
Firedrake: Re-imagining FEniCS by
Composing Domain-specific

Abstractions
Florian Rathgeber1, Lawrence Mitchell1, David Ham1,2, Michael

Lange3, Andrew McRae2, Fabio Luporini1, Gheorghe-teodor Bercea1,
Paul Kelly1

1 Department of Computing, Imperial College London 2 Department of Mathematics, Imperial College London
3 Department of Earth Science & Engineering, Imperial College London

1 / 36

— fenicsproject.org“ The FEniCS Project is a collection of free software for automated, efficient
solution of differential equations.

2 / 36

— firedrakeproject.org
“ Firedrake is an automated system for the portable solution of partial
differential equations using the finite element method (FEM).

3 / 36

— firedrakeproject.org
“ Firedrake is an automated system for the portable solution of partial
differential equations using the finite element method (FEM).

Two-layer abstraction for FEM computation from high-level descriptions:

Firedrake: a portable finite-element computation framework
Drive FE computations from a high-level problem specification
PyOP2: a high-level interface to unstructured mesh based methods
Efficiently execute kernels over an unstructured grid in parallel

4 / 36

The Firedrake/PyOP2 tool chain

PyOP2
Parallel
unstructured
mesh
computation
framework

Firedrake
Performance-
portable
Finite-element
computation
framework

Unified Form
Language (UFL)

PyOP2
Interface

modified
FFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

Problem definition
in FEM weak form

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake
Interface

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimizer

data structures
(Set, Map, Dat)

5 / 36

Parallel computations on
unstructured meshes with PyOP2

6 / 36

Scientific computations on
unstructured meshes

Independent local operations for
each element of the mesh described
by a kernel.
Reductions aggregate contributions
from local operations to produce the
final result.

PyOP2
A domain-specific language embedded
in Python for parallel computations on
unstructured meshes or graphs.

Unstructured mesh
1

0 2

3
6

5

4 7

8

0 1

3
2

4

5
8

7
6

PyOP2 Sets:
nodes (9 entities: 0-8)
elements (9 entities: 0-8)
PyOP2 Map elements-nodes:
elem_nodes = [[0, 1, 2], [1, 3, 2], ...]
PyOP2 Dat on nodes:
coords = [..., [.5,.5], [.5,-.25], [1,.25], ...]

7 / 36

Scientific computations on
unstructured meshes

Independent local operations for
each element of the mesh described
by a kernel.
Reductions aggregate contributions
from local operations to produce the
final result.

PyOP2
A domain-specific language embedded
in Python for parallel computations on
unstructured meshes or graphs.

Unstructured mesh
1

0 2

3
6

5

4 7

8

0 1

3
2

4

5
8

7
6

PyOP2 Sets:
nodes (9 entities: 0-8)
elements (9 entities: 0-8)
PyOP2 Map elements-nodes:
elem_nodes = [[0, 1, 2], [1, 3, 2], ...]
PyOP2 Dat on nodes:
coords = [..., [.5,.5], [.5,-.25], [1,.25], ...]

PyOP2 Data Model
Mesh topology
Sets – cells, vertices, etc
Maps – connectivity between entities
in different sets

Data
Dats – Defined on sets (hold
pressure, temperature, etc)

Kernels / parallel loops
Executed in parallel on a set
through a parallel loop
Read / write / increment data
accessed via maps

Linear algebra
Sparsities defined by mappings
Matrix data on sparsities
Kernels compute a local matrix –
PyOP2 handles global assembly

8 / 36

PyOP2 Architecture

OpenCL CUDA

just-in-time (JIT) compile
kernels + marshalling code

PyOpenCL
(JIT)

PyCUDA
(JIT)

CPU OpenMPCPU seq.

MPI

PyOP2 Lib & Runtime Core
colouring, parallel scheduling

COFFEE AST Optimiser

Lin. algebra
PETSc/Cusp

KernelsData Access
Descriptors

Application code

Backends

Code generation

PyOP2 core

User code

9 / 36

Finite-element computations
with Firedrake

10 / 36

Firedrake vs. DOLFIN/FEniCS tool chains

P
ytho

n
C

C
++

DOLFIN
C++ lib

Unified Form
Language (UFL)

FEniCS
Interface

FFC Form
Compiler

FIAT

PETSc
(KSP, SNES)

UFC

SWIG

Instant JIT compiler

MPI

CPU (OpenMP)

Problem definition
in FEM weak form

Local assembly
kernels (C++)

Meshes,
matrices,
vectors
(non)linear
solves

Unified Form
Language (UFL)

PyOP2
Interface

modified
FFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

Problem definition
in FEM weak form

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake
Interface

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimizer

data structures
(Set, Map, Dat)

