, you write kernels, which are functions that execute on
the GPU. The GPU is referred to as the device in CUDA terminology, whereas the CPU
(or rather the system in which the GPU is installed) is referred to as the host. The
kernels are executed on the device by a grid of thread blocks, where each block is a
grid of threads. Hence, the kernel is invoked by a set of threads, where each thread
runs the kernel once. Within the kernel, one uses built-in variables such as threadIdx,
blockIdx and blockDim to determine the position of each thread in the grid. These
indices may for example be used to read input data from global memory. An overview
of the thread grid can be seen in Figure 3.2.

The layout of the grid is controlled by the programmer through kernel invocation
parameters. The block grid and thread blocks may be one, two or three dimensional,
depending on the application at hand. For vector-based calculations, one typically lets
the block grid and thread blocks be one dimensional, with the total number of threads
equal to the length of the vector. This way, each thread is responsible for processing
one vector element. In the case of image processing, the natural decomposition is to
let one thread process one pixel (or a tile of pixels), so a two dimensional layout of the
grid is practical in this case.

GPUs are made for massive amounts of parallelism. To fully utilize the available re-
sources and maximize throughput, you need to launch thousands, or tens of thousands
of threads. For a thorough discussion of how to optimize the execution configuration
of CUDA programs, see Section 7.3 of the CUDA C Best Practices Guide [37].
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Figure 3.2: Overview of kernels, grids, blocks and threads.
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3.2.2 Memories and atomics

CUDA exposes the programmer to a hierarchy of memories, which is also depicted
in Figure 3.2. Starting at the top, each thread can access the global memory. The
host can copy values into this memory before kernel execution, providing the threads
with input data. Furthermore, all threads have access to a chunk of memory that is
shared between all threads in a block. At the lowest level, each thread has its own
local memory. There are also several special memories available to the programmer,
with different properties, including constant memory and texture memory.

When operating on global or shared memory, threads are able to read from and
write to the same memory locations. This may lead to race conditions. As an example,
consider the incrementation operation. This is a compound operation, consisting of
three steps: the value is read, modified and written back. Incrementing a value twice
in serial is perfectly safe and will always lead to the same results. When doing it
in parallel however, the order of operations is non-deterministic. It may happen that
the order of operations becomes the same as in the serial case — if so, the result
gets computed correctly — but it may also very well happen that the order becomes
something like the following:

§ Thread A reads the value 2.

§ Thread B reads the value 2.

§ Thread A increments the value to 3.

§ Thread B increments the value to 3.

§ Thread A writes the value 3.

§ Thread B writes the value 3.

In this case, the result is incorrectly computed as 3, not 4. As the correctness of a
program can not be left to chance, a way must be found to avoid these race conditions.

To this end, atomic operations can be used. Atomic operations lock the values in
question during the entire operation, so that no other threads can access the value
before the current thread is finished updating the value. This ensures thread safety
and correctness of the program. It is important to note that atomics are costly, since
they may lead to threads waiting in queue to perform their tasks. It is best to avoid
their usage altogether, but some applications can not be implemented without them.
One such application is the insertion of the local element matrix into the global element
matrix, as mentioned in Section 2.2.2. In a parallel implementation of the assembly
algorithm, several local matrices will be computed and inserted concurrently. Since
values from different local matrices may have to be inserted at the same position in
the global matrix, atomic operations must be used to ensure correctness of the result.
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3.2.3 Thread execution

Threads execute in groups of 32 threads called warps. All threads in a warp execute the
same instructions simultaneously, an execution style called single-instruction, multiple-
thread (SIMT) [10, p. 98]. Warps can be ignored for functional correctness, but many of
their properties must be taken into account to achieve maximum performance. Two
important concepts in this regard are execution divergence and memory divergence [36, p.
3].

Execution divergence occurs when threads in a warp take different execution paths.
The SIMT execution style performs best when all threads in a warp run the same code.
If threads in a warp take different paths in a conditional code branch, the hardware
will serialize these instructions. One pass will be used to execute the instructions for
the threads that take the first code path, and another pass will be used to execute
the instruction for the threads that take the other code path [10, p. 98]. If your code
has conditional branching, it is important to try to formulate the if-tests and loop
conditions such that warps do not diverge.

As an example, assume we have a problem with a one dimensional thread grid with
a single thread block. The following if-test checks if the current thread has ID lower
than a given limit N:

CUDA code
if (threadIdx.x < N) {

// Do something ...
} else {

// Do something else ...
}

Unless N is a multiple of the warp size, this test will lead to warp divergence. To avoid
this issue, the if-test must be reformulated in terms of the warp size. The following
if-test will never lead to warp divergence for any value of N:

CUDA code
if (threadIdx.x/32 < N) {

// Do something ...
} else {

// Do something else ...
}

These code snippets are obviously not equivalent, so changes to the code logic are
needed elsewhere as well in order for the program to perform correctly after the if-test
modification. It could therefore be claimed that it is best to include such considerations
in the design process from the start in order to ease the process of writing efficient
CUDA code.

Memory divergence has to do with memory bandwidth utilization when reading
from global memory. Reads are issued per warp, which means that the requested
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values by all 32 threads in a warp are read in a single operation. These reads depend
on the load granularity of the global memory, which can for example be 128 bytes. This
means that each request results in at least a line of 128 bytes being read from memory,
even though fewer bytes are requested. In this context, a “line” means a series of
consecutive values in memory.

As an example, assume we have a kernel in which each thread attempts to read a
4-byte value. A warp of 32 threads will then read 128 bytes in total. The actual amount
of data loaded depends on how these 4-byte values are arranged in memory:

Aligned, consecutive
If the values lie after each other in memory, they are called aligned. We also dif-
ferentiate between the cases when consecutive threads read consecutive values,
and the cases where they do not. Consecutive reads means that thread i reads
memory location j, thread i` 1 reads memory location j` 1 and so on. Since a
request for aligned, consecutive values falls within a contiguous 128 byte line in
memory, this exact line is loaded, leading to a bus utilization of 100 percent.

Aligned, permuted
A permuted access pattern has no performance penalty over the consecutive
case, as long as the values are aligned. In the aligned, permuted case, no threads
read the same value, but all values in a continuous 128 byte line are read. Hence
exactly 128 bytes are read with 100 percent bus utilization.

Misaligned
If the requests are misaligned, for example with a strided access pattern where
only every other value is read, the values will fall within two 128 byte lines.
Hence 256 bytes are fetched even though only 128 are requested, which gives a
bus utilization of only 50 percent.

Overlapping
If every thread requests the same value, only four bytes are wanted, but 128
bytes are fetched. This leads to a bus utilization of a mere 3.125 percent. This
low percentage is also achieved with a strided access pattern with large strides
of for example 128 bytes. This will lead to 32 lines of 128 bytes being fetched,
with only one relevant value in each line.

Performing aligned memory accesses is crucial to performance. This is often referred
to as coalesced access. For a detailed analysis of memory access requirements on the
most recent architecture, see the talk by Micikevicius [42]. It is important to note that
the coalescing requirements only apply to global memory. When reading from e.g.
shared memory, coalescing is not relevant. Algorithms that exhibit irregular memory
access patterns may therefore benefit from shared memory usage. By first using coa-
lesced reads to load the relevant values into shared memory, the threads can thereafter
access them in an irregular pattern without any performance penalty.
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3.2.4 Compute to global memory access ratio

The global memory has high access latencies and limited bandwidth [10, p. 77]. Per-
forming many global memory loads in a kernel may thus lead to thread congestion
in the memory access paths, again leading to idle threads. To avoid this issue, the
programmer must be aware of the compute to global memory access ratio [10, p. 78] of the
kernel.

Let us consider a GPU with a global memory access bandwidth of N bytes/s. Given
an algorithm that loads 4-byte single precision data from global memory and performs
one floating point operation per datum, the algorithm will be limited to N{4 floating
point operations per second (“flops”2). This can be a serious performance limitation.
This is due to the fact that the rate of data transfer of a GPU (in terms of the number
of bytes loaded from global memory per second) is much lower than its floating point
computing rate (in terms of the number of floating point operations performed per
second).

Hence, in order to fully utilize the computational resources of a GPU, an applica-
tion must have a high compute to global memory access ratio; that is, it must perform
several floating point operations per datum loaded from global memory. Applications
with low such ratio are called memory bandwidth limited, since the memory bus is sat-
urated long before the flop rate has approached its limit. If, on the other hand, the
ratio is too high, the flop rate will peak while the memory bus is working below its
potential. Such applications are called compute limited. Since a moderately high ratio
is usually necessary to obtain good performance, a skilled CUDA programmer must
know how to limit the amount of global memory accesses performed in a kernel. A
variety of techniques to do so are presented in Chapters 8 and 9 of the book by Kirk
and Hwu [10].

An example of the ratio between memory bandwidth and peak flop rate in the most
recent compute GPUs is the NVIDIA Tesla C2075. It has a global memory bandwidth
of 144 GB/s and a single precision peak performance of 1030 gigaflops [47]. Its double
precision peak performance is 515 gigaflops. Given an example application where all
global memory fetches are perfectly coalesced such that the memory bus utilization is
100 percent, the optimal compute to global memory access ratio for this processor is
28 : 1. Note that this is a purely theoretical example, as a bus utilization of 100 percent
is nearly impossible to achieve in real applications.

3.3 GPU hardware architecture

Knowledge of the GPU programming model is probably the most important prereq-
uisite in order to understand how GPUs can best be utilized. However, it is also

2 Floating point operations per second is commonly abbreviated as FLOPS, flops, flop/s or flops/s. To
be consistent, we will use “flops” or “flop rate” throughout this text.
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Figure 3.3: Overview of the Fermi architecture [46].

advantageous to know the basic properties of the hardware in order to understand
how the programming model maps to the hardware, and thus how programs are ex-
ecuted on the GPU. This section will therefore go through the basic properties of the
current generation of GPU hardware architecture.

In 2006, NVIDIA released the GeForce GTX 8800, the first GPU based on the G80
architecture. The G80 was the first GPU architecture that was specifically designed
with both graphics and general purpose computations in mind. While chips of the
previous generations had distinct processors for the different stages of the graphics
pipeline [26, p. 40], the G80 came with a unified processor array. The vertex, geometry
and fragment shaders were then executed on the same type of processor. This made
it easier to balance workloads and achieve good processor utilization for graphics
rendering, where the number of vertices and sizes of primitives vary from application
to application.

The Fermi architecture is the latest generation3 of unified architectures by NVIDIA,
following the G80 and GT200. The performance benchmarks in this project uses Fermi

3 Note that at the time of printing, NVIDIA has just released the first GPU featuring the Kepler architec-
ture, the successor to Fermi.
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GPUs. This section sums up the properties of the architecture, as covered in the Fermi
Architecture white paper [46]. It is important to keep in mind that GPU architecture is
evolving at a very fast pace. The quantitative details of this chapter will definitely
be outdated very soon. The qualitative aspects however, are likely to remain fairly
constant, as they have remained through generations of GPU architectures.

3.3.1 Streaming multiprocessor

Figure 3.3 on the previous page shows the layout of an example GPU featuring the
Fermi architecture. The green section of the figure depicts the processor array. Each of
the green blocks of cells represents a streaming multiprocessor (SM, see Figure 3.4 on the
following page), of which there are 16 in total in this case. When a CUDA program is
run, the SMs execute one or more thread blocks each. Unless one uses global memory
atomics or some other form of synchronization or communication across blocks, the
thread blocks can be executed completely independently of each other. Thus, the
result will be the same regardless of the order of execution. Hence, depending on
the available resources, the thread blocks can be scheduled for execution serially on
one multiprocessor, partially in parallel over several multiprocessors, or completely
in parallel on one multiprocessor each. This allows applications to scale freely from
GPUs with few SMs to GPUs with several SMs. This is referred to as transparent
scaling [10, 26, 44].

As seen in Figure 3.4, the multiprocessors are built up of several components:

Streaming processor
Each streaming multiprocessor contains 32 streaming processors (SPs, see Fig-
ure 3.5 on the next page), sometimes referred to as CUDA cores. The SP is the
core computation unit of a Fermi GPU. It contains one integer arithmetic logic unit
(ALU) and one floating point unit (FPU) for doing arithmetic operations. The SP
can compute with both single and double precision floating point numbers, but
the double precision performance comes at a 2ˆ performance penalty compared
to single precision.4

When performing the operation x ˆ y ` z with floating point numbers, GPUs
from NVIDIA may perform them as a fused multiply-add (FMA) operation [51].
This operation performs only a single rounding of the end result; that is, rnpxˆ
y ` zq, where rn denotes the rounding operation. Without FMA, a separate
rounding step is performed for both the multiplication and the addition; that
is, rnprnpx ˆ yq ` zq. Hence, the FMA yields higher accuracy since it only per-
forms one rounding step. There is no support for hardware FMA on CPUs [51],

4 The 2ˆ penalty is valid for GPUs in the Tesla series, which are compute GPUs targeted at the HPC
(high performance computing) market segment. The GeForce series, which are mainly targeted at
the consumer/gaming segment, have an 8ˆ performance penalty for double precision operations,
as confirmed by an NVIDIA employee in this forum post: http://forums.nvidia.com/index.php?
showtopic=165055.
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multi-instruction emulation sequences were required for integer arithmetic.  In Fermi, the newly 

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard 

programming language requirements.  The integer ALU is also optimized to efficiently support 

64-bit and extended precision operations. Various instructions are supported, including 

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population 
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16 Load/Store Units  
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processor [46].
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which may lead to differences in the results computed on the CPU and the GPU.
This should be kept in mind when comparing the results from equivalent CPU
and GPU implementations of the same algorithm.

Special function units
The streaming multiprocessor contains four special function units (SFU) for com-
puting transcendental functions such the trigonometric, exponential and loga-
rithmic functions.

On-chip memory
The streaming multiprocessor has 64 KB of on-chip shared memory, a fourfold
increase over previous architectures. This can be configured in two ways; either
as 48 KB of shared memory and 16 KB of L1 cache, or 16 KB shared memory
with 48 KB L1 cache. The cache-heavy option may yield extra performance
when developing new CUDA-based algorithms that are not yet optimized with
regard to memory usage. On the other hand, choosing the configuration with
more shared memory will have performance benefits for existing applications
that make use of shared memory.

The Fermi architecture contains several other special features, such as dual warp
scheduling for concurrent execution of two warps at the same time on a single SM.
For more details about the architecture, the reader is referred to the Fermi Architecture
white paper [46] and the Fermi website [62].

3.4 Data parallel problems

When a problem is labeled as “suitable” for solving on the GPU, it is meant that
when implementing a GPU-based algorithm to solve the problem, it is feasible to get
significantly improved performance over CPU-based implementations. Problems that
are suitable for computing on the GPU are, in short, ones that consume large amounts
of floating point computing power. These are typically applications that process large
amounts of data, perform many iterations on the data, or both [10, p. 193]. Lindholm
et al. [26] provides an extended list of properties that define GPU-friendly problems,
which they refer to as throughput applications:

High degree of data parallelism
Throughput applications perform many computations on the data elements, and
the elements can be processed completely independently of each other.

Low degree of task parallelism
There is a small amount of independent tasks to be performed, and groups of
threads can cooperate to perform these tasks.
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Intensive floating point arithmetic
Throughput applications perform lots of floating point operations.

Latency tolerance
Throughput applications tolerate the long latency of global memory fetches. The
important thing is the amount of work that is completed in a given time.

Streaming data flow
Throughput applications possess a large amount of data to be processed. High
memory bandwidth is required in order to transfer this data fast. There is rela-
tively little reuse of this data.

Modest inter-thread synchronization and communication
The less inter-thread communication and synchronization an application per-
forms, the more parallel it is. This allows independent execution of threads and
blocks, and transparent scaling, as mentioned previously.

A problem possessing these characteristics is likely to be successfully implemented
on the GPU. That being said, a problem can show good speedup on the GPU even
if it does not fulfill all of the criteria. The following two sections go through a few
problems, not related to the finite element method, that fit the GPU architecture well.
Considerations regarding finite element computations on the GPU, specifically linear
algebra computations, will be discussed in Chapters 4 and 6.

3.4.1 Digital image processing

Some algorithms in digital image processing are inherently data parallel. One such
example is spatial filtering and convolution. In convolution, the value of a pixel in the
output image is calculated by combining the value of the pixel in the input image
with some of its neighboring pixels. A simple example is smoothing of an image
using a uniform 3 ˆ 3 filter. Here, the output pixel value is just the average of its
original value and its eight surrounding pixels. The filtered image will be blurred, or
smoothed. Obviously, all pixels can be processed in parallel. In fact, such problems
are called embarrassingly parallel [16, p. 98], since there is no dependence or need for
communication between threads.

It is easy to outline a CUDA-based algorithm to solve this problem. A naive ap-
proach would be to store the image in global memory, let one thread be responsible
for one pixel and perform a straightforward filtering of the image. However, this
wouldn’t lead to very good performance because of the frequent uncoalesced mem-
ory accesses and the repeated loads of the same values by neighboring threads. A
better solution would be to divide the image into tiles that are as large as the thread
blocks, plus one row/column of padded values on each side to hold neighboring val-
ues. Assigning each tile to a thread block, the threads in each block could cooperate
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to perform coalesced loads of the image tiles into shared memory. Since the shared
memory does not have any restrictions on access pattern to obtain good performance,
we could proceed from here with the naive algorithm.

For a detailed reference on image processing, we refer to the book by Gonzales and
Woods [7]. Several CUDA code examples with convolution can be found in the GPU
Computing SDK [66].

