
An adjoint-enabled simulation
framework for cardiac
electrophysiology

Marie E. Rognes
Center for Biomedical Computing

Simula Research Laboratory

with Patrick Farrell, Simon Funke,
Johan Hake, Molly Maleckar

Outline

1. Inverting the heart

2. Point integrals

3. Multistage schemes and
their adjoints

1 / 22

Heart disease is the leading cause of death in the world

[http://health-advisors.org]

2 / 22

The beating of the heart is driven by the electrical
signalling of heart cells

[http://www.bostonscientific.com]

3 / 22

Research aims at commercially and clinically driven
advances in cardiac diagnostics and treatments

[Edvardsen, Maleckar, Wall et al]

4 / 22

Adjoints are ubiquitous
Constrained optimal control

max
m

J(u,m) while F (u,m) = 0

Gradient-based optimization algorithms require the gradient of J with
respect to m.

dJ

dm
= Ju

∂u

∂m
+ Jm

Define the adjoint solution z

F ∗uz = Ju

Then, the derivative computation only involves one forward solve for u and
one backward solve for z independent of #m:

dJ

dm
= −Fmz + Jm

Other applications

Sensitivity analysis, data assimilation, error control, generalized stability
theory, ...

5 / 22

Treating abnormal cardiac acitivity: How to find the
optimal region to treat atrial fibrillation by ablation?

Find the optimal ablation region
m to achieve defibrillation

min
m

J(u,m) s.t. F (u,m) = 0

[http://www.londonarrhythmiacentre.co.uk/]

For defibrillation, one may consider:

J(u,m) = ‖u− uideal‖2L2(0,T ;L2(Ωobs)) + αR(m)

[Nagaiah et al, 2011]

6 / 22

The significant gap in maturity between forward and
reverse cardiac modelling motivates a new adjoint-enabled
simulation framework

Obtaining

$ hg clone ssh://hg@bitbucket.org/meg/adjoint-beat

$ cd adjoint-beat

$ python setup.py install --prefix=/home/meg/local

Usage

from beatadjoint import *

7 / 22

The governing equations: the bidomain model

Find the transmembrane potential v = v(x, t), the extracellular
potential ue(x, t) and the ionic current(s) s = s(x, t) such that for
almost all t ∈ (0, T]:

vt − div(Mi∇ v +Mi∇ue) = −Iion(v, s) + Is,

div (Mi∇ v + (Mi +Me)∇ue) = g,

st = F (v, s),

with boundary conditions

(Mi∇ v +Mi∇ue) · n = 0, (Mi∇ v + (Mi +Me)∇ue) · n = 0

and ∫
Ω
ue = 0.

[Tung, 1978]

8 / 22

The typical discretization approach is based on operator
splitting and iterations between an ODE and a PDE solve

1. With vn and sn as initial conditions at tn, find v∗ and s∗ solving

v∗t = −Iion(v∗, s∗),

s∗t = F (v∗, s∗)

on (tn, tn + θκ].
2. With v∗ as initial condition, find v† and un+1

e such that

v†t − div(Mi∇ v† +Mi∇un+1
e) = Is,

div
(
Mi∇ v† + (Mi +Me)∇un+1

e

)
= g,

on In = (tn, tn+1].
3. If θ < 1: with v† and s∗ as initial conditions at tn+θκ, find vn+1 and
sn+1 solving

vn+1
t = −Iion(vn+1, sn+1),

sn+1
t = F (vn+1, sn+1)

on (tn + θκ, tn+1].
[Sundnes et al, 2006]

9 / 22

The specific forms of the ODEs are known as cell models,
and greatly vary in complexity

[Fitzhugh, 1961; Rodgers & McCulloch, 1994]

vt =
c1

v2
a

(v − vr)(v − vth)(vp − v)− c2

va
(v − vr)s

st = b(v − vrest − c s)

[ten Tusscher & Panfilov, 2006, www.cellml.org]

10 / 22

ODE discretizations via multistage schemes

Let w = (v, s) and G = (−Iion, F):

wt(x, t) = G(x, t, w(x, t)),

w(0) = w0.

For an s-stage scheme with time step κn and given wn, solve

ki(x) = κnG(x, tn + ciκn, wn(x) +

s∑
j=1

aijkj(x)), i = 1, . . . , s

w(x)n+1 = w(x)n +

s∑
i=1

biki(x).

11 / 22

The three types of solve have different requirements in the
FEniCS context

Implicit non-linear solve (aij 6= 0 for all j > i)

ki(x)− κnG(x, tn + ciκn, wn(x) +

s∑
j=1

aijkj(x)) = 0

Explicit via function evaluation (aij = 0 for all j > i)

ki(x) = κnG(x, tn + ciκn, wn(x) +

i−1∑
j=1

aijkj(x))

Explicit via assignment

w(x)n+1 = w(x)n +

s∑
i=1

biki(x).