11 / 36

Function
Field defined on a set of
degrees of freedom
(DoFs), data stored as
PyOP2 Dat

FunctionSpace
Characterized by a
family and degree of FE
basis functions, defines
DOFs for function and
relationship to mesh
entities

Mesh
Defines abstract
topology by sets of
entities and maps
between them (PyOP2
data structures)

Firedrake concepts

firedrake.Function coordinates

pyop2.Set interior facets

pyop2.Set exterior facets

pyop2.Set cells

PETSc.DMPlex topology

Mesh

firedrake.Mesh mesh

pyop2.Map interior facet - node

pyop2.Map exterior facet - node

pyop2.Map cell - node

pyop2.DataSet dofs

pyop2.Set nodes

ufl.FiniteElement element

FunctionSpace

firedrake.FunctionSpace fs

pyop2.Dat data

Function (ufl.Coefficient)

12 / 36

Driving Finite-element Computations in Firedrake
Solving the Helmholtz equation in Python using Firedrake:

from firedrake import *

Read a mesh and define a function space
mesh = Mesh('filename')
V = FunctionSpace(mesh, "Lagrange", 1)

Define forcing function for right-hand side
f = Expression("- (lmbda + 2*(n**2)*pi**2) * sin(X[0]*pi*n) * sin(X[1]*pi*n)",
 lmbda=1, n=8)

Set up the Finite-element weak forms
u = TrialFunction(V)
v = TestFunction(V)

lmbda = 1
a = (dot(grad(v), grad(u)) - lmbda * v * u) * dx
L = v * f * dx

Solve the resulting finite-element equation
p = Function(V)
solve(a == L, p)

∇v ⋅ ∇u − λvu dV = vf dV∫
Ω

∫
Ω

13 / 36

Behind the scenes of the solve call
Firedrake always solves nonlinear problems in resdiual form F(u;v) = 0
Transform linear problem into residual form:

J = a
F = ufl.action(J, u) - L

Jacobian known to be a
Always solved in a single Newton (nonlinear) iteration

Use Newton-like methods from PETSc SNES
PETSc SNES requires two callbacks to evaluate residual and Jacobian:

evaluate residual by assembling residual form

assemble(F, tensor=F_tensor)

evaluate Jacobian by assembling Jacobian form

assemble(J, tensor=J_tensor, bcs=bcs)

14 / 36

Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

15 / 36

Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a)
b = assemble(L)
solve(A, p, b, bcs=bcs)

16 / 36

Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a) # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bcs)

17 / 36

Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a) # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bcs) # A.thunk(bcs) called, A assembled

18 / 36

Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a) # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bcs) # A.thunk(bcs) called, A assembled
...
solve(A, p, b, bcs=bcs) # bcs consistent, no need to reassemble

19 / 36

Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a) # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bcs) # A.thunk(bcs) called, A assembled
...
solve(A, p, b, bcs=bcs) # bcs consistent, no need to reassemble
...
solve(A, p, b, bcs=bcs2) # bcs differ, reassemble, call A.thunk(bcs2)

20 / 36

Distributed Parallel Computations with MPI

processor 0

processor 1

co
re

o
w

ne
d

no
n-

ex
ec

co
re

ex
ec

no
n-

ex
ec

ex
ec

o
w

ne
d

21 / 36

Benchmarks

Hardware
Intel Xeon E5-2620 @ 2.00GHz (Sandy Bridge)
16GB RAM

Compilers
Intel Compilers 14.0.1
Intel MPI 3.1.038
Compiler flags: -O3 -xAVX

Software
DOLFIN 389e0269 (April 4 2014)
Firedrake 570d999 (May 13 2014)
PyOP2 e775c5e (May 9 2014)

Problem setup
DOLFIN + Firedrake: RCM mesh reordering enabled
DOLFIN: quadrature with optimisations enabled
Firedrake: quadrature with COFFEE loop-invariant code motion enabled

22 / 36

preassembled
system

Solver
CG

Preconditioner
Hypre
Boomeramg

V = FunctionSpace(mesh, "Lagrange", degree)

Dirichlet BC for x = 0 and x = 1
bc = DirichletBC(V, 0.0, [3, 4])

Test, trial and coefficient functions
u = TrialFunction(V)
v = TestFunction(V)
f = Function(V).interpolate(Expression(
 "10*exp(-(pow(x[0] - 0.5, 2) + \
 pow(x[1] - 0.5, 2)) / 0.02)"))
g = Function(V).interpolate(Expression("sin(5*x[0])"))

Bilinear and linear forms
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds

Pre-assemble and solve
u = Function(V)
A = assemble(a, bcs=bc)
b = assemble(L)
bc.apply(b)

solve(A, u, b, solver_parameters=params)