3.4.2 Molecular dynamics

In certain applications related to molecular dynamics, one sometimes have to work
with something called electrostatic potential maps. An algorithm for computing such
maps, called direct Coulomb summation, is highly data parallel and a very good candi-
date for GPU implementation. This section will briefly introduce the algorithm and
discuss its parallelism. For more details about molecular dynamics in general and this
algorithm in particular, we refer to the paper by Stone et al. [32]. Based on this paper,
Chapter 9 of the book by Kirk and Hwu [10] gives a friendly introduction to this topic.

Direct Coulomb summation is an algorithm for calculating the electrostatic poten-
tial value of a point in a three dimensional grid. The grid surrounds a system of
atoms, and all atoms contribute to the electrostatic potential of all grid points. The
contribution of an atom i to a grid point j is simply the charge of the atom divided
by the distance from the atom to the grid point. Given a grid with M points and a
system with N atoms, a straightforward iteration to calculate the electrostatic potential
maps has complexity OpMNq. Even with the simple formula to evaluate per atom, this
algorithm is computationally demanding for large grids and systems.

Since the grid points do not affect each other, the potential at each point can be
calculated completely in parallel. The same goes for the atoms; they do not affect
each other, so each atom’s contribution to all grid points can be calculated in parallel.
To choose which part of a problem to parallelize is a common consideration when
designing GPU algorithms. In this case, however, the atom-centric approach has a
significant downside. Computing the contributions from all atoms in parallel will have
many threads write to the same grid point at once, leading to data races. This entails
using atomic operations, which are costly. Having instead the threads cooperating to
calculate the potential at each grid point, we achieve good parallelism without data
collisions.

3.5 Measuring the performance of parallel programs

When using parallelization techniques to speed up a program, one needs some way
of measuring the resulting performance. This section provides a brief introduction to
performance analysis of parallel programs. Although the present discussion is about
parallel programs, the formulas presented here may also be applied to programs that
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are improved by means of optimizations techniques other than parallelization.

3.5.1 Speedup

When measuring the performance of a parallel algorithm, one usually compares its
performance to an equivalent serial algorithm. The speedup is a factor that says how
many times faster the parallel algorithm is compared to the serial one. Given the serial
run time, Ts, and the parallel run time, Tp, the speedup is defined as

S “
Ts

Tp
. (3.5.1)

The speedup depends on many factors, including the quality of the serial and parallel
implementations, and the hardware on which they are run. In the context of GPU
programming, the relative computing power of the CPU and GPU will have a large
impact on the speedup. The speedup obtained using a low-performance CPU and a
high-performance GPU will be much larger than if the CPU was high-performing.

As such, speedup figures for GPU algorithms are specific to one hardware setup.
Speedup figures for a GPU algorithm bears little meaning without clearly stating what
hardware they are obtained with. A more objective metric to measure is the previously
mentioned flops, the number of floating point operations per second. The amount of
flops that it is possible to obtain is also dependent on the hardware. However, the
flop rate does not depend on the relative performance of the CPU to the GPU, as the
speedup does.

3.5.2 Amdahl’s law

In parallel programming, one is often faced with problems that contain inherently
serial parts. This means that it is only possible to program a portion of the problem
in parallel. This may for example be the case in a program that reads two matrices
from file and multiplies them. The matrix multiplication itself may be run in parallel,
but it may not be possible to read the input files in parallel. Given that this takes a
non-negligible amount of time, the total speedup of the program will be less than the
speedup of the parallel portion.

To calculate the overall speedup that it is possible to obtain for such problems,
we first assume that the serial algorithm has a run time of 1 for some unit of time.
Denoting the parallelizable part of the problem by P, the run time of the serial part
will be p1´ Pq. Assuming that the parallelizable portion can be sped up by a factor Sp,
the total run time of the program becomes p1´ Pq ` P{Sp. Dividing the original run
time by the new run time, we obtain the following expression for the overall speedup,
known as Amdahl’s law:

Stotal “
1

p1´ Pq ` P{Sp
(3.5.2)
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In the limit as Sp approaches infinity, we obtain the maximum possible overall
speedup. As an example, consider the case there 25 percent of the computation is
inherently serial. The portion P is 0.75 in this case, and we get

lim
SpÑ8

1
0.25` 0.75{Sp

“ 4.

Thus, the maximum possible overall speedup is 4 in this case.
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We have seen that using the finite element method involves solving a linear system
of equations. Since we are interested in computational methods for solving problems
with the finite element method, it is relevant to review the theory for numerical so-
lution of linear systems. The field of numerical linear algebra studies algorithms for
performing linear algebra computations. In particular, it seeks to find efficient algo-
rithms to solve linear systems. This chapter provides an introduction to this theory,
and sums up the current state of research into numerical linear algebra on GPUs.

4.1 Theory

This section provides only a very brief introduction to the vast theory of numerical
linear algebra. For more details, the lecture notes by Lyche [39] is a good introduction.

The fundamental problem in linear algebra is a linear system of equations,

Ax “ b. (4.1.1)

Here, A is an m ˆ n matrix, x is a vector of length n and b is a vector of length m.
Though A is rectangular in general, the systems arising from discretization with the
finite element method are most often square, as mentioned in Section 2.1. Techniques
for solving this fundamental problem include direct methods, such as factorization,
and iterative methods. Two examples of such methods, LU factorization and Krylov
subspace methods, are described in the next two sections.

4.1.1 LU factorization

An LU factorization is a factorization A “ LU where A, L, U P Rn,n, L is lower trian-
gular and U is upper triangular. In addition, L has to be unit triangular; that is, it has
to have ones on the diagonal.

As an example, we take a simple 2ˆ 2 matrix,
„

a b
c d



“

„

1 0
l1 1

 „

u1 u3

0 u2



“

„

r1 u3

l1u1 l1u3 ` u2



. (4.1.2)
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Equating the elements and solving the equations, we get

L “
„

1 0
c
a 1



,

U “

„

a b
0 ad´bc

a



.

The point of finding the LU factorization of A is that the system (4.1.1) may be rewrit-
ten as two simpler systems:

Ax “ LUx “ b ñ
"

Ly “ b
Ux “ y

. (4.1.3)

These two systems may now be solved directly by forward and backward substitution.
There exist many different algorithms for computing the LU factorization of a ma-

trix. Details may be found in any book on direct methods, for instance the book by
Davis [5].

4.1.2 Krylov subspace methods

Krylov subspace methods (or simply “Krylov methods”) are iterative methods, which
means they generate a sequence of approximations txnu to the solution x˚ of the sys-
tem. Iterative methods in general have several advantages over direct methods. First,
using direct methods for large systems may consume too much memory and compu-
tational power to be feasible in practice [17, preface]. In addition, iterative methods are
easier to implement in parallel. Before we introduce the methods themselves, we cite
the definition of a Krylov space:

Definition 4.1. Given a nonsingular A P Cn,n and y ‰ 0 P Cn, the nth Krylov subspace
KnpA, yq generated by A and y is

Kn :“ KnpA, yq “ spanpy, Ay, . . . , An´1yq. (4.1.4)

It does not seem as if mathematicians have agreed upon a common definition of a
Krylov method. Several definitions exist, some more detailed and exact than others.
To give an impression of what approach these methods take, two such definitions will
be cited here. The first is taken from an article by Ipsen and Meyer [22]:

Definition 4.2. A Krylov method is a method that solves the system Ax “ b by repeatedly
performing matrix-vector multiplications involving A.

This definition is not very detailed, neither does it say anything about the Krylov
subspaces. A more in-depth definition is due to Gutknecht [38]:
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Definition 4.3. A Krylov method for solving the system Ax “ b is an iterative method
starting from some initial approximation x0 and the corresponding residual r0 :“ b´ Ax0 and
generating for all, or at least most n, until it possibly finds the exact solution, iterates xn such
that

xn ´ x0 “ qn´1pAqr0 P KnpA, r0q (4.1.5)

with a polynomial qn´1 of exact degree n´ 1. For some n, xn may not exist or qn´1 may have
lower degree.

The exceptions mentioned, and the vague expressions “for all, or at least most n”,
are due to some special cases that may occur using certain Krylov methods on certain
types of problems. Gutknecht also states the following lemma related to the residuals
rk:

Lemma 4.1. The residuals rn of a Krylov method satisfy

rn “ pnpAqr0 P r0 ` AKnpA, r0q Ď Kn`1pA, r0q, (4.1.6)

where pn is a polynomial of degree n, called nth residual polynomial, which is related to the
polynomial qn´1 of (4.1.5) by

pnpζq “ 1´ ζqn´1pζq (4.1.7)

In particular, it satisfies the consistency condition pnp0q “ 1.

The main idea behind Krylov methods is to generate a sequence of approximate
solutions txnu that lie in the affine space x0 `KnpA, r0q. We want these solutions to
be such that the corresponding residuals rn P Kn`1pA, r0q converge to 0. In fact, if the
residuals are linearly independent, the residual will equal 0 after a finite number of
iterations [38, p. 4].

The Conjugate Gradient Method

Several different Krylov methods exist, with two of the most well known being the
Conjugate Gradient method [21] and the Generalized Minimal Residual method [31].
The former has the limitation that it can only be applied to systems where A is a
symmetric positive definite matrix, whereas the latter is developed to be applicable
to nonsymmetric systems. The Conjugate Gradient algorithm is listed in Algorithm
4.2. It takes as input the matrix A, vector b and an initial guess to the solution, x. In
addition, it takes a tolerance ε and the maximum number of iterations to perform, imax.
The iteration stops when the maximum number of iterations have been performed, or
when ||ri|| ď ε ||r0||. Further details about the Conjugate Gradient method are omitted
here. A very thorough and intuitive introduction to the method is given by Shewchuk
[49].
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Algorithm 4.2 The Conjugate Gradient method

i “ 0
r “ b´ Ax
p “ r
δ “ rTr
δ0 “ δ

while i ă imax and δ ą ε2δ0

t “ Ap
α “ δ

pT t
x “ x` αp
r “ r´ αt
δold “ δ

δ “ rTr
β “ δ

δold

p “ r` βp
i “ i` 1

Preconditioning

In practice, Krylov methods often converge slowly [38, p. 5]. To avoid this, they are
almost always used with preconditioning. This means replacing the system Ax “ b with

P´1Ax “ P´1b,

where we let Â “ P´1A, b̂ “ P´1b, and solving the system Âx “ b̂ instead. This type
of preconditioning is called left preconditioning, but there also exist other types of pre-
conditioning where the matrix P is applied from the right, or as a split preconditioner
consisting of two matrices. Ideally, the matrix P should be a good approximation to A
[11, p. 770] such that P´1 is an approximate inverse of A; i.e., P´1A « I.

A simple form of preconditioning, which will be used later in this project, is diagonal
preconditioning, often called Jacobi preconditioning. With this scheme, the precondi-
tioning matrix P is chosen as the diagonal of A; that is, P “ diagpAq.

More details on Krylov methods and preconditioning can be found in the book by
Saad [17], a standard reference on iterative methods for sparse linear systems.

4.2 Basic linear algebra subprograms

The solution of linear systems is the kind of computation that is of most interest in the
context of the finite element method. However, in relation to numerical linear alge-
bra, it is also relevant to discuss more basic linear algebra computations. Algorithms
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for computing e.g. matrix-matrix products and matrix-vector products are essential
building blocks in more complex algorithms, and efficient implementations of these
are thus of high importance.

The de facto standard API for libraries that implement such basic computations is
called Basic Linear Algebra Subprograms (BLAS) [53]. This interface provides specifica-
tions for a large set of functions for basic linear algebra computations. All functions
are given abbreviated names based on the computation they perform and the data
type of the values. For instance, the GEMV routine (general matrix vector multiply)
exists in the following four versions:

SGEMV For single precision real numbers.

DGEMV For double precision real numbers.

CGEMV For single precision complex numbers.

ZGEMV For double precision complex numbers.

The name xGEMV can be used to refer to the general routine, regardless of data type.
The BLAS interface is divided into three levels, which are defined as follows:

Level 1
The first level consists of functions for performing vector computations, as well
as computations whose result is a scalar, such as dot products and vector norms.
One example of a level 1 BLAS function is xAXPY,

y “ αx` y,

where α is a scalar and x and y are vectors of equal length. The name AXPY is
an abbreviation of “alpha x plus y”.

Level 2
The functions in level 2 BLAS are concerned with matrix-vector operations, such
as the xSYMV function,

y “ αAx` βy,

for scalars α and β, a symmetric nˆ n matrix A and vectors x and y of length n.

Level 3
Level 3 BLAS routines perform matrix-matrix operations. One such routine is
the xGEMM (general matrix multiply) function,

C “ αAB` βC,

for scalars α and β, matrices A P Rmˆk, B P Rkˆn and C P Rmˆn.

Optimized BLAS implementations exist for several different hardware architectures
[53, FAQ, sec. 5]. In particular, NVIDIA provides an implementation for their GPUs
called cuBLAS [56].
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4.3 Sparse linear algebra on GPUs

Sparse linear algebra computations are involved in many fields within computational
science. High performance of such computations can thus be critical to overall perfor-
mance. Some characteristics of sparse linear algebra makes it a challenge to implement
effectively on the GPU, and it is as such not an obvious candidate for GPU implemen-
tation. Regardless, its importance in computational science have made programmers
perform extensive research into effectively utilizing the GPU for sparse linear algebra.

This section seeks to give an overview of where the parallelism lies in linear alge-
bra and what makes it challenging to exploit this parallelism on the GPU for sparse
problems. To this end, a comparison with dense linear algebra is useful.

4.3.1 Data parallelism

The data parallel nature of many linear algebra computations is obvious. We list three
kernels and identify where the parallelism lies:

Vector inner product
The inner (or dot) product of two vectors lies at the heart of many linear algebra
problems. Given two vectors of equal length, the inner product is computed by
multiplying the elements of the vectors pairwise, then summing all the products
to one scalar value. The first part of this computation is inherently parallel and
straightforward to implement, e.g. using one CUDA thread per pair of elements.
The reduction step is also relatively easy to implement in parallel, though some-
what harder to optimize. See Section 5.3.1 of the book by Sanders and Kandrot
[18] for a thorough discussion of vector inner product in CUDA.

Matrix-matrix multiplication
When computing the product of two matrices, every output item can be com-
puted independently of each other. A result matrix with dimensions Mˆ N can
be computed by Mˆ N independent dot products of rows and columns in the
input matrices. Using CUDA, this could for example be implemented using one
thread per output value. With this choice of decomposition, all dot products are
computed concurrently, but each dot product itself is computed serially by one
thread. Another choice could be to use several threads per output value, and
compute each dot product itself in parallel.

Matrix-vector multiplication
Computing the matrix-vector product is basically just a special case of matrix-
matrix multiplication. The parallelism is the same: every output element can be
computed in parallel, using e.g. one thread per row of the matrix.

In theory, all matrix-matrix multiplications could be computed using the same algo-
rithm, regardless of the characteristics of the matrix. The same goes for matrix-vector
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multiplications and other problems involving matrices. However, to achieve decent
performance, algorithms must take the structure and properties of the matrix into ac-
count. Specifically, most algorithms for performing matrix computations are designed
either for dense or sparse matrices.

4.3.2 Dense linear algebra

Dense matrices have few zero values and lack the sparsity patterns that sparse matrices
have. Hence, dense matrices can be stored explicitly in a full matrix storage format,
for example as two-dimensional arrays of values. Such data structures provides direct
random access, and the values can be stored in contiguous memory locations. Algo-
rithms exhibit a regular memory access pattern when iterating such structures, which
means they map well to the GPU [36]. This is the case since it is easier to perform
coalesced reads and utilize the memory efficiently with regular than irregular mem-
ory access patterns. Dense linear algebra algorithms on the GPU are therefore often
compute limited [36].

4.3.3 Computational characteristics of sparse linear algebra

As mentioned, one could in principle implement sparse matrix computations exactly
the same way as one does dense computations. This would be a huge waste of memory
though, as storing a sparse matrix in a dense format implies storing a lot of zero
values explicitly. In practice, one always uses a sparse matrix storage format, such as
compressed sparse row (CSR), sometimes referred to as compressed row storage (CRS).
Given the following matrix,

A “

»

—

—

—

—

—

–

0 4 0 1 0
7 0 0 0 3
0 0 8 0 0
0 9 0 0 2
6 5 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

the CSR representation is

data “ r4, 1, 7, 3, 8, 9, 2, 6, 5s,

indices “ r1, 3, 0, 4, 2, 1, 4, 0, 1s,

ptr “ r0, 2, 4, 5, 7, 9s.

These arrays contain the following information:

§ data contains all the values of A in row-major order; that is, they are stored from
left to right, top to bottom. The length of data, which is the number of nonzero
values of the matrix, is often abbreviated nnz.
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§ indices also has length nnz, and contains the column index for each value of
data. Hence, if datarks “ aij, then indicesrks “ j.

§ ptr contains the offsets into data and indices for each row. For instance, the
values of the fourth row (with row index 3) start at index 5 in data, therefore,
ptr[3] = 5. For an M ˆ N matrix, ptr has length M ` 1, with nnz as the last
entry.

Note that the values in data are sorted with respect to rows, but the values corre-
sponding to a given row may not be sorted with respect to columns. Also note that
feature of the CSR format is that the difference of two adjacent entries in ptr equals
the number of nonzeros of a particular row. For instance, there is one nonzero in row
three, hence ptr[3]-ptr[2] = 1.

In this example, the CSR representation stores 24 numbers while the dense rep-
resentation stores 25. While this storage saving is not very impressive, the storage
savings are significant for large, sparse matrices. In general, a dense representation
of an M ˆ N matrix will store MN values, while the CSR representation will store
2ˆ nnz`M` 1. Hence, for CSR to be more storage efficient than a dense format, the
following requirement must be met:

2ˆ nnz`M` 1 ă MN ñ nnz ă
MpN ´ 1q ´ 1

2
. (4.3.8)

The average of this limit for matrices of varying dimensions is around half the total
number of elements. In our example, this limit is 9.5. Since A has 9 nonzeros, we are
just below the limit, which explains the storage saving of a single value.

