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Definition (Affine mesh)

An affine mesh is a mesh where each of the elements can be
obtained by applying an affine (linear plus translation)
transformation to the standard reference element.

Non-affine meshes arise in Numerical Weather Prediction (NWP):

I Higher-order triangulations of the sphere,

I Pseudo-uniform quadrilateral meshes on the sphere,

I Meshing a spherical annulus (atmosphere-shaped domain),

I Terrain-following meshes over mountains.
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Example non-affine meshes
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FEEC spaces

Discrete de Rham complexes underpin our approach to NWP,
where discrete Helmholtz decomposition is crucial.

In two dimensions (e.g. (V0,V1,V2) = (CG2,BDM1,DG0).

V0︸︷︷︸
Continuous

∇⊥=k×∇−−−−−−→ V1︸︷︷︸
Continuous normals

∇·−−−−→ V2︸︷︷︸
Discontinuous

In three dimensions:

V0︸︷︷︸
Continuous

∇−−−−→ V1︸︷︷︸
Continuous tangents

∇×−−−−→ V2︸︷︷︸
Continuous normals

∇·−−−−→ V3︸︷︷︸
Discontinuous
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Local-global transformations

Finite element spaces are defined by:

1. Specification of Vi (ê) on reference element ê.

2. Specification of transformation Vi (e)→ Vi (ê) for each mesh
element e.

Transformations are obtained from pullbacks:
I Transformation on Vi preserves integrals over i-dimensional

submanifolds, guaranteeing appropriate continuity between
elements.

I Transformations commute with d (i.e. ∇, ∇⊥, ∇×, or ∇· as
appropriate).

FEniCS implementation: Rognes, Kirby and Logg (SISC, 2009);
Rognes, Ham, Cotter and McRae (GMD, 2013).
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Transformations in 2D

ψ ∈ V0(e) =⇒ ψ ◦ ge = ψ̂ ∈ V0(ê),

v ∈ V1(e) =⇒ v ◦ ge =
Je v̂

det Je
for v̂ ∈ V2(ê),

ρ ∈ V2(e) =⇒ ρ ◦ ge =
ρ̂

det Je
for ρ̂ ∈ V2(ê).

Commutative properties:

ψ ∈ V0(e) =⇒ (∇⊥ψ) ◦ ge =
Je∇̂⊥ψ̂

det Je
with ∇̂⊥ψ̂ ∈ V1(ê) =⇒ ∇⊥ψ ∈ V1(e),

v ∈ V1(e) =⇒ (∇ · v) ◦ ge =
∇̂ · v̂
det Je

with ∇̂ · v̂ ∈ V2(ê) =⇒ ∇ · v ∈ V2(e).
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Transformations in 3D

ψ ∈ V0(e) =⇒ ψ ◦ ge = ψ̂ ∈ V0(ê),

ω ∈ V1(e) =⇒ ω ◦ ge = J−Te ω̂, for ω̂ ∈ V1(ê),

v ∈ V2(e) =⇒ v ◦ ge =
Je v̂

det Je
for v̂ ∈ V2(ê),

ρ ∈ V2(e) =⇒ ρ ◦ ge =
ρ̂

det Je
for ρ̂ ∈ V3(ê).

I When the transformation is affine, Je is constant, and the
approximation properties of Vk are unaffected.

I When the transformation is non-affine, Je is not constant, and
the local space may not contain the required polynomials.
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The dangers of non-affine meshes

Arnold, Boffi and Bonizzoni (2014)

For the Q−r complex on quadrilaterals/hexahedra:

I A sequence of affine meshes has approximation error O(r + 1)
in Vk .

I A sequence of non-affine meshes has approximation error
O(r − k + 1) in Vk .

We are working on similar results for triangular prism elements.

Arnold, Boffi and Bonizzoni. Finite element differential forms on

curvilinear cubic meshes and their approximation properties. Numer.

Math., 2014.
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Rehabilitation

Bochev and Ridzal (2008)

Biggest problem is in Vd , mismatch caused by 1/ det Je . Instead,

1. Choose ρ ∈ Vd(e) =⇒ ρ ◦ ge = ρ̂ ∈ Vd(ê).

2. Replace ∇· with π2∇·:

H1 ∇⊥
−−−−→ H(div)

∇·−−−−→ L2yπ0

yπ1

yπ2

V0 ∇⊥
−−−−→ V1 π2∇·−−−−→ V2

Bochev and Ridzal. Rehabilitation of the lowest-order Raviart-Thomas

element on quadrilateral grids. SIAM J Num. Anal. 47.1 (2008)
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They tried to make me go to rehab, I said, “No, no, no”.

