An adjoint-enabled simulation
framework for cardiac
electrophysiology

Marie E. Rognes Outline
Center for Biomedical Computing

Simula Research Laboratory 1. |nverting the heart

. . . 2. Point integrals
with Patrick Farrell, Simon Funke, &

Johan Hake, Molly Maleckar 3. Multistage schemes and
their adjoints

(b) Center for Biomedical Computing simula . research laboratory

Heart disease is the leading cause of death in the world

Inferior
vena cava

[http://health-advisors.org]
2/22

The beating of the heart is driven by the electrical
signalling of heart cells

. QRS complex
5 A o e,
SA node ... o T
A - T-wave
Wanbicles
rlax

[http://www.bostonscientific.com]

3/22

Research aims at commercially and clinically driven
advances in cardiac diagnostics and treatments

Combine data from Build patient-specific, Use models to prescribe
Ultrasound and ECG electromechanical and optimize patient
models of the heart treatments

[Edvardsen, Maleckar, Wall et al]

4/22

Adjoints are ubiquitous

Constrained optimal control
max J(u,m) while F(u,m)=0
m

Gradient-based optimization algorithms require the gradient of J with

respect to m.
dJ du
- = J,—
dm am

Define the adjoint solution z

+Jm

Ffz=J,

u

Then, the derivative computation only involves one forward solve for u and
one backward solve for z independent of #m:

dJ
=L e Fpzt
dm

Other applications

Sensitivity analysis, data assimilation, error control, generalized stability
theory, ...

22

Treating abnormal cardiac acitivity: How to find the
optimal region to treat atrial fibrillation by ablation?

Left Atrial Ablation
for Atrial
Fibrillation

Find the optimal ablation region
m to achieve defibrillation

min J(u,m) s.t. F(u,m)=0

© FDM 2005

[http://www.londonarrhythmiacentre.co.uk/]

For defibrillation, one may consider:

J(u,m) = |lu— uideal“%Z(O,T;L?(Qobs)) + aR(m)

[Nagaiah et al, 2011]

/22

The significant gap in maturity between forward and
reverse cardiac modelling motivates a new adjoint-enabled
simulation framework

Obtaining

$ hg clone ssh://hg@bitbucket.org/meg/adjoint-beat
$ cd adjoint-beat
$ python setup.py install --prefix=/home/meg/local

Usage

[
‘from beatadjoint import *
L

7/22

The governing equations: the bidomain model

Find the transmembrane potential v = v(z,t), the extracellular
potential u(x,t) and the ionic current(s) s = s(x,t) such that for
almost all t € (0,T:

vy — div(M; Vo + M; Vue) = —Iion(v, s) + I,
div (M; Vv + (M; + Mc) Vue) = g,
St = F(’U,S),

with boundary conditions

(M;Vvo+M;Vue) -n=0, (MiVu+ (M;+ M)Vu) -n=0

/uezo.
Q

and

[Tung, 1978]

22

The typical discretization approach is based on operator
splitting and iterations between an ODE and a PDE solve

1. With v™ and s" as initial conditions at t,, find v* and s* solving

'U: = _Iion('U*v S*)7

sp = F(v*,s%)

on (tn, tn + O].
2. With v* as initial condition, find vl and u?“ such that

ol — div(M; Vol + My Vaith) = 14,
div (M; Vol + (M; + M,) Vurth) = g,

on [n = (tnytn+1}-
3. If < 1: with o' and s* as initial conditions at tntor, find o™ and

s"1 solving
1 1 1
U;H— = _Iion(vn+ 55n+)7
+1 _ 1 1
sptl = F(omtt sm

on (tn + Ok, tn+1]~ [Sundnes et al, 2006]

/22

The specific forms of the ODEs are known as cell models,

and greatly vary in complexity

[Fitzhugh, 1961; Rodgers & McCulloch, 1994]

Cc1 Cc2
vy = —2(1) —vp) (v — o) (vp — V) — —(v—vp)s
v2 Vg

St = b(v — Vpest — €5)

[ten Tusscher & Panfilov, 2006, www.cellml.org]

<units>

“milisecond” public_interface="out/>

10/22

ODE discretizations via multistage schemes

C1|di1 2 ... (g

Let w = (v,5) and G = (—Tion, F'): Cp |21 G2 ... @os
we(x,t) = G(z, t,w(zx,t)),

’IU(O) = wop. Cg | Qg1 gz ... (g

IE:'1 bg . bs

For an s-stage scheme with time step k,, and given w,, solve

w

ki(z) = knG(x, ty + cifin, wp(z) + Zaijk‘j(x)), i=1,...
j=1

w(@)ni1 = w(@)n + Y biki().
i=1

11/22

The three types of solve have different requirements in the

FEniCS context

Implicit non-linear solve (a;; # 0 for all j > 1)
S
ki(x) — knG(x, ty + Cikn, wn(x) + Z a;jkj(x)) =0
j=1
Explicit via function evaluation (a;; = 0 for all j > 7)
i—1
ki(2) = kG (@, tn + cikin, wn(2) + Y _ aijkj(x))
j=1

Explicit via assignment

S

w(T)pt1 = w(x), + Z biki(z).