We see that the CSR format does not provide any means of direct access to an
element of A. When retrieving element aij, the ptr array must first be checked to
find the parts of indices and data that correspond to row i. Then these parts must
be searched to find the column index j and the value aij. Accessing matrix values in
this way may pose a challenge when implementing certain algorithms on the GPU,
since it may be difficult to derive general algorithms that perform coalesced access
and achieve good performance for arbitrary matrices.

4.3.4 Summary of research on sparse linear algebra on GPUs

As stated in Definition 4.2, matrix-vector multiplication is repeatedly applied in Krylov
methods. Sparse matrix-vector multiplication, often abbreviated SpMV, is hence of
importance in sparse problems. Bell and Garland [36] point out that SpMV represents
the dominant computational cost in many iterative methods. Because of its significant
role, there has been conducted a lot of research into implementing SpMV effectively
on GPUs.

Bell and Garland [36] have conducted an extensive study of SpMV on the GPU.
They explore different sparse matrix storage formats and discuss their properties and
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possible optimizations. For the CSR format, they evaluate a parallel granularity of one
thread per row of the matrix. Even though each thread would then access contigu-
ous indices and values in memory, they would be accessed sequentially, resulting in
uncoalesced access. They note that instead using a 32-thread warp per row ensures
coalesced access, but will lead to idle threads when there are fewer than 32 nonzeros
per row. They also propose a hybrid format, which is simply a combination of two
other formats. In their benchmarks, this hybrid format is performance-wise among
the best of the evaluated formats. For further details about storage formats and their
performance, we refer to their paper [36]. A general note is that the performance of
different formats vary with the structure and the sparsity pattern of the matrix.

Baskaran and Bordawekar [35] further explore optimizations of an SpMV kernel
based on the CSR format. To facilitate coalesced access, they suggest a zero padding
scheme such that the number of values stored in the data array for each row is a
multiple of 16.1 Since the values in data corresponding to a given row may not be
aligned, they suggest an improved access scheme to avoid accessing the whole row in a
non-coalesced manner. Since elements of the multiplied vector are reused across rows,
they implement caching of this vector. The performance of caching in texture memory
is compared against caching in shared memory. The texture caching option comes out
as the most efficient. Their implementation outperforms the CSR-based algorithms
presented by Bell and Garland for a series of test matrices. When compared to the
hybrid format however, their approach is less efficient in some cases. They conclude
that their overall performance is on par or better than the performance demonstrated
by Bell and Garland.

Buatois, Caumon, and Lévy [20] have implemented a preconditioned conjugate gra-
dient solver on the GPU. They use a blocked version of the CSR format, which gives
fewer memory fetches per SpMV than the regular CSR format. This shortens the
length of the ptr and indices arrays, but also implies storing some unneeded (i.e.,
zero) values.

Markall [40] provides an extensive discussion of SpMV on GPUs. He identifies the
performance issues and lists several performance optimizations, and evaluates existing
GPU-based SpMV implementations. As such, his report [40] provides a good reference
for further study of the research into this field.

1 Memory operations in previous GPU architecture generations were performed per half-warp, i.e., a
group of 16 threads.
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When solving real-life problems with the finite element method, one often uses some
kind of finite element software. The FEniCS Project [12, 76] is one such software
project, which uses novel programming techniques to ensure both user-friendliness
and computational efficiency. This chapter will go through the components of the
FEniCS Project. Emphasis will be put on the underlying design of the project and how
it is used, rather than implementation details.

5.1 Overview

In the introduction to the finite element method, we saw that it involves several math-
ematical aspects, including the differentiation and integration of basis functions and
the solution of linear systems. The FEniCS Project seeks to automate all these aspects,
leaving only a minimal amount of work to the user. In order to do this, the project
is comprised of several components that take care of the different tasks involved in
automating the finite element method.

The structure of the FEniCS Project is outlined in Figure 5.1 on the following page.
The figure indicates the layout of the different components and how they interact with
each other. DOLFIN is a software library that acts as the main user interface to the
FEniCS Project. When using the FEniCS Project, the user writes an application that
imports and uses DOLFIN. The other components are in turn imported by DOLFIN,
but may also be used directly by the user. The most central among the other compo-
nents are UFL, FFC and UFC. FFC relies on several different backends, including FIAT,
Instant and FErari. FIAT is a backend for the evaluation of basis functions, Instant is a
just-in-time compiler, and FErari is an optimizing backend. FErari is optional and not
needed for using DOLFIN, while the former two are essential parts of the toolchain.
The Viper module is a stand alone plotting utility that is imported alongside DOLFIN.
Viper allows plotting of DOLFIN functions, meshes, finite elements and more.

Several external libraries are used to perform different tasks in the system. These
include SCOTCH [72]; a mesh partitioning library, CGAL [55]; the Computational
Geometry Algorithms Library and MPI [69]; the Message Passing Interface for parallel
computing. In particular, the user may choose among different linear algebra backends
for constructing vectors and matrices and solving linear systems. Among these are
PETSc [52], MTL4 [70], Trilinos [79] and uBLAS [80].

The FEniCS Project heavily relies on the concept of code generation. This means that
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Figure 5.1: Overview of the structure of the FEniCS Project [14].

a program generates code for another program. This code is compiled and used in the
next stages of the program execution. Details on the code generation can be found in
Section 5.4.

5.2 The finite element library

DOLFIN [27, 14] is a C++/Python library that is written in C++, with a Python inter-
face semi-automatically generated by SWIG [75]; in addition, some parts of the Python
interface is hand-written. Below is a simple DOLFIN program for solving Poisson’s
equation, given in Eq. (2.1.5), on the unit square using piecewise linear functions. This
program is written using DOLFIN’s Python interface, as is all other DOLFIN examples
in this text. A hardcopy of the output of the plot-command can be seen in Figure 5.2.

Python code
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from dolfin import *

# Define mesh , function space , trial and test functions
mesh = UnitSquare(40,40)
V = FunctionSpace(mesh , ’Lagrange ’, 1)
u = TrialFunction(V)
v = TestFunction(V)

# Define the Dirichlet boundary , x = 0 or x = 1
def boundary(x):

return near(x[0], 0.0) or near(x[0], 1.0)

# Define Dirichlet boundary value
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

# Define source function and Neumann boundary value
f = Expression(’10*exp(x[0] + x[1])’)
g = Expression(’cos(x[0] + x[1])’)

# Define the bilinear and linear forms
a = inner(grad(u), grad(v))*dx
L = f*v*dx - g*v*ds

# Compute and visualize solution
u = Function(V)
solve(a == L, u, bc)
plot(u, interactive=True)

We see that when defining a problem in DOLFIN, the syntax lies close to the mathe-
matical notation used in Chapter 2. This code will not be dissected in detail. Rather,
it will serve as a reference when describing the components of the FEniCS Project that
are invoked in the different stages of the program.

When comparing the above code to the forms and function spaces for Poisson’s
equation that were presented in Section 2.3, we see that there is a difference with
regard to the function spaces. Only a single function space is defined in the code
(using the DOLFIN FunctionSpace class), whereas the mathematical definition had
one test function space and one trial function space. This difference is due to the fact
that in DOLFIN, Dirichlet conditions are enforced on the linear algebra level. They are
hence not part of the definition of a DOLFIN FunctionSpace. Since the only difference
between the test and trial spaces for Poisson’s equation were the boundary conditions,
a single FunctionSpace instance can be used in the code.

5.2.1 General design

As mentioned, some parts of DOLFIN relies on code generation. Specifically, code gen-
erated by FFC is used when assembling the linear system of equations. The assembly
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Figure 5.2: Plot of the solution of Poisson’s equation.

algorithm, as described in Algorithm 2.1, is implemented generically in DOLFIN. The
inner loop of this algorithm depends on the problem, and is handled by the generated
code.

In the previous code example, the assembly was performed behind the scenes. Ex-
plicit assembly of the system can be performed in DOLFIN by the following code:

Python code
# Define bilinear and linear forms
a, L = ...
# Define a list of boundary conditions
bcs = [bc1 , bc2 , ...]
# Assemble LHS and RHS and apply boundary conditions
A = assemble(a)
b = assemble(L)
[bc.apply(A, b) for bc in bcs]

The parts of DOLFIN that relies on code generation are isolated from the rest of
the system. The other parts are implemented as reusable library components. Among
these are computational meshes, representations of functions, finite elements, function
spaces and variational forms, as well as handling of input and output. In addition,
there are algorithms and data structures for linear algebra.

DOLFIN partitions user input into two subsets [27, p. 6]: the input that must be
handled by specialized (i.e., generated) code, and input that can be handled by the
general purpose library functions. The first set of data is compiled into C++ code by
FFC, and the second set is used as input to this code. For a thorough explanation of
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the design of DOLFIN, see the paper by Logg and Wells [27].

5.2.2 Linear algebra

DOLFIN relies on one of several backends to perform linear algebra computations.
These backends are integrated through a generic, unified interface. Thus, the applica-
tion code is often identical regardless of which backend is used. This interface implies
that wrappers have to be written for each backend. These wrappers will necessarily
only expose the functionality defined in the interface. Therefore, the user may access
the underlying wrapped objects to operate directly on them if needed [27, p. 8].

The interface implementation is based on C++ polymorphism. The GenericTensor
class defines the top-level superclass for all tensors of arbitrary rank. This allows for
the implementation of a generic assembly algorithm that can assemble an element
tensor of any rank. Furthermore, the classes GenericMatrix and GenericVector are
subclasses of GenericTensor . They act as superclasses for the backend-specific imple-
mentations of matrices and vectors.

When solving linear systems, the user has fine-grained control over the process.
One may choose between different linear solvers and preconditioners and adjust their
parameters to fit individual needs. In the example program for solving Poisson’s
equation, the call to the solve function did not specify anything about how to solve
the system, so the default linear solver and preconditioner was used. One may also
choose to use a specific solver and preconditioner by passing the names of these as
optional arguments:

Python code
# Solve using Conjugate gradients with Jacobi preconditioner
solve(A, x, b, ’cg’, ’jacobi ’)

It is also possible to create an instance of the KrylovSolver class. This makes it possible
to adjust various solver parameters, such as the tolerance for the iteration and the
initial guess for the solution vector:

Python code
# Create Generalized minimal residual method solver with
# default preconditioner and adjust its parameters
solver = KrylovSolver(’gmres’)
solver.parameters.nonzero_initial_guess = True
solver.parameters.relative_tolerance = 1e-12
solver.solve(A, x, b)

If one wants to switch to a different linear algebra backend, this can be done by chang-
ing a parameter in DOLFIN’s global parameter set:
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Python code
# Choose a different linear algebra backend
# When switching backends , the system must be reassembled
parameters.linear_algebra_backend = ’Epetra ’
A, b = assemble(a), assemble(L)
solve(A, x, b)

5.3 The finite element form language

The Unified Form Language (UFL) [2] is a domain specific language in which a prob-
lem must be formulated in order to be solved by DOLFIN. It provides a rich language
for defining finite elements and finite element forms. The example program from Sec-
tion 5.2 used UFL functionality to define the problem. More precisely, it used UFL
integrated with the Python interface of DOLFIN. The problem was defined as:

UFL code
a = inner(grad(u), grad(v))*dx
L = f*v*dx - g*v*ds

Further details about representation of expressions, computation of derivatives and
other aspects of UFL are given by Alnæs [2].

5.4 The finite element form compiler

The assembly algorithm, though generic in nature, has a highly problem specific inner
loop. It involves evaluating the local-to-global mapping ιT and the local element tensor
AT. Hence, if one were to write a finite element program from scratch, one would need
to write code for computing both ιT and AT. This process is automated by the FEniCS
Form Compiler (FFC) [24, 15].

When executing a FEniCS application that contains a description of a bilinear form,
FFC compiles this expression into C++ code for evaluating ιT and AT. More specifi-
cally, one specifies multilinear forms in UFL which are passed as input to FFC, which
in turn outputs C++ code that conforms to the UFC interface (see Section 5.5). This
is illustrated in Figure 5.3. When writing a FEniCS application in C++, this compi-
lation of the forms must be done explicitly. The forms are defined in a UFL-file that
is compiled using the ffc command line compiler. The resulting header file is then

UFL
FFC

UFC

Figure 5.3: FFC generates UFC compliant code from a problem specification in UFL [15].
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included in the C++ program. When using Python, this process is automated and
happens behind the scenes.

Although using the finite element method to solve a PDE usually only involves
linear and bilinear forms, FFC is designed to accept multilinear forms of any arity ρ.
This is covered in depth in the paper on FFC by Kirby and Logg [24]. To illustrate
multilinear forms, we let tViu

r
i“1 be a set of discrete function spaces defined on a

triangulation T of Ω [24, p. 423]. Then, a is a multilinear form,

a : V1 ˆV2 ˆ . . .ˆVr Ñ R. (5.4.1)

We let tφ1
i u

M1
i“1, tφ2

i u
M2
i“1, . . . , tφr

i u
Mr
i“1 be bases for V1, V2, . . . , Vr. We also define a multi-

index i “ pi1, i2, . . . , irq. The element tensor A of rank r is then defined by

Ai “ apφ1
i1 , φ2

i2 , . . . , φr
irq. (5.4.2)

In the previous examples, we considered a bilinear form a, which makes A a matrix,
while in the case of a linear form, A is a vector.

As we have seen, the input to FFC is limited to multilinear forms. Domain specific
knowledge may hence be exploited in order to generate efficient code [24, p. 420].

5.5 Other components

Among the other components of the FEniCS Project, two of the most important are
UFC and FIAT. The UFC (Unified Form-assembly Code) [3, 19] interface specifies the
structure and layout of code generated by FFC to be used by DOLFIN. That is, UFC
provides an interface between problem specific (problem specified in UFL, compiled
by FFC) and general purpose (DOLFIN) parts of the program.

The Finite Element Automatic Tabulator (FIAT) [23, 8] is a module for evaluation of
finite element basis functions. It is used a basis function backend by FFC, and is only
rarely used directly by the user.

Details about the remaining components may be found in Automated Solution of
Differential Equations by the Finite Element Method [12].
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The previous chapters have given a thorough introduction to the background the-
ory that lays the foundation for this project. This chapter will review some previous
related work towards using GPUs for finite element computations in relation to the
FEniCS Project. However, we will first discuss some further requirements of the im-
plementation that is provided as part of this project.

6.1 Requirements of the implementation

In Chapter 1, we saw how the library approach is advantageous with respect to
backend- and development-specific issues. When it comes to the frontend of the sys-
tem; i.e., the parts of the system that the users interact with, there are no specific
advantages of choosing a library approach over hand-coding. The choice of approach
mainly affects the backend, and the developer remains in full control over the fron-
tend. When introducing new functionality in a system, it must be presented to the
user through a clear and efficient user-interface, regardless of how the functionality
is implemented behind the scenes. It must also be straightforward to configure and
build the software with the new features enabled. The following two requirements are
set for these parts of the implementation:

§ The user interface should be left as simple as possible. The user should be able
to activate and deactivate GPU acceleration with easy-to-use options, and the
general usage of the software should be the same whether or not one chooses
to use GPUs. This philosophy of simplicity is central throughout the FEniCS
Project, and is important to retain in this implementation.

§ The distribution of the software should be as streamlined as possible. Due to the
nature of how some of the dependencies are distributed, the process cannot be
fully automated at this time. However, the goal is to achieve as much automation
as possible.

The problem statement presented in Chapter 1 specified the functionality to focus on
in this project. Here, a single requirement is set for the functionality provided through
the implementation: completeness. This means that the parts of DOLFIN that are GPU-
accelerated should support all existing DOLFIN features without any particular limi-
tations. For instance, all forms that can be assembled by the existing implementation
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must be possible to assemble by the new one, and so forth. The implementation must
also be usable from both the C++ and Python interfaces of DOLFIN.

The only limitations accepted are those that are hardware related. For instance, the
lower amount of memory on the GPU may result in the GPU-based implementation
being unable to solve as large problems as the host, since the latter has more memory.

Having defined the requirements of a GPU-accelerated implementation of the FE-
niCS Project, we will review some previous related work. There are three previous
projects that have worked with GPU computing in some relation to the FEniCS Project.
Although they have had different approaches and goals than this project, it is impor-
tant to review their results to see their relevance to this project.

6.2 Generating CUDA code from UFL forms

Markall, Ham, and Kelly [28] have presented a prototype source-to-source compiler for
finite element computations on the GPU. Their compiler transforms variational forms
specified in UFL into CUDA code for assembling the linear system of equations on the
GPU. The linear system is also solved on the GPU using a CUDA-implementation of
the Conjugate Gradient method. Their work is directed towards integrating UFL with
the Fluidity [63] software project. The work presented in their paper is based on the
master’s thesis by Markall [41].

In the FEniCS Project, UFL is used in conjunction with FFC to ensure both general-
ity and efficiency of finite element programs. The rationale for integrating UFL with
Fluidity is similar; they want to be able to produce code for different target hardware
architectures without changing the high-level description of the problem. An under-
lying design requirement of this compiler was that it should have platform indepen-
dence built in, to ease modification to support other architectures. They achieved this
by splitting the compiler into a frontend and a backend. The frontend generates an in-
termediate representation of the problem, which the backend parses to generate code
for a specific architecture. To support other architectures, you would thus only have
to write a new backend for the compiler.

In his master’s thesis, Markall points out that the insertion of the local matrices into
the global matrix is the main performance bottleneck during assembly on the GPU.
This has two reasons:

§ When assembling in parallel on the GPU, several local matrices are inserted
concurrently. It may happen that several matrices have values that are to be
inserted at the same index. Hence, several threads may try to add to the same
location in the global matrix at once, leading to data races. To avoid this problem,
costly atomic operations have to be used.