Reasons to rehabilitate?

1. Recover full approximation rate.

7 Still lose approximation
rate for Vk , 0 < k < d .

2. Factor of 1/ det Je prevents exact quadrature, needed for dual
versions of ∇ · ∇× = 0 and ∇×∇ = 0.

7 These identities
come from quadrature-point-wise cancellations.

3. Exact quadrature is needed to reconstruct pointwise mass flux
from upwind-DG advection.

7 DG advection can be modified
so that forms don’t contain 1/ det Je even when Vd does.

We will keep 1/ det Je in the transformation for Vd .
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Convergence in affine limit

Holst and Stern (2012)

High-order convergence is recovered for triangulations of manifolds
as long as (a) consistent polynomial order approximation of
domain is used and (b) manifold is sufficiently smooth that affine
is approached at a suitable rate.

We are working on similar results for extruded wedge meshes in 3D.

Holst and Stern. ”Geometric variational crimes: Hilbert complexes, finite

element exterior calculus, and problems on hypersurfaces.” Foundations

of Computational Mathematics 12.3 (2012): 263-293.
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Testing convergence rates in 2D on sphere

We would like to check higher-order convergence for mixed Poisson
on the 2D surface of the sphere, but FFC+Dolfin/Firedrake does
not support non-affine meshes (yet).

1. Define a global mapping φ from the affine sphere mesh Ω̂ to a
higher-order bendy sphere mesh Ω, using Expression.

2. Calculate J and det J symbolically from φ, and use them to
pull the equations back from Ω to Ω̂.

Σ ∈ V1(Ω) =⇒ Σ ◦ φ =
JΣ̂

det J
, Σ̂ ∈ V1(Ω̂)

u ∈ V2(Ω) =⇒ u ◦ φ =
û

det J
, û ∈ V2(Ω̂)
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Pulling back the equations∫
Ω
τ ·Σ +∇ · τu dx = 0, ∀τ ∈ V1(Ω),∫

Ω
v∇ ·Σ dx =

∫
Ω
vg dx , ∀u ∈ V2(Ω),

becomes∫
Ω̂

(J τ̂ ) · (JΣ̂)

det J
+ ∇̂ · τ̂ û

det J
dx̂ = 0, ∀τ̂ ∈ V1(Ω̂),∫

Ω̂
v̂∇̂ · Σ̂

det J
dx̂ =

∫
Ω̂
v̂g ◦ φ dx̂ , ∀v̂ ∈ V2(Ω̂).

Note that we have used the commutative property

(∇ ·Σ) ◦ φ = ∇̂·Σ̂
det J .
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n_out = _outward_normals(mesh)

J = as_tensor([[X.dx(0),X.dx(1),X.dx(2)],

[Y.dx(0),Y.dx(1),Y.dx(2)],

[Z.dx(0),Z.dx(1),Z.dx(2)]])

dJ = as_tensor([[X*n_out[0],X*n_out[1],X*n_out[2]]

,

[Y*n_out[0],Y*n_out[1],Y*n_out[2]]

,

[Z*n_out[0],Z*n_out[1],Z*n_out[2]]

])

detJ = det(J+dJ)

tau , v = TestFunctions(W)

a = (inner(dot(J,sigma), dot(J,tau))/detJ +

div(sigma)*v/detJ + div(tau)*u/detJ)*dx

L = g*v*dx
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Testing convergence rates in 2D on sphere

We would also like to check convergence on a spherical annulus
mesh with wedge elements, but FFC+Firedrake does not support
non-affine meshes (yet).

I We can perform the same trick, if we can find a domain that
is topologically equivalent to the spherical annulus, but which
can be meshed using affine wedge elements.

I The spherical annulus mesh has non-affine elements because
the triangle areas increase with height.

What is the reference affine domain for a spherical annulus?
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The hedgehog mesh
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Making a hedgehog mesh with Firedrake

1. Start with a triangulation of the sphere (e.g. icosahedral).

2. Extrude the mesh in the radial direction to make columns of
non-affine wedge elements.

3. Replace the CG coordinate field1 with a DG coordinate field.

4. Recompute the coordinate field so that triangle area is
preserved up the column.

5. Interelement continuity for CG , H(div) and H(curl) elements
is maintained.

1In Firedrake, coordinate fields are just members of ordinary vector-valued
function spaces.
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p = TrialFunction(V3)

q = TestFunction(V3)

gprime = Function(V3)

solve(p*q/detJ*dx == g*q*dx , gprime)

u = TrialFunction(V2)

v = TestFunction(V2)

pe = div(u) - gprime

aeqn = (inner(dot(J,u),dot(J,v))/detJ + div(v)*pe/detJ

)*dx

a = lhs(aeqn)