Poisson benchmark

23 / 36

solid: Firedrake, dashed: DOLFIN 24 / 36

solid: Firedrake, dashed: DOLFIN 25 / 36

solid: Firedrake, dashed: DOLFIN 26 / 36

preassembled
system

Solver
GMRES for
tentative
velocity +
velocity
correction
CG for
pressure
correction

Preconditioner
block-Jacobi
ILU block
preconditioner

V = VectorFunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)
u, p = TrialFunction(V), TrialFunction(Q)
v, q = TestFunction(V), TestFunction(Q)

dt = 0.01
nu = 0.01
p_in = Constant(0.0)

noslip = DirichletBC(V, Constant((0.0, 0.0)), (1, 3, 4, 6))
inflow = DirichletBC(Q, p_in, 5)
outflow = DirichletBC(Q, 0, 2)
bcu = [noslip]
bcp = [inflow, outflow]

u0, u1, p1 = Function(V), Function(V), Function(Q)
k = Constant(dt)
f = Constant((0, 0))

Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \
 nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1, L1 = lhs(F1), rhs(F1)

Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx

Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx

Incompressible Navier-Stokes benchmark (Chorin's method)

27 / 36

solid: Firedrake, dashed: DOLFIN 28 / 36

solid: Firedrake, dashed: DOLFIN 29 / 36

solid: Firedrake, dashed: DOLFIN 30 / 36

solid: Firedrake, dashed: DOLFIN 31 / 36

solid: Firedrake, dashed: DOLFIN 32 / 36

solid: Firedrake, dashed: DOLFIN 33 / 36

Summary and additional features

Summary
Two-layer abstraction for FEM computation from high-level descriptions

Firedrake: a performance-portable finite-element computation framework
Drive FE computations from a high-level problem specification
PyOP2: a high-level interface to unstructured mesh based methods
Efficiently execute kernels over an unstructured grid in parallel

Decoupling of Firedrake (FEM) and PyOP2 (parallelisation) layers
Firedrake concepts implemented with PyOP2/PETSc constructs
Portability for unstructured mesh applications: FEM, non-FEM or combinations
Extensible framework beyond FEM computations (e.g. image processing)

34 / 36

Summary and additional features

Summary
Two-layer abstraction for FEM computation from high-level descriptions

Firedrake: a performance-portable finite-element computation framework
Drive FE computations from a high-level problem specification
PyOP2: a high-level interface to unstructured mesh based methods
Efficiently execute kernels over an unstructured grid in parallel

Decoupling of Firedrake (FEM) and PyOP2 (parallelisation) layers
Firedrake concepts implemented with PyOP2/PETSc constructs
Portability for unstructured mesh applications: FEM, non-FEM or combinations
Extensible framework beyond FEM computations (e.g. image processing)

Preview: Firedrake features not covered
Automatic optimization of generated assembly kernels with COFFEE (Fabio's talk)
Solving PDEs on extruded (semi-structured) meshes (Doru + Andrew's talk)
Building meshes using PETSc DMPlex
Using fieldsplit preconditioners for mixed problems
Solving PDEs on immersed manifolds
...

35 / 36

Thank you!
Contact: Florian Rathgeber, @frathgeber, f.rathgeber@imperial.ac.uk

Resources
PyOP2 https://github.com/OP2/PyOP2

PyOP2: A High-Level Framework for Performance-Portable Simulations on
Unstructured Meshes Florian Rathgeber, Graham R. Markall, Lawrence
Mitchell, Nicholas Loriant, David A. Ham, Carlo Bertolli, Paul H.J. Kelly,
WOLFHPC 2012
Performance-Portable Finite Element Assembly Using PyOP2 and FEniCS
Graham R. Markall, Florian Rathgeber, Lawrence Mitchell, Nicolas Loriant,
Carlo Bertolli, David A. Ham, Paul H. J. Kelly , ISC 2013

Firedrake https://github.com/firedrakeproject/firedrake
COFFEE: an Optimizing Compiler for Finite Element Local Assembly Fabio
Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea,
J. Ramanujam, David A. Ham, Paul H. J. Kelly, submitted

UFL https://bitbucket.org/mapdes/ufl
FFC https://bitbucket.org/mapdes/ffc

This talk is available at http://kynan.github.io/fenics14 (source)

Slides created with remark
36 / 36

https://twitter.com/frathgeber
mailto:f.rathgeber@imperial.ac.uk
https://github.com/OP2/PyOP2
http://dx.doi.org/10.1109/SC.Companion.2012.134
http://link.springer.com/chapter/10.1007/978-3-642-38750-0_21
https://github.com/firedrakeproject/firedrake
https://bitbucket.org/mapdes/ufl
https://bitbucket.org/mapdes/ffc
http://kynan.github.io/fenics14
https://github.com/kynan/fenics14
http://remarkjs.com/