§ Recall the characteristics of the CSR matrix storage format discussed in Section
4.3.3: when adding to the global matrix, the sparsity pattern of the matrix must

53



6 Project requirements and related work

be searched, which leads to uncoalesced memory accesses. This, in turn, leads
to bad utilization of the memory bandwidth.

Markall, Ham, and Kelly propose an alternative approach to avoid these issues.
Since they use a Conjugate Gradient (CG) solver to solve the linear system, they do
not need the global assembly of the matrix A at all. This is due to the fact that
in the Conjugate Gradient method, listed in Algorithm 4.2, A is only needed for the
computation of the matrix-vector product y “ Av. They provide an alternative method
for computing this product, called the Local Matrix Approach (LMA):

y “
´

AT pAepAvqq
¯

.1 (6.2.1)

Here, Ae is a block diagonal matrix where the i-th block is the i-th local element
matrix. The matrix A represents the local-to-global mapping. This formula computes
the matrix vector product y “ Av without having an explicit representation of A. The
right-hand-side vector b, however, must be explicitly assembled since it is required by
the CG algorithm. They propose to assemble it by a similar approach, using a sparse
matrix vector product instead of incremental insertion. All details about the Local
Matrix Approach can be found in their paper [28].

The LMA avoids global assembly altogether, but introduces a matrix-vector product
that is 2.5 times more costly than the standard one involving an assembled matrix
[28, p. 1819]. Hence, there is a tradeoff between the decrease in assembly time and
increase in matrix-vector product computation time. It can then be assumed that a
problem that converges fast using the CG algorithm will benefit from this approach.
This is because fewer CG iterations leads to fewer matrix-vector products. If, however,
many CG iterations are needed, traditional assembly (which they refer to as the Addto
algorithm) might be favorable.

Their benchmarks show that the LMA coupled with matrix-vector product based
assembly of b performs substantially better than the classic assembly algorithm on the
GPU for a given discretization of the advection-diffusion equation.

6.3 Finite element integration in CUDA using FFC

Knepley and Terrel [25] build on the work by Markall, Ham, and Kelly to perform finite
element integration on GPUs. They base their work on UFL and FFC, and provide
CUDA kernels to perform the computation of the local element tensors.

Similarly to the compiler discussed in the previous section, FFC produces an in-
termediate representation of the problem when processing a form specified in UFL.
Knepley and Terrel use this intermediate representation as input to their CUDA ker-
nels. Hence, they are able to provide generic kernels that accept “any” equation as

1 Note here that A “ AT AeA, but it is normally not computed by performing two matrix-matrix multi-
plications. Rather, the assembly algorithm described in Section 2.2 is used.
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input, using the form specification and translation tools already provided as part of
the FEniCS Project.

Their work is only concerned with efficient computation of local element tensors,
and does not cover global matrix assembly and the solution of the linear system. A
stated goal of this work is to later include it in PETSc and the FEniCS Project.

6.4 A CUDA-based implementation of DOLFIN and FFC

In his master’s thesis, Rathgeber [48] also builds on the work by Markall, Ham, and
Kelly, to provide a complete GPU-based implementation of DOLFIN and FFC. He
extends FFC to generate CUDA code from UFL forms, and extends DOLFIN with GPU
counterparts of many of the existing classes, including meshes, function spaces, forms,
matrices and vectors. This enables him to implement assembly and solve entirely on
the GPU, with all necessary data residing in GPU memory throughout the whole
computation. The generated code is not fully UFC compliant, and is therefore used in
a specialized assembly algorithm. In this algorithm, the loop over cells is replaced by
calls to CUDA kernels that operate on all cells in parallel [48, p. 29].

Rathgeber implements both the Addto algorithm and the Local Matrix Approach
on both the GPU and the CPU and benchmarks these against each other. He identifies
the number of Krylov solver iterations needed in order for the Addto algorithm to
perform better than the LMA for several problems. He notes that insertion of the local
matrix is very costly for higher order problems, due to the larger size of the local
matrix. Thus, he concludes that the matrix-free approach is particularly beneficial for
such problems.

In conclusion, he measures a total speedup between 1.5 and 3 for the whole process
of assembly and solve for some different test problems. These speedups are measured
for the whole problem solving process, including data transfer to and from the GPU.

This GPU-based implementation of DOLFIN represents an extension of the stan-
dard implementation. Compared to the set of functionality in the standard version of
DOLFIN, the GPU-enhanced parts in this implementation has some limitations. The
most significant of these are the following:

§ Only a Conjugate Gradient solver is implemented. Hence, the implementation is
limited to solving symmetric, positive definite systems.

§ Dirichlet boundary conditions are not supported.

§ There is apparently no support for DOLFIN’s Python interface. The users need
to write their forms in .ufl-files, compile them by invoking FFC on the com-
mand line, then compiling the resulting .cu-file with nvcc, the NVIDIA CUDA
compiler. Finally, the program must be compiled and linked with the DOLFIN
library.
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6.5 Conclusion of review

The scope and focus of the related work varies. Common to all is the use of UFL as a
means for providing a high-level specification of the problem, and that the problem is
compiled to CUDA code using a form compiler. Hence, they have all worked towards
computing the local element tensors on the GPU.

Knepley and Terrel have efficient computation of the local element tensors as their
sole focus. Markall, Ham, and Kelly also investigate efficient alternatives to global
assembly, and use a GPU-based Conjugate Gradient solver to solve the resulting sys-
tem. Their work is oriented around the Fluidity software library. Rathgeber provides a
nearly complete GPU-based implementation of DOLFIN, subject to some limitations,
using the same methods as Markall, Ham, and Kelly.

However, these implementations are prototypical in nature, and does not provide
functionality that can be easily leveraged into the FEniCS Project, especially not in the
form of general purpose library functions. As such, this current project can not build
directly upon their results. However, there may be projects in the future that attempt
to integrate GPU computing in the FEniCS Project via a different approach. In that
case, the results of the work reviewed here may be of definite interest.
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linear algebra

The task of this project is to integrate a GPU-accelerated linear algebra library with the
FEniCS Project. There exist several libraries for performing linear algebra computa-
tions on graphics processors. This chapter aims to evaluate the current status of these
libraries and discuss their suitability for integration with the FEniCS Project. Note that
this chapter is based on the status of the libraries as of January 2012, so the state of
these libraries may have changed since the time of writing.

7.1 Requirements and properties

For a candidate library to be at all suitable for integration, it must fulfill certain criteria,
which are set as follows:

§ It must be distributed in the form of a library that can be used from other appli-
cation code; that is, it must not be a stand-alone application.

§ It must be distributed under a free/open license.

§ It must be written for use with C++ applications.

§ It must be made for sparse linear algebra computations.

There are several libraries on the market today that fulfill some or all of the above
requirements. The libraries that fulfill all requirements, as well as a couple of libraries
with a proprietary license, will be surveyed further. The libraries with proprietary
licenses are effectively ruled out as candidates from the start, but it is interesting to
take a further look at them to compare them to the free alternatives. For each surveyed
library, each of the following properties will be considered:

§ Functionality; that is, which features the library provides.

§ Performance; that is, the performance reported by previous studies of the library.

§ To what extent it is actively maintained and supported.

§ Whether it is based on CUDA or OpenCL (or both).

§ How beneficial it is to integrate with the FEniCS Project; that is,
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Library Interface
to the GPU

Under active
development

License

CULA CUDA Yes Proprietary
Cusp CUDA Yes Apache 2.01

SpeedIT CUDA Yes Proprietary/GPL
cuSPARSE CUDA Yes Open2

ViennaCL OpenCL Yes MIT3

PETSc CUDA Yes Open4

1 http://www.apache.org/licenses/LICENSE-2.0
2 Redistributable under the terms of the CUDA Toolkit End-user

License Agreement.
3 http://www.opensource.org/licenses/MIT
4 http://www.mcs.anl.gov/petsc/documentation/copyright.

html

Table 7.1: Some properties of the surveyed libraries.

– Does the library provide any functionality of particular interest?

– Does choosing this library imply any complications to the DOLFIN code-
base? In other words, how “clean” can the implementation be expected to
be?

Some of the libraries will be deemed unfit for integration based on for instance li-
censing or lack of functionality. All of the above properties will not necessarily be
discussed in depth for these libraries.

7.2 The libraries

Table 7.1 sums up some of the properties of the libraries that were found. More
information about each of the libraries follows below.

CULA

CULA [59] is developed by EM Photonics in partnership with NVIDIA. It provides C,
C++ and Fortran libraries with a large interface of linear algebra functionality. This
includes algorithms for solving linear systems, least squares methods, singular value
decomposition, and more.

CULA comes in two variants, for dense and sparse linear algebra, respectively. Both
are licensed on a one-year subscription basis, with a discount for academic use. The
dense variant also comes in a free version, with limited functionality. All versions are
distributed as pre-compiled, closed source libraries. According to figures from their
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web site, CULA gives a speedup of 9x-14x for various Krylov solvers on an NVIDIA
C2070 vs. Intel Xeon X5560.

Although well performing and professionally developed and supported, CULA
does not provide a free version with sufficient functionality for integration with the
FEniCS Project, and is thus ruled out as candidate.

Cusp

Cusp [54] is a library for sparse linear algebra and graph computations. It provides
several storage formats for sparse matrices, as well as several iterative solvers and
preconditioners. It is developed by Nathan Bell and Michael Garland, and is based on
their research into numerical linear algebra on GPUs, presented in Section 4.3.4. The
programming interface of Cusp is user friendly and well documented.

Cusp includes a test for solving Poisson’s equation in 2D discretized using finite
differences on an m ˆ n grid. Running this test for m “ n “ 1000 gives a speedup
factor of 10 on a machine with an Intel Xeon 3.33 GHz CPU and GeForce GTX 580
GPU.

All this makes Cusp a good candidate for integration with the FEniCS Project. Inte-
grating it would imply writing a complete Cusp wrapper layer in DOLFIN, as well as
patching DOLFIN’s build system to invoke the CUDA compiler, nvcc.

SpeedIT

SpeedIT [74] is a library similar to CULA, but with more limited functionality. It pro-
vides two iterative solvers and one sparse matrix storage format. SpeedIT is licensed
in three different versions. The free version has limited functionality, and is licensed
under the GNU GPL [65]. It includes a preconditioned Conjugate Gradient solver, as
well as what they call “standard matrix-vector multiplication” (opposed to the “accel-
erated sparse matrix-vector multiplication” included in the paid versions). The free
version only supports single precision floating point arithmetic.

SpeedIT has shown speedup factors of 2-14 when solving sparse linear systems.
Details about these benchmarks can be found in SpeedIT Extreme Library Programmers
Guide [50]. The developers have also performed benchmarks against Cusp and cu-
SPARSE specifically [73], where they time sparse matrix vector multiplication for sev-
eral sparse matrices. These benchmarks place the three libraries in the same ballpark
performance-wise, with all three alternating between performing best.

Regardless of the performance figures, the proprietary license makes SpeedIT unfit
for integration with the FEniCS Project.
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cuSPARSE

The NVIDIA CUDA Sparse Matrix library (cuSPARSE) [60] is NVIDIA’s own library
for sparse linear algebra. It is included in the CUDA Toolkit [58]. It provides three
sparse matrix storage formats and an LU solver, but no iterative solvers. As iterative
solvers are an integral part of DOLFIN, cuSPARSE cannot be successfully integrated
with the FEniCS Project at this time.

ViennaCL

ViennaCL [81] is an open-source library for numerical linear algebra on the GPU.
Contrary to the other libraries surveyed here, it utilizes OpenCL [71] as the interface
to the GPU rather than CUDA. In addition to providing implementations of all BLAS
levels, it provides both direct and iterative methods. It is equipped with a clean and
well-documented user-interface.

Since ViennaCL is written in OpenCL, it can be run on CPUs as well as GPUs. The
authors of the library have measured the number of double precision conjugate gra-
dient solver iterations run per second on both CPUs and GPUs. They show speedup
figures of 2´ 3ˆ for ViennaCL running on a CPU and an NVIDIA GPU, respectively,
measured against a single core CPU implementation [82].

Overall, ViennaCL looks like a promising alternative. Integration with the FEniCS
Project would require the implementation of a complete wrapper layer between Vi-
ennaCL and DOLFIN. Since OpenCL-based programs can be compiled with standard
compilers such as gcc [64], the modifications to the DOLFIN build system would
probably be smaller than for a CUDA-based library.

PETSc

The Portable, Extensible Toolkit for Scientific computing (PETSc) [52] is the default lin-
ear algebra backend used in the FEniCS Project. PETSc is open source, and provides a
vast library of C functions for solving the linear systems arising from discretization of
PDEs. Since PETSc is written in the C programming language, it is usable from DOL-
FIN, which is written in C++. PETSc has extensive support for distributed memory
parallelism with MPI.

Since version 3.2, PETSc has provided GPU-based classes for vectors and matrices
[43]. This implementation is based on Cusp [54], as well as NVIDIAS’s Thrust [67]
library. Since Cusp is invoked in the end when setting up and solving linear systems,
PETSc can be expected to perform on par or somewhat poorer than Cusp. It should
be expected that the wrapping of Cusp in PETSc functions will incur some overhead.
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7.3 Choosing a library

Cusp, ViennaCL and PETSc stand out among the evaluated libraries as fitting candi-
dates for integration with the FEniCS Project. They all provide extensive functionality
and exhibit good performance, and are all released under open licenses. Out of these
three, PETSc is by far the largest and most complex library. It is an industry standard
library, used by thousands of users worldwide1 in a large number of high-performance
computing projects.2 It is a mature software library that has been under development
for over a decade, and that has just recently implemented support for GPU accelera-
tion. The former two are, in comparison, very young libraries, developed solely for
the purpose of GPU accelerating numerical linear algebra. PETSc can be expected to
be under further development and support for many years to come, seeing as it is so
well established in the market.

Since PETSc is based on Cusp, it can in theory provide all the same functionality as
Cusp, provided the functionality is wrapped in suitable PETSc classes and functions.
If it happens that Cusp has functionality that is not yet integrated into PETSc, it is
possible to patch PETSc to provide the necessary extensions.

PETSc is already integrated with DOLFIN, so the only thing needed to enable GPU-
support is to extend the existing DOLFIN wrappers. This will enable the continued
use of the full set of PETSc functionality already integrated in DOLFIN, with some
parts of it GPU-accelerated. Choosing PETSc will also simplify the user interface,
only adding some sort of user parameter to control the switching between CPU- and
GPU-based data structures and algorithms for linear algebra when using the PETSc
backend.

Choosing PETSc will also facilitate further interesting extensions, such as shared
memory parallelism via MPI on clusters of GPU-enabled compute nodes. This last
point is of particular interest, as there is a trend toward including GPUs as accelerators
in modern supercomputers. Three out of the top five of the 500 fastest supercomputers
in the world today use GPUs [78].

7.4 An introduction to PETSc

PETSc provides a large suite of data structures and algorithms for linear algebra,
equipped with a flexible interface that allows user control on several levels. This
section will give a short introduction to PETSc by going through the library structure,
basic usage, and how GPU support is implemented.

1 Nearly 13000 unique downloads of PETSc in 2011: http://lists.mcs.anl.gov/pipermail/
petsc-users/2012-March/012750.html.

2 See the incomplete list of publications on applications that use PETSC: http://www.mcs.anl.gov/
petsc/publications/index.html.
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7.4.1 Structure

PETSc is divided into a set of sub-libraries, as outlined in Figure 7.1. In this diagram,
the libraries depend on those below them; that is, the KSP library build on the Matrix
and Vector libraries, and so on. The two dotted boxes at the bottom denote external
libraries that PETSc uses, while the topmost round node denotes applications that
make use of PETSc.

The sub-libraries are often referred to as classes, although that is technically untrue,
as the C language doesn’t support the concept of classes. However, for the sake of
brevity and consistency with the PETSc documentation, they will also be referred to
as classes throughout this text.

All the classes consist of an abstract interface along with several different implemen-
tations. In the case of for instance the matrix class, the interface consists of functions
for performing various matrix operations. The different implementations are different
matrix storage formats, such as the CSR format, the block CSR format, etc. In PETSc,
the CSR format is referred to by the name “MATAIJ”, or just “aij”.

7.4.2 Usage

The user interface of PETSc is relatively low-level, in particular compared to higher-
level scientific programming environments such as MATLAB [68]. The PETSc Users
Manual [34] will take care of the thorough introduction to the usage of PETSc, while
this section will show a few code examples to give an impression of how the library is
used. First, consider the following excerpt of C code from a program using PETSc:

C code
Mat A;
MatCreate(PETSC_COMM_WORLD , &A);
MatSetType(A, MATAIJ);
MatSetSizes(A, 4, 4, 4, 4);

This code creates an empty 4ˆ 4 matrix and sets the type of the matrix to the CSR
format. This matrix is currently empty. To fill the matrix with values, one needs to call
a separate function:

C code
MatSetValues(A, 1, 0, 1, 0, 2, INSERT_VALUES);
MatSetValues(A, 1, 1, 1, 1, 4, INSERT_VALUES);
MatSetValues(A, 1, 2, 1, 2, 6, INSERT_VALUES);
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Level of
abstraction

BLAS MPI

Matrices Vectors Index Sets

PC
(preconditioners

KSP
(Krylov subspace methods)

SNES
(Nonlinear equations solvers)

TS
(Time stepping)

Application codes

Figure 7.1: Outline of the structure of PETSc. The dotted boxes at the bottom denote libraries
that PETSc depends on. The topmost box denotes applications that use PETSc, which
depend on the different PETSc libraries depicted in the diagram.
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This inserts three values at the locations p0, 0q, p1, 1q and p2, 2q, so that we end up with
the following matrix:

»

—

—

–

2 0 0 0
0 4 0 0
0 0 6 0
0 0 0 0

fi

ffi

ffi

fl

.