L = rhs(aeqn)

usol = Function(V2)

solve(a==L, usol)

psol = Function(V3)

solve(p*q*dx == q*(div(usol)/detJ - g)*dx , psol)
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Geometry of the hedgehog
I Hedgehog mesh geometry replaces r by r0 in metric written in

spherical coordinates:

ds2 = r2 cos2 φ dλ2 + r2 dφ2 + dr2,

becomes ds2 = r2
0 cos2 φ dλ2 + r2

0 dφ2 + dz2.

I This geometry can be obtained by embedding the 2-sphere in
R4 with a flat metric, then extruding in the fourth direction.

I This geometry is known to meteorologists as the shallow
atmosphere approximation; curvature is 2/r2

0 .

Thuburn and White. A geometrical view of the shallow-atmosphere

approximation, with application to the semiLagrangian departure point

calculation. Quarterly Journal of the Royal Meteorological Society

139.670 (2013): 261-268.
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Approximation error

Colin Cotter
Bendy FEM



3D convergence
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What about dual operators?

V0
∇−−−−→ V1

∇×−−−−→ V2
∇·−−−−→ V3

∇̃·←−−−− ∇̃×←−−−− ∇̃←−−−−

Crucial for discrete Helmholtz decomposition; we need ∇̃ · ∇̃× = 0
and ∇̃ × ∇̃ = 0.

For p ∈ V3, define2 ∇̃p ∈ V2 by∫
Ω

v · ∇̃p dx = −
∫

Ω
∇ · vp dx , ∀v ∈ V2.

Similar definitions for ∇̃×, ∇̃·.
2Take Ω with no external boundaries to make things easy
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Closure when composing dual operators

For p ∈ V3, we have ∇̃ × ∇̃p ∈ V1, and∫
Ω

Σ · ∇̃ × ∇̃p dx = −
∫

Ω
∇×Σ · ∇̃p dx

=

∫
Ω
∇ · ∇ ×Σ︸ ︷︷ ︸

=0

p dx = 0.

I For non-affine meshes, factors of J and det J appear in all of
these expressions.

I However, we can replace the integrals in the definitions by
sums over quadrature points:∑

i vi · ∇̃piwi = −
∑

i (∇ ·w)ipiwi , ∀w ∈ V2,
and property is preserved.
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Conclusions

I Non-affine meshes are needed for global atmosphere/ocean
applications.

I They lead to non-constant J and det J terms.

I Potential convergence loss can be avoided if domain is smooth
so that affine is approached in the limit.

I This was verified for triangles on sphere and wedges in
spherical annulus by pulling back with a global transformation
from an affine reference mesh and manually inserting Js and
det Js.

I The hedgehog mesh can be used as an affine reference mesh.

I Non-affine doesn’t spoil closure of dual operators, or
reconstruction of mass fluxes (not shown).
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Mass reconstruction

d

dt
〈φ, h〉+ 〈φ,∇ · F〉 = 0, ∀φ ∈ V2(e).

Upwind DG:

d

dt

∫
e
φh dx −

∫
e
∇φ · uh dx +

∫
∂e
φu · nh̃ ds = 0, ∀φ ∈ V2(e).

Can find F ∈ V1 locally so that the above equation is consistent
with upwind DG advection, using Fortin operator.∫

f
φF · n ds =

∫
f
φu · nh̃ ds, ∀φ ∈ V2(f ),∫

e
∇φ · F dx =

∫
e
∇φ · hu dx , ∀φ ∈ V2(e).
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Mass reconstruction

Mass reconstruction relies on exact integration in DG scheme, but
we get factors of 1/ det J:

d

dt

∫
ê
φ̂

ĥ

det Je
dx̂ −

∫
ê
∇̂φ̂ · û ĥ

det Je
dx̂ +

∫
∂ê
φ̂û · n̂

ˆ̃h

det Je
dŝ = 0,

∀φ̂ ∈ V2(ê).

Solution

Replace φ ◦ ge = φ̂/ det Je with φ ◦ ge = φ̂.
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Coriolis term

Geostrophic balance property and PV conservation rely on exact
integration of (nonlinear) Coriolis term:∫

Ω
w ·Q⊥ dx .

Magic cancellation occurs:∫
e

w ·Q⊥ dx =

∫
ê

ŵ · Q̂⊥ dx̂ .
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