1=1

[— dolfin/multistage/*, site-packages/dolfin/multistage/*, demo/undocumented/multi-stage-solver/*]

12/22

Implementation of collocation methods motivated
introducing the point measure
Definition
Let X be a collection of points associated with the domain 2. We
define the point measure dP relative to X by

/QIdP:ZI(:E): Z/Qléxdx.

reX zeX

Example

= FiniteElement ("CG", tetrahedron, 1)
= TestFunction (V)

= Coefficient (V)

= f*vxdP

B g <
|

[ufl/measure.py, ffc/quadrature/*]

13/22

FFC generated code for f*xv*dP

static const double W1 = 1.8;

for (unsigned int r = @; r < 3;
{

ALr] = 0.8;
}

r++)

double G[3];

G[e] = Wixw[e][e];
G[1] = Wi=w[@][1];
GL2] = Wixw[@][2];

switch (vertex)

{

case 0:

{

for (unsigned int ip = @; ip < 1; ip++)

{

AL@] += G[@I;
}

For vector-valued Lagrange elements, the point measure
allows for specifying and solving ODEs as variational forms.

Consider the system: find u € V such that

/Q Ly(u,v) AP = /Q I () dP

forallveV.
Let X be the collection of vertices. Let V = M.

For each z, € X, find {u;}, such that

> La($5, 00 (wr)uy = To(¢i) ()

JjeJk

for ¢ € Ji where Jj, is the index set of basis functions that are
non-zero at xy, |Ji| = N.

15 /22

The point measures can be used to define multi-stage
schemes for solving collections of ODEs

Example case: Explicit via function evaluation
For each vertex xj, evaluate

i—1

ki(xg) = knG(xg, ty, + Cikin, wn(Tk) + Z a;jkj(xr))
j=1

Equivalent FEniCS code

Assume that G is an UFL Expr.
V = VectorElement("CG", T, 1, N)
v = TestFunction (V)

kappa = Constant (T)

rhs = kappa*inner (G, v)*dP

16 /22

Outline of the PointIntegralSolver algorithm

def step(G, k_i):

for x_k in vertices(mesh):
Identify one cell and local vertex number
(cell, i) = cell_and_local_vertex(x_k)

Restrict any coefficients in G to this cell
G.coefficients.restrict(w, cell)

Evaluate right hand side
G.integrals[0].tabulate_tensor(b, w, cell, i)

Extract subset of active local dofs
J_k = find_active_dofs (i)

Reduce size of b
b = b[J_k]

Compute the corresponding global dofs
dofs = ki.tabulate_dofs(cell) [J_k]

Update ki
ki.vector ().add(b, dofs)

17/22

The block structure of a forward multistage solution step

For simplicity of presentation, consider the case where

G(-,,w) =Cw

Forward structure (s = 2)

I 0 0 0 Wn, wWo
—knC(-) I—kpanC(:) —kna12C(:) 0O k1 _ 0
—6n,C() —Kpa21C(:) I —kpaC() 0 ko o 0

-1 —bl —b2 I Wp+1 0

18/22

The block structure of an adjoint multistage solution step

Adjoint structure

I —£,C* (%) —k,C* (") -1 20
0 (I— mnallc(-))* —mnaglC*(-) —bl Z1 o oJ
0 —hjnalgc*(') (I — HnGQQO('))* —b2 z9 o (91[}
0 0 0 I s

[dolfin /site-packages/multistage, dolfin-adjoint/dolfin_adjoint/pointintegralsolver.py]

19/22

Cardiac wave propagation with abnormal tissue
conductivities as a basic example

Set-up simulation scenario

cell = FitzhughNagumo ()

heart = CardiacModel (mesh, time, M_i, M_e, cell, I_s)
solver = SplittingSolver (heart)

Solve as you go along
solutions = solver.solve((0, T), k_n)
for (timestep, fields) in solutions:

Do something with solution fields

— div(M; Vo + M; Vue) — Lion(v, 5) =
div(M; Vv + (M; + M) V u)
cs)

I; St = b(— Urest —

3022219
25

50

v o Mi|e = AGi|eAT7 Gi\e = diag(gi|el7gi|etvgi|et)

[Thanks to Sjur Gjerald and Johan Hake for patient-specific mesh (generated from ultrasound), fibers and sheets]

http://youtu.be/r6tLEMARKAO 20 /22

http://youtu.be/r6tLfMARKA0

What is the sensitivity of the abnormal wave propagation

to the local tissue conductivities?
The wave propagation abnormality at a given time 7"
oJ

2
J (v, 8,u) = [o(T) = vans(DI7, 5 —— =7
Gelilllt
v_obs = Function(V, "healthy_obs_200.xml.gz")
J = Functional (inner(v - v_obs, v - v_obs)*dx*dt[T])

dJdg_s = compute_gradient(J, gs)

21/22

[Wikimedia Commons]

22/22

	Inverting the heart
	Butcher table adjoints
	PointIntegralSolvers
	Examples