This could also have been achieved by a single call to MatSetValues, which would
entail passing as arguments two vectors of row and column indices, and a two-
dimensional array of nine values. Inserting small blocks of values into a large matrix
is exactly how one assembles the linear system during finite element assembly.

For larger problems, one should always preallocate storage for the nonzero values
of the matrix [34, p. 59]. This is done by calling functions such as MatSeqAIJSet-
Preallocation, which can preallocate storage for a sequential3 CSR matrix. Similar
functions exist for distributed matrices, sequential block CSR matrices, and so on.
These functions typically accept two parameters4 that indicate the sparsity pattern of
the matrix, and thus how many non-zero values PETSc should allocate storage for. If
the number of nonzeros per row is roughly equal, it suffices to pass a single integer
that estimates this number. If the number of nonzeros per row varies throughout the
matrix, one can pass an array of integers that estimate the number of nonzero values
for each row separately. If one does not preallocate storage, one risks that PETSc has to
perform extra allocation and copying of values from the old to the new storage during
the insertion of values, which is computationally very expensive [34, p. 59].

Before the matrix can be used for anything, it has to be assembled. In this context,
“assembling” refers to processing the matrix after a series of value insertion calls, to
finalize the matrix for subsequent operations:

C code
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

Vectors are created in a similar fashion.
Given a linear system of a matrix A and a vector b, the system can be solved using

the PETSc KSP class, using code similar to the following:

3 In PETSc, “sequential” refers to objects that reside on a single process; i.e., they are not distributed
over several processes via MPI. Distributed objects in PETSc are usually called MatMPIAIJ, VecMPI,
etc.

4 The exact parameters varies from function to function. For a complete list of all available preallocation
functions, see the Matrix class manual pages: http://www.mcs.anl.gov/petsc/petsc-current/docs/
manualpages/Mat/index.html.
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C code
Vec x;
KSP ksp;
KSPCreate(PETSC_COMM_WORLD , &ksp);
KSPSetOperators(ksp , A, A, DIFFERENT_NONZERO_PATTERN);
KSPSolve(ksp , b, x);

This code illustrates the characteristics of the user interface. There exist a large num-
ber of functions for setting Krylov solver options, getting information about iteration
numbers and convergence reasons, etc. Several different Krylov methods are imple-
mented, again as different implementations of the same abstract interface. Any further
explanation of the details of this code is omitted, and the reader is again referred to
the PETSc Users Manual [34] for details about PETSc usage.

7.4.3 GPU acceleration

The support for GPUs in PETSc is based on introducing new matrix and vector classes.
The primary design goal behind this implementation is to be able to have the matrix
and vector data reside on the GPU during an entire Krylov method solve [43, p. 5].
This eliminates unnecessary copies of matrix and vector data back and forth between
the host and the device. The GPU-based vector class performs all its operations on
the GPU, including norms and inner products. The new matrix class is designed for
sparse matrices, and performs the sparse matrix-vector product (SpMV) on the GPU.
The other matrix operations are performed on the CPU as before. However, having
the SpMV and all vector operations computed on the GPU ensures that most, if not
all, computations during a Krylov solve are performed on the GPU. As pointed out in
Section 4.3.4, the SpMV is the computationally dominating part of a Krylov method
iteration, so computing this efficiently on the GPU is of particular significance to the
overall computational performance of the Krylov solver.

This design allows the code for the Krylov solver algorithms to remain untouched,
and they still run on the host. However, when performing vector operations and
sparse matrix-vector products in each iteration, CUDA kernels are invoked, and the
computations take place on the GPU. Hence, the solvers can be expected to run more
efficiently than if the computations were run on the CPU as before. The matrix and
vector class implementations are made to work in parallel with MPI, via the matrix
and vector types “mpiaijcusp” and “mpicusp”, respectively.

For assembling matrices in PETSc, a new function for GPU-based assembly is pro-
vided. Recall the function MatSetValues that takes as arguments a matrix, a block of
values and the indices to insert the block at. The new function, called MatSetValues-
Batch, takes as arguments an array of blocks of values and a corresponding array of
indices. This allows for insertion of all blocks with one single function call. The batch
assembly function assumes that all blocks are square, and that all values are inserted
in the same row and column. For instance, given an array of 3ˆ 3 blocks of values,
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the function expects an array of indices with length three times the number of blocks.
Every triple of values in this array represents the indices for each block. These indices
are taken as indices for both row and column. For example, consider the 3ˆ 3 matrix A
and the index set i:

A “

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl , i “ t2, 4, 5u.

Inserting this into an initially empty 5ˆ 5 matrix B, we get

B “

»

—

—

—

—

—

–

0 0 0 0 0
0 a11 0 a12 a13

0 0 0 0 0
0 a21 0 a22 a23

0 a31 0 a32 a33

fi

ffi

ffi

ffi

ffi

ffi

fl

.

As we can see, the resulting matrix is symmetric. As the sum of symmetric matri-
ces is also symmetric, this function produces a symmetric matrix. In version 3.2 of
PETSc, the most current version at the time of writing, inserting several batches is not
supported. Hence, all local element matrices must be passed in a single call to Mat-
SetValuesBatch . This function uses functions from Cusp [54] and Thrust [67] to first
copy all local matrices to the GPU with a single copy function call, and then assemble
these matrices to a global matrix on the GPU.

Given that the necessary wrappers and extensions to the DOLFIN code can be pro-
vided, PETSc’s GPU-accelerated linear solve and matrix assembly can be utilized in
DOLFIN. For further details about the GPU acceleration of PETSc, see the paper by
Minden, Smith, and Knepley [43].
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The new, GPU-accelerated implementation of DOLFIN will be presented in this chap-
ter. This implementation consists of three parts:

§ Integration of GPU-based matrices and vectors to accelerate the solution of linear
systems.

§ A preliminary implementation of batch insertion of local element matrices on
the GPU, to accelerate the assembly of linear systems.

§ Extensions to the FEniCS build system to automate the compilation of PETSc
and DOLFIN with GPU-support enabled.

These parts will be discussed in Sections 8.3, 8.4 and 8.5, respectively.
Some background on the previous implementation will be given before discussing

the new implementation. First, the previous implementation of the assembly algo-
rithm will be profiled in Section 8.1, to identify potential performance bottlenecks.
In Section 8.2, the general layout of the PETSc wrapper layer in DOLFIN will be ex-
plained.

8.1 Profiling the assembly algorithm

The batch assembly function in PETSc was introduced in Section 7.4.3. This function
uses Cusp and Thrust calls to insert all local element matrices into the global matrix
at once, avoiding the incremental assembly. As mentioned in Section 6.2, it has been
pointed out that the insertion of the local matrix into the global matrix is a performance
bottleneck when running assembly on the GPU. In order for there to be any point in
integrating the batch assembly function in DOLFIN, it should be investigated if this
insertion is a bottleneck on the CPU as well. If it is, then it can be concluded that
integrating the batch assembly function could be worthwhile. To this end, we first
examine how the iterative insertion performs in the current implementation of the
assembly algorithm.

The assembly algorithm outlined in Algorithm 2.1 is indeed the one implemented
in DOLFIN, but the whole assembly process is somewhat more involved. Several
helper classes and functions are put into play when assembling, e.g. when calling the
assemble function in Python. An overview of the process can be seen in Algorithm
8.3, and a diagram of the involved classes can be seen in Figure 8.1 on page 69. The
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diagram shows the classes involved when assembling a matrix. Note that it only
shows the generic classes, omitting the backend-specific wrapper classes. Also note
that the computed sparsity pattern is used by the init method of the matrix classes to
perform preallocation of storage for nonzero values, as described for PETSc in Section
7.4.2.

Algorithm 8.3 Overview of the process for assembling a tensor in DOLFIN.

(1) Initialize the global tensor:
(i) Initialize a tensor layout
if tensor has rank 2, i.e., tensor is a matrix:

(ii) Build a sparsity pattern (for tensors of rank 2) to be held by
the tensor layout

end if
(iii) Call the init method of the tensor and pass it the tensor layout

(2) Iterate over mesh entities, compute and insert local element tensor
for each entity, similar to Algorithm 2.1:
(i) Assemble over cells
(ii) Assemble over interior facets
(iii) Assemble over exterior facets

(3) Finalize tensor by calling A.apply()

The computation and insertion of the local element tensor happens in two separate
function calls. Hence, in order to time the significance of the run time of the insertion
to the total run time, the whole process with and without the insertion method call
commented out can be timed. By commenting out the method call for the tensor
calculation as well, the baseline performance of an “empty” cell/facet iteration can be
measured.

For profiling the assembly, the matrix arising from discretization of Poisson’s equa-
tion on a unit cube was assembled. We let the resolution of the mesh of the unit cube
and the basis function degree vary. The bilinear form of Poisson’s equation is given
in Eq. (2.1.13). As we see, it has only an integral over cells, so emphasis is put on that
part of the assembly pipeline, as the other two parts will not be run in this case.

The run times for four runs can be seen in Table 8.1 on page 70. In the table,
“No insertion” means that the local element tensors are only computed without being
inserted. “No computation” means that they are neither computed nor inserted; that
is, only an empty cell iteration is performed, with nothing being done for each cell. The
“Cells” and “Total” columns represent the run time to assemble over cells, and the total
time consumed by the assemble function, respectively. In addition to assembling over
cells, the assemble function performs matrix initialization and finalization, computes
the matrix sparsity pattern and a few other operations, which contribute significantly
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Linear algebra submodule

Finite element method submodule

GenericMatrix

TensorLayout

GenericSparsityPattern

Assembler

AssemblerTools

SparsityPatternBuilder

Figure 8.1: Outline of the classes that take part in the assembly process.
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Poisson 3D Standard No insertion No computation
k n N Cells Total Cells Total Cells Total
3 32 912673 4.4457 16.6454 0.9505 12.9502 0.0787 12.5554
2 50 1030301 2.8925 11.6252 0.5072 9.3488 0.1684 9.4423
1 100 1030301 4.7569 9.8101 2.172 7.1895 0.6442 6.0943
1 70 357911 1.3972 3.2480 0.7490 2.6778 0.3048 2.0715

Table 8.1: Run times for several runs of matrix assembly for Poisson’s equation. The variable
k denotes the basis function polynomial degree, n denotes the number of cells in each
direction for the unit cube mesh, and N denotes the size of the assembled N ˆ N matrix.

to the total run time of the function.
All timings are performed using DOLFIN’s Python interface. Using C++, the results

are very similar, with the overhead using Python being only some tenths of a second.
Since only potential performance bottlenecks are investigated here, this small overhead
does not matter. The runs were performed on a computer with an Intel i3 2.1 GHz
dual core CPU, with 4 GB of RAM.1

By comparing the numbers in the fourth and sixth columns of Table 8.1, we see
that the local element tensor insertion accounts for a large part of the runtime when
looking at assemble cells isolated. However, looking at the numbers in the fifth and
seventh columns, to consider the assembly process as a whole, we observe that the
significance of the insertion declines. On average for the four test cases, the insertion
accounts for 22 percent of the total run time of the assemble function.

Using Amdahl’s law, given in Eq. (3.5.2), it can be calculated how much speedup
the assembly algorithm can be expected to achieve overall, when using a parallel local
element matrix insertion routine. In our case, the parallelizable portion is 0.22 on
average. The speedup of this portion is denoted Sp. When Sp approaches infinity, we
get a maximum possible overall speedup factor of 1.27.

This is a crude over-estimate, as Sp will have much more moderate values in practice.
A realistic estimate could be something in the range of 2 to 6. This, in turn, yields
estimates for the overall speedup factor in the range of 1.12 to 1.22. While 10 to 20
percent speedup is not very much, it can definitely be valuable when performing time-
consuming assembly of large systems. Therefore, it can be concluded that an attempt
at accelerating the matrix insertion is worthwhile.
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Generic interface

PETSc wrapper classes

GenericTensor

GenericMatrixGenericVector

PETScMatrixPETScVector

GenericLinearSolver

GenericLUSolver

PETScKrylovSolverPETScLUSolver

LinearAlgebraFactory

PETScFactory

DefaultFactory

PETSc

Matrix Vector

Figure 8.2: An overview of the generic linear algebra interface and the PETSc wrapper classes.
Solid lines denote inheritance, dotted lines denote usage. Some of the less relevant PETSc
classes are omitted for the sake of brevity. Note that also that the Matrix and Vector
classes inherit from GenericMatrix and GenericVector, respectively, but these lines are
also omitted to keep the diagram clear.

8.2 Structure of the PETSc wrapper layer

Sections 5.2.1 and 5.2.2 provided a brief discussion of DOLFIN’s generic linear alge-
bra interface, as well as some code examples for how to assemble and solve linear
systems in DOLFIN. The integration of linear algebra backends in DOLFIN will now
be discussed, with emphasis on the PETSc backend. This section presents the PETSc
wrapper layer prior to the changes implemented as part of this project.

An overview of DOLFIN’s linear algebra submodule can be seen in Figure 8.2. The
diagram shows the abstract interface along with the PETSc wrappers that implement
this interface. The solid arrows denote inheritance, while the dotted arrows denote
dependencies. The classes for the other backend wrappers are omitted, as are some of
the less relevant PETSc classes. A complete diagram of all PETSc classes can be seen
in Appendix B. The implementation is based on the factory method pattern, where each
backend has a corresponding factory class that takes care of instantiation of matrix
and vector objects for that backend.

If DOLFIN is configured with PETSc, it is set as the default backend. The backend
can be explicitly chosen by the following lines in Python:

1 The fact that this computer has relatively low performance does not matter in this case, as we are only
interested in the ratios of run times of the different stages of the computation, not trying to achieve a
low run time overall.
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Python code
name = ’PETSc’ # or ’uBLAS ’, ’MTL4 ’, ’Epetra ’, ...
parameters.linear_algebra_backend = name

This ensures that all subsequent linear algebra operations are computed using the cho-
sen backend. Matrices and vectors can be created directly by the user in the following
way:

Python code
# Create an empty matrix
m = Matrix ()
# Create an empty vector
u = Vector ()
# Create a 100 -long vector
v = Vector(100)

Here, the constructors of the Matrix and Vector classes use the DefaultFactory class
to create instances. This factory checks the currently set linear algebra backend, and in
turn invokes the factory corresponding to that backend. Alternatively, one can create
instances of specific matrix and vector classes:

Python code
# Create vector with PETSc backend
u = PETScVector ()
# Create vector with uBLAS backend
v = uBLASVector ()
# Create matrix with MTL4 backend
m = MTL4Matrix ()

By only using the generic Matrix and Vector classes, a program can be written to be
backend-independent. That way, the program can be run using different backends by
simply setting the linear_algebra_backend-parameter in the beginning of the pro-
gram.

If a program is run in parallel using MPI, the factories automatically creates dis-
tributed vector and matrix objects. This is only supported when using backends that
support shared memory parallelism via MPI, such as PETSc and Trilinos.

The polymorphism of the interface is used for instance in the assembly algorithm.
The algorithm accepts a GenericTensor A as input, and iteratively calls the method
A.add() to insert a block of values into the tensor. The method call is in turn resolved
in the class of which A is an instance, for example PETScMatrix.

Now follows a discussion of the extensions provided to integrate GPU-based matri-
ces and vectors.
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8.3 Integration of GPU-based matrices and vectors

In order to be able to instantiate matrices and vectors of the GPU-enabled types, the
parameter list for parameters.linear_algebra_backend was extended with a new op-
tion, called PETScCusp. Unlike the other possible choices for this parameter, the PETSc-
Cusp option does not actually invoke a separate backend library, but rather a new
factory, called PETScCuspFactory. This, in turn, calls the constructors of PETScMatrix
and PETScVector with an added parameter, which indicates that the tensors should be
instantiated with a PETSc type that is GPU-enabled. The default value for this param-
eter leads to the tensors being instantiated to be of CPU type. Hence, the constructors
can be called without passing the parameter, and the existing PETScFactory does not
need to be modified. This approach allows for reuse of all the existing code in the
PETSc matrix and vector classes, but also allows for switching between GPU and CPU
at a high level in the user interface.

As we saw in Section 7.4.3, the Krylov solvers in PETSc run on the GPU as long
as the linear system is defined using a matrix and a vector that are both GPU-based.
Hence, these changes are all that is necessary to have the whole linear solve process
run on the GPU.

Since the GPU-based tensors are designed to work in parallel via MPI, adding sup-
port for this should in theory be straightforward. However, the implementation of
the PETSc library itself has some limitations in this regard. The distributed vectors
in DOLFIN use the concept of ghosted vectors, a special kind of distributed vector in
PETSc. These vectors are created via a shorthand function called VecCreateGhost,
which automatically creates the vector and sets the length and type. This function
sets the vector type to VECMPI, the standard distributed PETSc vector type. For vec-
tors created with VecCreateGhost, it is not possible to change this to another type.
Specifically, it cannot be changed to VECMPICUSP, which is what we need in this
case.

Hence, in order to integrate MPI-enabled GPU vectors in DOLFIN, one would either
have to rewrite the DOLFIN wrappers to not use ghosted vectors, or apply patches to
PETSc to support GPU-based ghosted vectors. Neither of these options were pursued
because of time constraints, and are hence the subject of future work.

8.4 Implementing batch assembly

As we saw in Section 8.1, the local element matrix insertion step accounts for a signif-
icant part of the run time of the assemble function. Hence, accelerating it may yield
some performance improvements. This section describes the preliminary integration
of the batch assembly function in DOLFIN. This function, called MatSetValuesBatch,
was introduced in detail in Section 7.4.3. In this attempt at integrating it, only batch
insertion of the local cell matrices was implemented. Bilinear forms including facet
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integrals are hence not supported. Therefore, in order to measure the performance
of the batch assembly, the assembly of bilinear forms without facet integrals must be
benchmarked.