[→ dolfin/multistage/*, site-packages/dolfin/multistage/*, demo/undocumented/multi-stage-solver/*]

12 / 22

Implementation of collocation methods motivated
introducing the point measure

Definition

Let X be a collection of points associated with the domain Ω. We
define the point measure dP relative to X by∫

Ω
I dP =

∑
x∈X

I(x) =
∑
x∈X

∫
Ω
Iδx dx.

Example

V = FiniteElement("CG", tetrahedron , 1)

v = TestFunction(V)

f = Coefficient(V)

L = f*v*dP

[ufl/measure.py, ffc/quadrature/*]

13 / 22

FFC generated code for f*v*dP

14 / 22

For vector-valued Lagrange elements, the point measure
allows for specifying and solving ODEs as variational forms.

Consider the system: find u ∈ V such that∫
Ω
Ia(u, v) dP =

∫
Ω
IL(v) dP

for all v ∈ V .

Let X be the collection of vertices. Let V =MN
1 .

For each xk ∈ X , find {uj}Jk such that∑
j∈Jk

Ia(φj , φi)(xk)uj = IL(φi)(xk)

for i ∈ Jk where Jk is the index set of basis functions that are
non-zero at xk, |Jk| = N .

15 / 22

The point measures can be used to define multi-stage
schemes for solving collections of ODEs

Example case: Explicit via function evaluation

For each vertex xk, evaluate

ki(xk) = κnG(xk, tn + ciκn, wn(xk) +

i−1∑
j=1

aijkj(xk))

Equivalent FEniCS code

Assume that G is an UFL Expr.

V = VectorElement("CG", T, 1, N)

v = TestFunction(V)

kappa = Constant(T)

rhs = kappa*inner(G, v)*dP

16 / 22

Outline of the PointIntegralSolver algorithm
def step(G, k_i):

for x_k in vertices(mesh):

Identify one cell and local vertex number

(cell , i) = cell_and_local_vertex(x_k)

Restrict any coefficients in G to this cell

G.coefficients.restrict(w, cell)

Evaluate right hand side

G.integrals[0].tabulate_tensor(b, w, cell , i)

Extract subset of active local dofs

J_k = find_active_dofs(i)

Reduce size of b

b = b[J_k]

Compute the corresponding global dofs

dofs = ki.tabulate_dofs(cell)[J_k]

Update ki

ki.vector (). add(b, dofs)

17 / 22

The block structure of a forward multistage solution step

For simplicity of presentation, consider the case where

G(·, ·, w) = Cw

Forward structure (s = 2)


I 0 0 0

−κnC(·) I − κna11C(·) −κna12C(·) 0
−κnC(·) −κna21C(·) I − κna22C(·) 0
−I −b1 −b2 I




wn

k1
k2

wn+1

 =


w0

0
0
0



18 / 22

The block structure of an adjoint multistage solution step

Adjoint structure


I −κnC∗(·) −κnC∗(·) −I
0 (I − κna11C(·))∗ −κna21C∗(·) −b1
0 −κna12C∗(·) (I − κna22C(·))∗ −b2
0 0 0 I




z0
z1
z2
z3

 =
∂J

∂w

[dolfin/site-packages/multistage, dolfin-adjoint/dolfin adjoint/pointintegralsolver.py]

19 / 22

Cardiac wave propagation with abnormal tissue
conductivities as a basic example

Set -up simulation scenario

cell = FitzhughNagumo ()

heart = CardiacModel(mesh , time , M_i , M_e , cell , I_s)

solver = SplittingSolver(heart)

Solve as you go along

solutions = solver.solve((0, T), k_n)

for (timestep , fields) in solutions:

Do something with solution fields

vt − div(Mi∇ v +Mi∇ue)− Iion(v, s) = Is

div(Mi∇ v + (Mi +Me)∇ue) = 0

st = b(v − vrest − c s)
Mi|e = AGi|eA

T , Gi|e = diag(gi|el, gi|et, gi|et)

[Thanks to Sjur Gjerald and Johan Hake for patient-specific mesh (generated from ultrasound), fibers and sheets]

http://youtu.be/r6tLfMARKA0 20 / 22

http://youtu.be/r6tLfMARKA0

What is the sensitivity of the abnormal wave propagation
to the local tissue conductivities?

The wave propagation abnormality at a given time T :

J(v, s, u) = ‖v(T)− vobs(T)‖2, ∂J

∂ge|i|l|t
= ?

v_obs = Function(V, "healthy_obs_200.xml.gz")

J = Functional(inner(v - v_obs , v - v_obs)*dx*dt[T])

dJdg_s = compute_gradient(J, gs)

21 / 22

[Wikimedia Commons]

22 / 22

	Inverting the heart
	Butcher table adjoints
	PointIntegralSolvers
	Examples