The batch assembly function makes it possible to insert all local element matrices
with a single function call. This function is only concerned with the insertion of the
matrices, not the computation. GPU-based computation of the local matrices has not
been considered in this work, so they will still be computed in serial. Thus, it is fine to
keep much of the serial assembly algorithm as it is, especially the iteration over mesh
entities.

However, since the matrices are computed one by one in a loop, they must somehow
be saved, or cached. Fortunately, the existing call to A.add() for each cell can be
utilized to perform that caching. By turning this call into a low-latency operation that
only caches the matrices, the actual assembly of the matrix can take place during the
finalization phase. By only changing the methods of the corresponding PETSc classes,
we see that more or less the entire assembly algorithm can be kept as it is. Specifically,
the generic nature of the algorithm is kept by adding all batch assembly logic to the
PETScMatrix class. The only necessary changes to the assembler class is the passing
of additional metadata to PETScMatrix. This will be described further in the following
section.

8.4.1 Adding a class for caching of local element matrices

The incremental caching of the matrices by turning A.add() into a low-latency call is
achieved by introducing a new, lightweight matrix class, called UnassembledMatrix.
The member variables of this class is a flat array of double precision floating point val-
ues, as well as an array of indices on the format that MatSetValuesBatch accepts. The
value array holds the entries of the matrix as flattened blocks of values, conforming to
the interface of MatSetValuesBatch. In addition, the class holds the number of blocks
and the number of rows (and columns) of each block.

This class is thus not able to store arbitrary matrices, only those that can be de-
composed into a number of square, equally sized blocks. Since the blocks are simply
saved in arrays, one can implement a fast add method that inserts a block of values into
the matrix. The add method defined in the GenericTensor interface already accepts a
block of values as a flattened array, hence the insertion into the unassembled matrix is
a simple memory copy from one array to another.

The disadvantage of this approach is that the number of blocks and their size must
be known when the unassembled matrix is initialized, to allocate storage for the arrays.
The good news is that this information is readily available at the start of the assembly
algorithm. Thus, if there is a way to pass that information to the unassembled matrix
before entering the cell iteration, it can be initialized in time for the iterative caching
of the local element matrices.

This information is calculated and stored in an instance of the TensorLayout class,
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which is passed on to the matrix class when initializing the matrix at the beginning
of the assembly algorithm. The solution is to let PETScMatrix hold a reference to an
instance of UnassembledMatrix. When the TensorLayout instance is passed to the init
method of the PETSc matrix, the relevant data can be passed along to the unassembled
matrix such that it can be initialized accordingly. Here, it can also be checked whether
the tensor layout indicates that the blocks are of different sizes, or not square. If so,
the blocks are incompatible with the MatSetValuesBatch function. Thus, a warning is
issued to the user, the unassembled matrix is not initialized and we proceed with the
regular incremental assembly instead.

The add method of PETScMatrix is modified such that the added block is forwarded
on to the add method of UnassembledMatrix for caching. The MatSetValuesBatch
function is called during finalization of the matrix. This happens in the apply method,
which is called when the iteration of mesh entities is complete. The apply method
of PETScMatrix usually calls MatAssemblyBegin/End, but in this case calls the batch
assembly function instead, passing it the values held by the unassembled matrix.

The final class layout is outlined in Figure 8.3. This is a modified version of Figure
8.1, only showing the case of matrix assembly with PETSc. As seen from the figure,
the UnassembledMatrix class is used only by the PETScMatrix class. None of the other
classes are aware of the existence of this helper class.

8.5 Automated compilation and installation

The components of the FEniCS Project are distributed in a number of ways.2 Pre-
compiled binary packages are provided for Windows, Mac OS X, Debian and Ubuntu.
In addition, all source code is freely available and may be downloaded and compiled
manually.

Dorsal [61] is a tool that automates the process of building the components from
source. It is a convenient tool for those who use platforms for which binary packages
does not exist, or those who wants to build from source for other reasons. Dorsal func-
tions as a very simplified package manager, which automatically downloads, compiles
and installs all components. The structure of Dorsal makes it easy to modify and tweak
compilation parameters, change version numbers and add support for new packages.

I have provided extensions to Dorsal that makes it possible to automatically build
PETSc with GPU support. These extensions download and unpack the Cusp package
and configure PETSc with support for Cusp and Thrust. Thrust is shipped with the
CUDA Toolkit [58], which both Cusp and Thrust depend on. Unfortunately, there is no
way to automatically install the toolkit on any of the platforms supported by Dorsal.
This is due to the fact that NVIDIA only provides command-line based installation
utilities for the toolkit. In addition, the toolkit requires the NVIDIA developer graphics
drivers to be installed, which must also be installed manually via a command-line

2 See the Download-section at the FEniCS Project web pages: http://fenicsproject.org/download/.
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Linear algebra submodule

Finite element method submodule

PETScMatrix

UnassembledMatrix

TensorLayout

GenericSparsityPattern

Assembler

AssemblerTools

SparsityPatternBuilder

Figure 8.3: A modified version of Figure 8.1 that outline the classes that take part in the batch
assembly process.

76



8 Implementation

interface. These command-line-based utilities could in theory be run automatically by
Dorsal, but an undertaking to implement this is outside the scope of this project.

Therefore, Dorsal assumes that the user has successfully managed to set up a work-
ing CUDA environment, and automates the remaining parts of the installation process.
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In this chapter, a performance study of the implementation is presented. Both the
assembly and solve implementations are benchmarked for several test problems.

9.1 Methodology

When it comes to testing and benchmarking the implementation, both correctness and
performance will be evaluated. Although attaining good performance is the main goal,
it is crucial that the solutions computed by the GPU-based linear algebra backend
are equal (to within a tolerance) to the ones computed by the CPU-based backend.
Correctness will therefore always be verified before the performance is evaluated.

The accuracy of the computed solutions depend on the Krylov solver tolerances. The
relative tolerance of the Krylov solver is a tolerance for the relative decrease in the norm
of the residual, used as the stopping criterion of the Conjugate Gradient method, listed
in Algorithm 4.2. The default value for the relative tolerance in DOLFIN is 1ˆ 10´6.
The absolute tolerance is a tolerance for the absolute size of the residual norm. This is
not included in the stopping criterion of Algorithm 4.2, but it is used as an additional
stopping criterion in PETSc1 and DOLFIN: if the absolute norm of the residual gets
less than the absolute tolerance, the iteration stops. The default value in DOLFIN for
the absolute tolerance is 1ˆ 10´15. Both tolerances will be left to their default values
throughout the experiments.

The correctness is verified by computing the l2-norm of the difference of the solu-
tion vectors produced by the two linear algebra backends. If this error is small, the
solutions are interpreted to be equal and it is concluded that the GPU-based imple-
mentation produces the correct solution. In this context, an error comparable to the
relative tolerance of the Krylov solver is labeled as small.

Each of the test problems discussed in Section 2.3 will be solved and the perfor-
mance of the GPU-based backend will be evaluated for each run. Among these prob-
lems, Poisson’s equation and the linear elasticity problem will be thoroughly bench-
marked. These two problems are divided into four groups that will be benchmarked
separately:

§ Poisson’s equation in 2D on the unit square, with element degree k “ 1, 2, 3.

1 See the PETSc documentation: http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
KSP/KSPDefaultConverged.html.
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§ Poisson’s equation in 3D on the unit cube, with element degree k “ 1, 2, 3.

§ Linear elasticity in 2D on the unit square, with element degree k “ 1, 2, 3.

§ Linear elasticity in 3D on the unit cube, with element degree k “ 1, 2, 3.

The different values of k result in matrices with different density and structure, which
affects how computationally demanding it is to solve the corresponding linear systems.
For each of these four groups, the following metrics will be measured:

Run time
The relevant calls to DOLFIN functions, specifically assemble and solve, will be
isolated and timed. The raw run time of these functions for different problems
and meshes can then be presented. By experimenting, mesh resolutions have
been found that yield roughly the same number of unknowns in the linear sys-
tem for each value of k for each equation. This makes it convenient to see how
the run times vary with k for each equation. By increasing the mesh resolution, it
is possible to analyze how the run time increases with the number of unknowns.
For each problem, the largest mesh yields around 5ˆ 105 unknowns. This is a
system size for which most of the problems are possible to solve under the mem-
ory constraints imposed by the GPU, with only one exception. Hence, a good
basis for comparison of performance is established.

Speedup
By dividing the run time for the CPU-based backend by the run time for the
GPU-based backend, the speedup is obtained, as described in Section 3.5.1. In
this case, only the speedups of the assemble and solve functions are evaluated,
without measuring the speedup for the complete simulation.

However, the solve step often accounts for a significant fraction of the total run
time, and this fraction is measured for all problems.

Flops
In the case of linear solve, the number of floating point operations performed per
second by the Krylov solver will be measured. The flop rates will be measured
and compared for both the CPU and the GPU. These numbers are obtained using
the built in profiling tool of PETSc [34, Ch. 11]. This tool reports aggregated run
times and flop rates for all PETSc functions invoked during the entire life of
a program. Hence, to isolate the flop rates for the linear solve for each of the
problems, each problem must be run in a separate program instance. This is
achieved by having one Python program control the execution of several smaller
Python programs.

These metrics will be measured for all of the test problems, not only Poisson and
linear elasticity. However, an extensive performance study with analysis of the metrics
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for different problem sizes will not be conducted for the other problems. Rather, the
correctness of the computed solutions will be checked, and it will be verified that the
performance of the GPU-based implementation is better than that of the CPU-based
implementation.

We remark that the GPU-based implementation is benchmarked against code that
is run in serial, on one processor core only. In other words, OpenMP or MPI for
multicore or parallel execution is not used. We would expect less of a speedup if
comparing against multicore or parallel CPU runs. However, it is known that running
a program in parallel on an n-core processor would give a speedup factor of at most
n. This can be kept in mind when evaluating the timing and speedup results, but will
not be commented upon any further in the following performance analysis.

Throughout this chapter, the existing implementation will interchangeably be re-
ferred to as “PETSc”, “the CPU-based linear algebra backend” or similar, and the new
implementation as “PETScCusp”, “the GPU-based linear algebra backend” or similar.
All benchmarks are run in double precision arithmetic on a desktop computer with
an Intel Xeon 6-core W3680 3.33 GHz processor, 24 GB of memory and an NVIDIA
GeForce GTX 590 GPU with 3072 MB of global memory.2

9.2 Linear solve

9.2.1 Choice of linear solver

PETSc provides a vast family of Krylov methods, and a subset of these are integrated
in DOLFIN. The same is the case for preconditioners. As mentioned in Section 7.4.3,
all of the Krylov methods are GPU-accelerated when one uses the GPU-based matrix
and vector classes. Among the preconditioners (PCs) from PETSc that are integrated
in DOLFIN, only the following three run on the GPU at the time of writing:3

§ Jacobi (diagonal) preconditioner (see Section 4.1.2).

§ Block Jacobi preconditioner.

§ Additive-Schwarz preconditioner.

Before performing the actual benchmarking, the Krylov method and preconditioner
to use to solve each problem must be chosen. This was decided by numerical exper-
iments, in which all of the problems were solved using all combinations of Krylov
methods and preconditioners.

2 The GTX 590 GPU is a dual-chip GPU, which means it is essentially two GeForce GTX 580 GPUs in
one unit. Hence, to utilize all the resources, it must be programmed as if one is programming several
GPUs at once. As this current implementation does not support multiple GPUs, only one of the two
chips are utilized during the benchmarking.

3 See the section about support for NVIDIA GPUs on PETSc’s web page: http://www.mcs.anl.gov/
petsc/features/gpus.html.
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These experiments showed that the method of Conjugate Gradients (CG) was the
most effective Krylov method for the symmetric problems, namely Poisson and linear
elasticity. When it comes to the DG formulation of the advection equation, which gives
a nonsymmetric system, the Generalized Minimal Residual method (GMRES) was the
best choice. For GMRES with the block Jacobi and Additive-Schwarz preconditioners,
the CPU and GPU solutions differed by only a factor of 10´14. The GPU backend
failed to compute the correct solution with the Jacobi preconditioner, giving only a
zero solution. Among the two preconditioners that work for both backends, block
Jacobi was the fastest one. The GMRES method with block Jacobi preconditioning was
therefore chosen for this problem.

Regarding preconditioners for Poisson and linear elasticity, the Jacobi and block
Jacobi preconditioners were the fastest. For the CPU backend, block Jacobi performed
better, whereas the Jacobi preconditioner performed better for the GPU backend. A
fair comparison would be to measure the metrics for solving the problems using the
best-performing pair of method and preconditioner for each backend and problem. In
addition to this, the problems will be solved using the Jacobi preconditioner for both
backends to see what results this yields.

Note that the systems solved in the following sections are assembled using the reg-
ular assembly algorithm, not the batch assembly version presented in the previous
chapter.

9.2.2 Poisson’s equation

The first linear systems we investigate are those resulting from the discretization of
Poisson’s equation, as given in Eqs. (2.3.24) to (2.3.27). The two and three dimensional
cases are considered separately below.

2D

To verify the correctness of the GPU-based linear solve, we compare the solutions com-
puted by the GPU- and CPU-backends. In particular, the l2-norm of the difference of
the two solutions is examined. This norm is examined for the solutions for the various
mesh sizes and element degrees. With a relative Krylov solver tolerance of 1ˆ 10´6,
the simulation data show that the norms are of order 1ˆ 10´9 or less for Jacobi pre-
conditioning and of order 1ˆ 10´5 or less when using block Jacobi for CPU and Jacobi
for GPU. In general, the solutions differ more when using different preconditioners for
the different backends, but the norm of the difference is still not much larger than the
relative Krylov solver tolerance. Further numerical experiments reveal that the norm
of the difference decreases as the Krylov solver tolerance is reduced. We conclude that
the PETScCusp backend computes correct results for this problem.

The factors of the total run time spent in the solve function using the original CPU-
based implementation can be seen in Table 9.1 on the following page. The intervals in
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k “ 1 k “ 2 k “ 3

Poisson 2D r0.34, 0.67s r0.61, 0.91s r0.77, 0.96s

Poisson 3D r0.05, 0.09s r0.28, 0.42s r0.51, 0.70s

Elasticity 2D r0.69, 0.89s r0.81, 0.94s r0.79, 0.93s

Elasticity 3D r0.21, 0.35s r0.19, 0.34s r0.12, 0.23s

Table 9.1: Ranges for the factors of time spent in the solve function for PETSc for the different
problems. For each interval, the lower limit is the factor for the smallest mesh, while the
upper limit is the factor for the largest mesh.

this table give the smallest and largest factor of time spent in solve for that problem
for the various meshes. This factor increases with system size for all problems: the
lower limit is achieved for the smallest mesh and the upper limit is achieved for the
largest mesh. For this problem, we see that the factor of the total run time spent in the
solve function varies between 0.34 and 0.96.

We now evaluate the performance of the GPU-based implementation. Figure 9.1
on page 84 shows run times for linear solve of Poisson’s equation discretized on the
unit square, using meshes of increasing size. Figure 9.1a shows results using Jacobi
preconditioning for both backends, whereas Figure 9.1b shows results using block
Jacobi preconditioning for CPU and Jacobi preconditioning for GPU. We first discuss
the case k “ 1. For PETSc, the run time is lower using block Jacobi than Jacobi
preconditioning as previously mentioned. Specifically, the PETSc solve runs roughly
twice as fast with block Jacobi preconditioning for all meshes. For both backends and
both preconditioning approaches, the run time seems to depend almost linearly on the
size of the linear system. We observe that PETScCusp runs significantly faster than
PETSc for both preconditioning approaches and all mesh sizes.

The speedups are plotted in Figure 9.2 on page 85. The speedup factors vary with
the size of the linear systems: they lie between 2.8 and 6.2 for Jacobi preconditioning
and between 1.6 and 3 for block Jacobi preconditioning. For both preconditioning ap-
proaches, the speedups start low and increase with the size of the system. Still looking
at k “ 1, it seems as if the speedups would continue to increase for larger systems.
Comparing Figure 9.2a with 9.2b, we see that the speedup is lower when using block
Jacobi for PETSc than when using the same preconditioner for both backends. This is
due to the fact that block Jacobi runs faster than Jacobi for PETSc, as we have generally
observed.

The flop numbers are plotted in Figure 9.3 on page 86. We see that PETScCusp
yields flop rates several times higher than PETSc. The flop rates for PETScCusp start
low and increase with the size of the linear system, as for speedups. It also seems
as if they would continue to rise for larger systems. The rates for PETSc, however,
seem to decrease with the system size. This behavior is most evident for the Jacobi
preconditioning scheme. The flop rates for PETScCusp are in the range of 4000 to
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8500 megaflops, or 4.0 to 8.5 gigaflops. PETSc, on the other hand, shows flop rates
in the range of 1100 to 1600 for Jacobi preconditioning. When looking at the flop
rates achieved for the largest system, PETScCusp yields numbers that are 6.4 times
higher than those of PETSc. We observe that this is very comparable to the maximum
speedup numbers observed for this problem.

An important detail to note is that for PETSc, block Jacobi preconditioning seems to
yield lower flop rates than Jacobi. This is the opposite of what we would expect, as
block Jacobi runs much faster than Jacobi. This behavior stems from the fact that the
flop rates reported by PETSc are only for the Krylov solve itself, without including the
computations related to preconditioning. Hence, the actual flop rates for block Jacobi
preconditioned solve are most probably higher than shown in the plot.

Another thing to note is that the flop rates are far from the theoretical peak flop rate
of the GPU. The peak flop rate of the GTX 580 GPU is around 200 gigaflops,4 which is
over an order of magnitude more than what is obtained in practice. This is probably
due to the fact that Krylov solvers are usually memory bandwidth limited [43], which
makes full utilization of floating point performance difficult. This is a property of
Krylov solvers in general and the PETSc implementations in particular, and is hence
not an artifact of the integration of PETSc in FEniCS. Thus, the same behavior would
be seen in pure C programs using PETSc’s Krylov solvers.

We now continue to the case k “ 2. Regarding run time, we see the same general
behavior as for k “ 1. PETScCusp is faster than PETSc for each system size, and the
run time exhibits almost linear dependence on the size of the system. The difference
in run time between the backends is significant, but it gets lower when using block
Jacobi preconditioning for PETSc. We see that this case runs slower than k “ 1. The
speedups are similar to k “ 1 in that they start low and increase with the system size.
However, they seem to flatten out and stabilize pretty fast. They also reach a lower
maximum speedup factor than for k “ 1, stabilizing at a factor of around 4 for the
Jacobi case and between 2.5 and 3 for the block Jacobi case. Also, similar behavior as
for k “ 1 is seen for the flops. The flop rate for PETScCusp starts low and increases
with the system size, but quickly flattens out and stabilizes at a value significantly
below that of k “ 1. Still, the attained flop rate is much higher than that of PETSc.

Last, we look at k “ 3. We once again see similar behavior for run time as for
k “ 1, 2. This case runs even slower than k “ 2, but PETScCusp is still faster than
PETSc. The speedup increases with system size as for k “ 1, 2. It stabilizes at factors
5 and 3.5 for Jacobi and block Jacobi preconditioning, respectively. In the block Jacobi
case, it actually exhibits more speedup than both k “ 1 and k “ 2. The flop rates
for PETScCusp for k “ 3 stabilize at around 7000 megaflops for both preconditioning
approaches, which is around halfway in between the values attained for k “ 1, 2.

4 NVIDIA doesn’t report the exact peak flop rate of the GTX 580/590 GPUs. The single precision
performance is estimated to be around 1500 gigaflops: http://en.wikipedia.org/wiki/GeForce_500.
As pointed out in Section 3.3, the GeForce GPUs have an 8ˆ performance penalty for double precision
calculations over single precision. This places the GTX 580 at around 200 gigaflops in double precision.
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Figure 9.1: Run times for linear solve of Poisson’s equation on the unit square (2D).
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Figure 9.2: Speedup for PETScCusp over PETSc for linear solve of Poisson’s equation on the
unit square (2D).
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Figure 9.3: Flops for linear solve of Poisson’s equation on the unit square (2D).
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3D

For the three dimensional case, we will only look at numbers measured when using
block Jacobi preconditioning for CPU and Jacobi preconditioning for GPU; that is, we
compare the best-performing preconditioners for each linear algebra backend. Hence,
we will obtain more conservative measurements of speedup than if we had used Jacobi
preconditioning for both backends. We will use this approach for linear elasticity as
well.

Regarding correctness, the l2-norm of the differences between the solutions com-
puted by the two backends are all of order 1ˆ 10´5. Again, this is consistent with the
relative Krylov solver tolerance. The fractions of time spent in the solve function for
the PETSc backend, seen in Table 9.1, are much lower than in the 2D case for all values
of k.

When studying the performance in the three dimensional case, we will discuss the
results for all k at the same time rather than discussing them separately as in the 2D
case. A plot of the run time can be seen in Figure 9.4. For each k, we see again
PETScCusp is faster than PETSc. We also see that the runtime increases with k; that
is, k “ 1 is faster than k “ 2, which in turn is faster than k “ 3. A notable difference
from the two dimensional case is that the run times are much lower overall. We also
note that the curves look more linear than in the two dimensional case.

The speedups, seen in Figure 9.5, do not start low and increase with the system size
as in the 2D case. Rather, they stay roughly constant, only varying with about ˘1. This
nearly constant behavior is consistent with the fact that the run time curves are almost
completely linear. When comparing the speedups with those of the block Jacobi case
in 2D, shown in Figure 9.2b, we see two similarities. First, we note that the maximal
speedup is once again attained for k “ 3. Second, it looks as if k “ 1, 2 are about
to cross, such that the ordering of the curves becomes the same as in the 2D case. It
might also be that the two curves are stabilizing at roughly the same value. A notable
difference from the 2D case is that the curve for k “ 2 is decreasing with the system
size.

The flop rates are plotted in Figure 9.6 on page 90. For PETScCusp, they are in the
range of 4000 to 7000 megaflops. Once again, the lowest flop rate is achieved for k “ 2.
The curve for k “ 3 lies somewhat higher than k “ 1 in this case, which is the opposite
of what we saw in the two dimensional case. Another difference is that we do not see
the steep growth in flop rates with system size that we saw in 2D. Also, it does not
seem as if the flop rates for k “ 1 continue to increase with the system size, as was the
case in 2D.

9.2.3 Static, linear elasticity

The next linear systems we study are the ones arising from the discretization of the
static, linear elasticity problem, as given in Eqs. (2.3.28) to (2.3.31). The two and three
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Figure 9.4: Run time for linear solve of Poisson’s equation on the unit cube (3D).

dimensional cases are again considered separately.

2D

We verify correctness first. By taking the norm of the difference of the solutions com-
puted by the two backends, we get results of order 1 ˆ 10´7 to 1 ˆ 10´8. This is
consistent with the relative Krylov solver tolerance. Table 9.1 shows that this is a rel-
atively solver-heavy problem; that is, a significant amount of the run time is spent in
the solve function.

The results for run time, speedup and flops can be seen in Figures 9.7, 9.8 and 9.9,
respectively. The run times for linear solve follow the same general pattern as observed
for Poisson’s equation. PETScCusp is faster than PETSc for every system size. This
is the case for all values of k. Also, the problems with lower k values run faster than
the ones with higher k values. The run time depends roughly linearly on the system
size. We observe that the run times are significantly higher in this case than for the
two dimensional Poisson problem.

The speedups increase a little with the system size, but to a lesser extent that what
we saw for 2D Poisson. We once again have the most speedup for k “ 3, with the
speedups for k “ 1, 2 being roughly equal. The speedup factors are overall a little
lower than for Poisson, with a maximum factor of 3 attained for k “ 3.
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Figure 9.5: Speedup for PETScCusp of PETSc for linear solve of Poisson’s equation on the unit
cube (3D).

89



9 Performance analysis

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
Number of unknowns

1000

2000

3000

4000

5000

6000

7000

8000

M
Fl

op
s

PETSc, k=1
PETScCusp, k=1
PETSc, k=2
PETScCusp, k=2
PETSc, k=3
PETScCusp, k=3

Figure 9.6: Flops for linear solve of Poisson’s equation on the unit cube (3D).

Last, we look at the flop rates. PETScCusp yields flop rates much higher than PETSc
for this problem as well. For PETScCusp, the values are in the range of 4000 to 7000.
The curves look very similar to what we saw for Poisson’s equation in both 2D and
3D.

3D

In three dimensions, the norm of the differences of the solutions are of order 1ˆ10´5 to
1ˆ 10´6. We can once again conclude that PETScCusp computes the correct solution.
The fractions of run time spent in the solve step for PETSc, seen in Table 9.1, are
significantly lower than in two dimensions. This is the same behavior as observed for
Poisson’s equation.

The run times, shown in Figure 9.10 on page 94, are again similar in nature to what
we have seen in all the previous problems. PETScCusp is faster than PETSc for all
system sizes for each value of k. The run time increases with k, and it depends linearly
on the system size. We observe that the run time is lower than for the two dimensional
elasticity problem. It is also noted that for k “ 3, no data exists for systems of more
than 350 000 unknowns. This is because the linear solve function breaks down for
larger systems for this element degree.

The speedup numbers are shown in Figure 9.11 on page 95. They are fairly constant,
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Figure 9.7: Run time for linear solve of the static, linear elasticity problem on the unit square
(2D).
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Figure 9.8: Speedup for PETScCusp of PETSc for linear solve of the static, linear elasticity
problem on the unit square (2D).
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Figure 9.9: Flops for linear solve of the static, linear elasticity problem on the unit square (2D).

similar to what we had for Poisson’s equation in 3D. One difference is that k “ 1, 2, 3
all have different values, with none of them stabilizing around the same value. Also
similar to Poisson’s equation in 3D is that the curve for k “ 2 is decreasing with system
size. The speedup factors lie in the range of 2 to 4, which is also similar to the three
dimensional Poisson problem.

Last, we look at the flop rates, seen in Figure 9.12 on page 96. The numbers lie in
the range of 5000 to 8000 megaflops. We note that the lower limit is 1000 megaflops
higher than what we have observed for all the other problems. We also see from the
plot that the numbers decline slightly as the system size grows. This is also the first
case where k “ 2 does not yield the lowest flop rates. Here, it is instead k “ 1 that
yields the lowest rates.

9.2.4 Summary of results for Poisson’s equation and linear elasticity

We summarize our observations:

Correctness
For all the problems, the l2-norm of the difference of the solutions computed
by the two backends is of order 1ˆ 10´5 or smaller. We conclude that the new,
GPU-based implementation computes the correct solution for all the problems
under study. To experiment, all the benchmarks were also run with a relative
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Figure 9.10: Run time for linear solve of the static, linear elasticity problem on the unit cube
(3D).
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Figure 9.11: Speedup for PETScCusp of PETSc for linear solve of the static, linear elasticity
problem on the unit cube (3D).
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Figure 9.12: Flops for linear solve of the static, linear elasticity problem on the unit cube (3D).

Krylov solver tolerance of 1ˆ 10´12. This decreased the norm of the error, and
also led to more Krylov solver iterations and longer run times.

Run time
We have seen that PETScCusp runs faster than PETSc for all the problems. We
have also observed that the lower order problems always run faster than the
higher order problems. Also, the run time has increased linearly or slightly
above linearly with the system size. For both equations, the three dimensional
problems have run faster than the two dimensional ones. Also, the factor of time
spent in the solve function has been lower for the three dimensional problems.

Speedup
We observe speedup factors of above 1 for all the problems, consistent with the
observation that PETScCusp is faster than PETSc in all cases. In general, the
three dimensional problems achieve somewhat higher speedup factors than the
two dimensional ones. We also observe that the higher order problems achieve
more speedup than the lower order ones. In all cases, the highest speedup is
attained for k “ 3. In all cases except the two dimensional Poisson problem, the
lowest speedup is attained for k “ 1.

Flops
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Figure 9.13: Run time for linear solve of the DG advection problem in 2D.

The flop rates achieved with PETScCusp are consistently several times higher
than the rates achieved with PETSc. For PETScCusp, we have seen flop rates in
the range from 4000 to 8500 megaflops. While PETSc has shown more or less
constant rates for all problems and all mesh sizes, the rates for PETScCusp has
differed with the problems and system sizes. The case k “ 2 has the lowest flop
rate in all cases except for the three dimensional elasticity problem.

9.2.5 DG advection

Now, the linear systems arising from discontinuous Galerkin discretization of pure
advection (or simply “DG advection”), as given in Eqs. (2.3.32) to (2.3.35), will be
solved. A benchmark is implemented based on a demo distributed with the DOLFIN
source code. This demo reads a mesh and a velocity field from files. The velocity field
is defined relative to the mesh. To increase the mesh size as in the previous problems,
the mesh cannot simply be redefined to have larger resolution. Instead, a uniform
mesh refinement is performed using the DOLFIN function refine(mesh), which adds
a new vertex per edge in the original mesh. The way the test problems are defined,
one vertex in the mesh corresponds to one unknown in the linear system. Hence,
the system size increases very rapidly after only a few refinements. Thus, it is only
possible to perform three refinements before the system becomes too large to solve on
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Figure 9.14: Speedup for PETScCusp over PETSc for linear solve of the DG advection problem
in 2D.
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Figure 9.15: Flops for linear solve of the DG advection problem in 2D.

the test machine.
The three refinements lead to a total of four solves. The run times for these can

be seen in Figure 9.13. The run time increases almost linearly with the number of
unknowns, just as in the previously investigated cases. The run times becomes signif-
icantly higher than in the previous problems, but we also see that the system sizes are
very much larger than what we have previously studied. Hence, the large run times
are expected. For this problem, the solve step accounts for 30 to 40 percent of the total
run time.

The speedups, seen in Figure 9.14 on the preceding page, also have the same char-
acteristics as the previous problems. However, the speedup factors attained are lower
than for the other problems. This is due to the fact that this problem is solved using
block Jacobi preconditioning for both backends. For PETScCusp, Jacobi precondi-
tioned solve did not produce correct results, so the slower block Jacobi preconditioner
had to be used. Thus, the difference between run times for the two backends, and
hence speedup, is lower for this problem than for the previous ones.

The flop rates for DG advection, plotted in Figure 9.15, are also much lower than
for the other problems. For the largest system, only around 3250 megaflops is at-
tained. There are two reasons for this, both of which have already been touched upon
earlier: the flop rates reported for block Jacobi preconditioned solve are less than for
Jacobi, since the rates cited from PETSc are only for the solve itself, not including all
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Figure 9.16: Run times for assembly of Poisson on the unit square (2D).

computations related to preconditioning. In addition, the block Jacobi actually runs
slower on the GPU, which also indicate lower flop rates, probably due to poor memory
bandwidth utilization for this preconditioner on the GPU.

9.3 Assembly

For assembly, the run time and speedup for Poisson’s equation is presented. First, the
two dimensional case is considered. The run times and speedup for assembling the
linear systems can be seen in Figures 9.16 and 9.17, respectively. For k “ 2, 3, PETSc-
Cusp runs faster than PETSc for all system sizes. As seen in the plot, the difference
in run time is not very large, corresponding to speedup factors between 1.03 and 1.08.
In other words, the speedup is below 10 percent in all cases. For k “ 1, the results are
less stable. PETSc and PETScCusp alternate between being the fastest for the various
system sizes. As a result, we see speedup factors both above and below 1.

The run times for the three dimensional case can be seen in Figure 9.18 on page 103.
The results are more stable in this case, with PETScCusp being consistently faster
than PETSc. The speedups, seen in Figure 9.19 on page 103, lie in the range of 1.13
to 1.25. This is consistent with the estimates that was calculated in Section 8.1. The
most speedup is attained for k “ 2, and the least is attained for k “ 1. In the three
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Figure 9.17: Speedup for assembly of Poisson on the unit square (2D).

dimensional case, however, a major weakness of the method becomes evident: the
batch assembly function is unable to assemble large systems. A seen in Figures 9.18
and 9.19, the largest systems that the method is able to assemble in the 3D case are
systems with around 2.5ˆ 105 unknowns. For three dimensional systems larger than
this, the MatSetValuesBatch function fails and throws the memory-related exception
std::bad_alloc. The reason it is able to assemble larger systems in 2D than in 3D is
probably due to the fact that the 3D systems on average have more nonzero values,
requiring more memory for storing a matrix with the same dimensions.

However, the standard assembly algorithm is able to assemble larger systems. This
was seen when benchmarking the solution of larger systems in the previous section,
where all systems were assembled using the standard assembly algorithm. The exact
reasons for why the batch assembly function has these size limitations are not known.
However, it is certain that the limitations are related to the handling and allocation of
memory in the functions that copy matrix values from the host to the GPU.

In conclusion, three shortcomings of the batch assembly routine have been identi-
fied:

Unstable performance
The speedup factors seen are in the expected range, similar to what was esti-
mated using Amdahl’s law in Section 8.1. They are, however, pretty unstable,
sometimes going below 1 in the two dimensional case.
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Unable to assemble large systems
Systems with a certain amount of nonzero values are not possible to assemble
due to memory constraints. This is a serious problem, as much of the point with
a faster assembly routine vanishes when it is unable to assemble larger systems.
As seen from the run time plots in Figures 9.16 and 9.18, the total run times for
assembly are only a few seconds. Hence, one must have rather long running
assembly function calls in order for the time saved to have any significance.

The local element tensor computation happens on the CPU
In the current implementation, the computation of the local element tensors is
not implemented on the GPU. This is intentional, and is not really an observed
weakness as the ones described above. However, it would be an advantage for
a GPU-based assembly implementation to be completely implemented on the
GPU. As seen from the study of related work in Chapter 6, much study has been
undertaken into computing the local element tensors on the GPU.

Bringing this preliminary integration of the MatSetValuesBatch function up to a level
of production-ready quality would take a significant effort. First of all, support for
facet integrals would have to be implemented. Furthermore, the implementation in-
troduces extra complexity to the linear algebra layer, as seen in the class diagrams
presented in Chapter 8. Thorough testing for all cases would have to be conducted,
and the resulting implementation would have to be maintained with future versions
of DOLFIN. In light of the mediocre performance and weaknesses of the method, this
was not considered to be worthwhile at this time. Instead, it is proposed that a design
is made for a more stable method that also includes computation of the local element
tensors on the GPU. This is discussed further in the next chapter.

9.4 A nonlinear example: Hyperelasticity

In this last example, it is demonstrated that the implementation can solve nonlinear
problems correctly and efficiently. Nonlinear problems in DOLFIN are solved using
another version of the solve function that repeatedly assembles and solves the sys-
tem.5 This version of the solve function takes a definition of a nonlinear variational
problem as input, rather than a linear system. A run time measurement of this func-
tion would include both repeated assembles and solves. As we just saw, the assembly
step did not run very efficiently on the GPU. However, the solve step runs efficiently
on the GPU. Hence, the nonlinear solve function should perform somewhat better on
the GPU compared to the CPU.

The chosen nonlinear problem is the hyperelasticity problem presented in Section
2.3.2. It was solved on a mesh of an atrium, which is one of the chambers of a heart. It

5 See the section on nonlinear problems in the FEniCS tutorial: http://fenicsproject.org/
documentation/tutorial/nonlinear.html.
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Figure 9.18: Run times for assembly of Poisson on the unit cube (3D)
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Figure 9.19: Speedup for assembly of Poisson on the unit cube (3D)
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Run time Flops
PETSc 6.90 s 1677
PETScCusp 4.61 s 2500

Table 9.2: Performance statistics for the hyperelasticity problem.

Figure 9.20: Plot of the deformed
atrium. The transparent part of the
figure shows the original shape of
the atrium, and the solid-colored
part shows the shape after defor-
mation.

was solved using both linear algebra backends, generating the data seen in Table 9.2.
These run times correspond to a total speedup factor of 1.5 for PETScCusp over PETSc.

The flop rate for PETScCusp is only 2500, which is much less than what was ob-
served for the previous problems. This relatively low rate probably stems from the
fact that the mesh, and hence the linear system, is quite small. Hence, the startup
costs related to solving the system (including memory transfer) dominate, such that a
high flop rate is not achieved.

A plot of the deformed atrium can be seen in Figure 9.20. The l2-norm of the
difference of the solutions computed by the two backends is 2.18ˆ 10´12. Therefore,
we conclude that the GPU-based linear algebra backend computes the correct solution
for this problem.

9.5 Summary of benchmarks

This chapter demonstrates that the new implementation efficiently and accurately
solves the linear systems arising from the finite element method discretization of a
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wide range of test problems. For certain choices of Krylov method and preconditioner
for certain problems, the GPU-based implementation fails to compute the correct solu-
tion. This behavior was seen for the GMRES method and Jacobi preconditioner for the
DG advection problem. Therefore, one must always carefully verify the correctness of
the computed results.

Given that a suitable pair of Krylov method and preconditioner is chosen, the GPU-
based linear algebra backend is able to correctly solve all the linear systems faster than
the CPU-based linear algebra backend. The performance varies, with speedup factors
ranging from 1.5 to 6, largely depending on the structure and size of the linear system.

Throughout the performance evaluation, some interesting behavior is seen. This
demands some further explanation:

Poisson’s is solved much faster than the elasticity problem
Poisson’s equation is solved much faster than the linear elasticity problem for
systems of equal size. This is the case when comparing both the two dimensional
cases and the three dimensional cases of the two problems. To find the reason
for this, we consider two systems of roughly equal size corresponding to the 2D
cases of the two equations.

Studying a linear system for Poisson’s equation with 50176 unknowns, we find
that it contains roughly 0.015% nonzero values. A linear system for the elas-
ticity problem with 50562 unknowns, on the other hand, contains about 0.023%
nonzero values. Hence, the elasticity system has over twice as many nonzero
values as the system for Poisson’s equation.

This increased matrix density leads to a more costly computation of the matrix-
vector product due to the larger amount of floating point operations performed.
In addition to this, the number of Krylov solver iterations needed to converge is
much lower for Poisson’s equation than for the elasticity problem. In the present
example, the solver converges after 664 iterations for Poisson’s equation and after
1516 iterations for the elasticity problem. To find the reason why more iterations
are needed for the elasticity problem, the properties of the Krylov method and
preconditioner have to be studied together with the structures and properties of
the matrices.

In summary, the higher number of iterations as well as the more costly matrix-
vector product leads to a larger run time for the elasticity problem.

3D problems run much faster than 2D problems
If we again compare matrices of similar size arising from different equations,
we observe that the 3D problems in general gives denser matrices than the 2D
problems. This leads to a more costly matrix-vector product in the 3D case.

However, experiments show that the 3D problems in general require fewer iter-
ations in the Krylov solver to converge than the 2D problems. This is related to
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the size of the meshes and the condition number of the matrices. For a given
linear system size, the mesh size h of a 3D problem is larger than the mesh size
for the corresponding 2D problem. The condition number of the corresponding
matrices can be expected to grow as h decreases. Since the number of iterations
in the Conjugate Gradient method scales with the condition number [39, p. 137],
the convergence is faster for the 3D problems than for the 2D problems when
comparing linear systems of equal size.

This leads to faster overall run times for the linear solve step in 3D than in 2D,
even though each iteration is more costly in 3D.

Very low percentage of run time spent in solve Poisson 3D, k “ 1
For 3D problems in general, mush of the run time is spent computing mesh
entities and mesh connectivity. Matrix assembly is also time consuming. Hence,
the setup and assembly stages are slower in 3D than in 2D.

However, as we just saw, the solve stage is generally faster in 3D than in 2D. As a
result, the percentage of run time spent in solve is much lower in 3D than in 2D.
This becomes particularly evident in the first order case of Poisson’s equation in
3D, but it is seen for all the other 3D problems as well, see Table 9.1.

Elasticity 3D breaks down for larger systems
Discretizing the three dimensional elasticity problem on larger meshes leads to
systems that are not possible to solve. This is simply due to the fact that the sys-
tems contain so many nonzero values that the memory requirements for solving
them become too high. The solve function fails with an std::bad_alloc ex-
ception; it is not possible to allocate the necessary amount of memory on the
GPU.

The flop rate for elasticity 3D declines with system size
Whenever the flop rate of a program is below the peak flop rate of the GPU, the
program is memory bandwidth limited (see Section 3.2.4). Hence, when the flop
rate declines as in this case, it is because the memory bus utilization is declining.

The exact reason for this decline in memory bus utilization is not known, but a
possible reason is that the algorithm loads the data in a less efficient way when
the size of the system increases.

The lowest flop rate is achieved for k “ 2 in three of four cases
The reason for this is not known at this time. A further study of the sparsity
pattern and block structure of the matrices, as well as a study of the properties
of the Krylov methods and preconditioners used is needed in order to reach a
full understanding of this behavior.

The results computed on the CPU and the GPU differ
From what we have seen so far, we might believe that the results from the CPU
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and the GPU should be identical. In particular, as we saw in Section 7.4.3, the
same host-based Krylov solver algorithm is used in PETSc for both CPU- and
GPU-based matrices and vectors. The only difference is whether the vector oper-
ations and sparse matrix-vector product are computed on the CPU or the GPU.

However, as seen in Section 3.3.1, the floating point computations on the CPU
and GPU may in fact be performed differently, possibly yielding somewhat
higher accuracy on the GPU. In addition, performing floating point operations in
parallel may give different results than performing the same operations in serial,
due to the fact that floating point addition is not commutative [10, Ch. 7].

Together, these two reasons lead to slightly different results being computed on
the GPU compared to the CPU.
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10.1 Summary

A library-based approach to accelerate the FEniCS Project using GPUs has been pre-
sented. By using libraries, the computational power of modern graphics processors
has been leveraged with a moderate programming effort. The observed performance
improvements are significant. One alternative to using libraries is hand-writing an im-
plementation in CUDA C or another GPU programming language. Several advantages
of the library approach have been emphasized:

§ The resulting implementation is easier to maintain.

§ The implementation benefits from improved hardware and updates to the library
code without any changes to the actual software code. In other words, some
work is outsourced to the developers of the external library.

§ The user interface can remain clean and transparent, with the logic of the GPU
acceleration hidden from the user.

10.2 Contributions

The solution of linear systems of equations is a fundamental step in solving (partial)
differential equations by the finite element method. The focus of this work has been to
solve the linear systems using GPUs. Specifically, GPU-based data structures for ma-
trices and vectors from the PETSc library are integrated into DOLFIN, the main user
interface of the FEniCS Project. These data structures facilitate faster, GPU-based com-
putations of vector operations and the sparse matrix-vector product. These operations,
in particular the sparse matrix-vector product, are important building blocks of Krylov
methods. Therefore, the whole solution process runs faster when these operations are
accelerated.

Speedup factors of up to over 6ˆ has been observed for the linear solve step. The
flop rates attained on the GPU have been up to over 6 times higher than those attained
on the CPU.

It has been demonstrated that the new implementation is able to correctly and effi-
ciently solve a wide range of problems. For certain problems, however, it may fail to
compute the correct solution for a given pair of Krylov method and preconditioner.

108



10 Summary and conclusions

The Krylov method and preconditioner must therefore be carefully selected, and the
computed result must always be verified.

An attempt was also made at performing one part of the assembly of the linear
systems on the GPU. Namely, a function for batch insertion of local element matrices
was integrated. This attempt yielded moderate performance improvements, in the
same ranges as what was estimated using Amdahl’s law. However, the performance
was unstable, and the routine broke down for larger systems. This approach was
therefore not pursued further.

The build system for the FEniCS Project, named Dorsal, has been extended to auto-
matically build all necessary dependencies with GPU support. This simplifies distri-
bution and compilation for users of the FEniCS Project.

The contributions to both DOLFIN and Dorsal will be included in upcoming re-
leases.

10.3 Conclusions

I conclude that using libraries is a viable approach to introduce GPU-accelerated com-
puting to an existing software system. Even if the system is not designed with mas-
sively parallel computations in mind, parts of the system may still be amenable for
outsourcing to a GPU-accelerated library.

To get further performance improvements, a specialized implementation using GPU
computing programming languages may be necessary. This will most probably in-
volve more dramatic changes to the source code, with redesigns of parts of the system.
Through this project, we have seen that the assembly algorithm is one example of a
computation that cannot simply be accelerated by outsourcing to external libraries. To
implement this algorithm using GPUs, it must be redesigned to fit the programming
paradigm of GPUs.

Developers will always have to assess whether the translation of a code to a new ar-
chitecture is an appropriate approach to increase the performance. Porting a software
project to use GPUs may be a significant undertaking, and is not necessarily always
the right path to take. Using libraries is thus a golden mean; you can get clean code
written in a familiar programming language and programming paradigm, and at the
same time get some of the performance benefits that GPU computing can provide.

10.4 Limitations and future work

The implementation is subject to some limitations, some of which are fitting candidates
for future projects.

Distributed GPU vectors and matrices
The relatively low amount of memory on a GPU limits the size of the problems it
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can solve. Therefore, it is of interest to be able to distribute matrices and vectors
over clusters of GPU-enabled compute nodes. This is not supported yet due to
limitations in PETSc. This could be implemented either by adding the necessary
extensions to PETSc, or by rewriting DOLFIN’s wrapper layer for PETSc vectors.

GPU-based assembly
Assembling linear systems directly on the GPU is not supported. It is therefore
proposed that a complete design is made for an assembly routine that performs
both computation and insertion of local element matrices directly on the GPU.
This would entail parallel processing of cell tensors for several cells at once,
possibly yielding significant speedups. A starting point for such a project could
be the previous work undertaken in this area, described in Chapter 6.

Add support for OpenCL
The provided implementation has the limitation that it can only be used with
NVIDIA GPUs. Implementing support for platform-independent GPU comput-
ing APIs, such as OpenCL, would therefore make the implementation accessible
to more users. To this end, one could integrate a linear algebra backend that
utilizes OpenCL as the interface to the GPU, such as ViennaCL [81].

In addition, the following topics are possible paths for future work:

Adding support for more Krylov methods and preconditioners
The implementation is limited to the Krylov methods and preconditioners pro-
vided by PETSc. In particular, it is not possible to use user-specified precon-
ditioning matrices on the GPU. Integrating more functionality in this direction
would be beneficial.

Integration with other GPU-accelerated linear algebra libraries
It would be of interest to integrate other GPU-accelerated linear algebra libraries,
to see if it is possible to achieve better performance than what has been observed
with PETSc. Some of the libraries surveyed in Chapter 7 could be possible can-
didates. In addition, more GPU-accelerated libraries will probably be available
in the future.

GPU-accelerating other parts of DOLFIN
Inspired by the work by Rathgeber [48], one could investigate the possibility of
GPU-accelerating other parts of DOLFIN, possibly by re-implementing parts of
DOLFIN in CUDA C. Special care must then be taken with regard to complete-
ness and to make the backend changes transparent to the user.

Further streamlining of distribution and compilation
The possibility of providing pre-built binaries with GPU-support could be inves-
tigated, to further ease the installation for novice users.
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CUDA installation guidelines

This appendix gives some rough guidelines and hints for installing CUDA under
Ubuntu. While NVIDIA provides documentation for how to do this, one often en-
counters problems that are not covered in the official documentation. This appendix
goes through some common problems that I have encountered when installing CUDA
on various machines.

A.1 Basic guidelines

The general guidelines for installation are as follows:

1. Download the NVIDIA developer drivers, CUDA toolkit and GPU computing
SDK from http://developer.nvidia.com/cuda-downloads.

2. Download the Getting Started Guide for your platform, found at NVIDIA’s web
pages: http://developer.nvidia.com/nvidia-gpu-computing-documentation.
Follow the installation instructions, step by step. Remember to verify your in-
stallation by compiling and running some of the example code provided with
the GPU Computing SDK [66].

A.2 Developer drivers vs. drivers from the package manager

Under Ubuntu, NVIDIA drivers are provided via the package nvidia-current. Al-
though NVIDIA tells you to download and install the so-called “Developer drivers”
from their website, this is often not necessary. Installing the nvidia-current package
is often sufficient.

To install the drivers this way, you should first add an unstable repository to your
list of repositories, to get the latest version of the drivers. This is especially important
if your Ubuntu version is not the most recent. This is done by running the following
line in a terminal:

Bash code
sudo add -apt -repository ppa:ubuntu -x-swat/x-updates

111

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/nvidia-gpu-computing-documentation


Appendix A CUDA installation guidelines

To install the drivers, run

Bash code
sudo apt -get update
sudo apt -get install nvidia -current

By installing the drivers this way, one may encounter a problem when compiling the
sample code from the SDK. The compiler may complain that it “cannot find -lcuda”.
This is because the package manager installs the drivers to a different directory than
where the compiler expects to find them. To fix this, add symbolic links to point to
the location of the drivers:

Bash code
sudo ln -s /usr/lib/nvidia -current/libcuda.so

/usr/lib/libcuda.so
sudo ln -s /usr/lib/nvidia -current/libcuda.so.1

/usr/lib/libcuda.so.1

A.3 Hybrid setups

Some recent laptops are built with two GPUs; one on-board chip as well as a discrete
NVIDIA GPU. This is not supported out of the box under Ubuntu, but is supported
through a third-party tool called Bumblebee. The tool provides a terminal command
called optirun. This command explicitly enables the NVIDIA GPU for programs that
need it. Hence, when running CUDA programs via the command line on a laptop
with a hybrid hardware configuration, they should always be run through optirun:

Bash code
optirun ./your -cuda -program

To install Bumblebee, run the following:

Bash code
sudo add -apt -repository ppa:bumblebee/stable
sudo apt -get update
sudo apt -get install bumblebee bumblebee -nvidia
sudo usermod -a -G bumblebee $USER

Reboot your computer after these steps. After installing, make sure that all your in-
stalled packages are up to date. Be aware that the bumblebee-nvidia package depends
on nvidia-current, so it will automatically be installed as well. Hence, it may cause
trouble if you have also installed the NVIDIA developer drivers manually. It is rec-
ommended to always let the package manager handle the installation of drivers when
using Bumblebee. Remember to add the symbolic links to the libraries as described in
the previous section.

To verify the Bumblebee installation, run
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Bash code
glxspheres
optirun glxspheres

The first line should run a graphics demo rendered with the on-chip GPU, while the
second runs the graphics demo rendered with the NVIDIA GPU. You can verify this
by looking at the terminal output the commands give.

A.4 Install CUDA 4.1 under Ubuntu 11.04 on a hybrid setup

This section provides a step-by-step guide for installing CUDA 4.1 under Ubuntu 11.04
on a laptop with a hybrid setup. The procedure will be similar for other Ubuntu and
CUDA versions, but you may encounter errors not covered here. If you do, Google is
your friend.

Start by adding the unstable graphics driver repositories:

Bash code
sudo add -apt -repository ppa:ubuntu -x-swat/x-updates
sudo apt -get update

Then, install Bumblebee as described in Section A.3. You do not need to explicitly
install the NVIDIA drivers as they are installed by Bumbleblee. After installing Bum-
blebee and rebooting, install some packages needed for running CUDA and OpenGL
programs:

Bash code
sudo apt -get install freeglut3 -dev build -essential libx11 -dev

libxmu -dev libxi -dev libgl1 -mesa -glx libglu1 -mesa
libglu1 -mesa -dev

Next, download the CUDA Toolkit and GPU Computing SDK from NVIDIA’s web-
pages: http://developer.nvidia.com/cuda-toolkit-41. Install by doing the follow-
ing:

§ Run sh cudatoolkit_***.run to install the CUDA toolkit. If you want to install
to the default location, which is /usr/local, the command must be run as root.
If you install to a non-default location, you must set the environment variable
CUDA_INSTALL_PATH after installing to point to your installation directory.

§ Install the SDK by running sh gpucomputingsdk_***.run.

The installation is verified by the following commands:
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Bash code
cd <path -to -sdk -install >/C
make
cd bin/linux/release
./ deviceQuery
optirun ./ particles

The latter two commands are for running some of the example code. See the CUDA
Getting Started Guide for Linux [45] for examples of correct output from the deviceQuery
program.
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Appendix B

Complete PETSc wrapper layer diagram

A complete diagram of the PETSc wrapper layer in DOLFIN’s linear algebra submod-
ule can be seen in Figure B.1 on the following page. This diagram does not include
the extra class introduced as part of the batch assembly implementation discussed in
Section 8.4.
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Generic interface

PETSc wrapper classes

Backend-independent classes

GenericTensor

GenericMatrixGenericVector

PETScMatrix

Matrix

PETScVector

Vector

GenericLinearSolver

GenericLUSolver

PETScKrylovSolver

LinearSolver KrylovSolver

PETScLUSolver

LUSolver

LinearAlgebraFactory

PETScFactory PETScCuspFactory

DefaultFactory

PETScObject

PETScBaseMatrix PETScPreconditioner PETScUserPreconditioner

PETSc

PETScMatrixDeleter

PETScVectorDeleter

PETScKrylovMatrix

Figure B.1: The PETSc wrappers.
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