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Abstract

We introduce four integral operators closely related to the Laplace equation in
three-dimensions on the circular unit disc. Two of them are closed to the
simple layer on the disc and the other two are related to the hyper singular
operator. We establish their variational formulations and the coercivity
properties in some unknows Sobolev spaces. They are also linked to the
Laplace operator on the disc.

These results are a tentative extension to R° of previous results in R?,
contains in a common work with Carlos Jerez-Hanckes that we present in the
beginning of the talk.
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The Log Kernel in Sobolev Spaces for a slit

J.C. Nédélec (CMAP) FEniCS 14 June 15, 2014 4/46



Standard Sobolev spaces

For s € R, H%(O) denote standard Sobolev spaces [3, Chapter 3].
Let s > 0, we say that a distribution belongs to the local Sobolev space
Hs.(0) if its restriction to every compact set K € R lies in H3(K).
If s > 0 and O Lipschitz, I:IS(O) denotes the space of functions whose

extension by zero over a closed domain O belongs to Hs(é).
We identify

A20) = (H20))  and  H'20) = (A20)), (1)

andif O = O, then H='/2(0) = H*1/2(0).
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Log-Kernel

Consider first the isotropic space R? divided into two half-planes:

T = {X€R®: %, <0} ()
with interface I given by the line x, = 0. The interface is further divided into
the open disjoint segments 'y, := (—1,1) x {0} and Iy :=T\ T,
Consequently, we have defined the domain Q := R? \ T,,. We seek u solution
of the Dirichlet problem

—Au =0 for xeQ
- Wi 1/2 3)
u=g for xely with geHY(y).

Then, the potential u can be represented as a single layer potential:
1/ 1

ux) =Lip= — log ——¢(y)dy, for xeQ, (4)
T Jr x—y|”
where ¢ is the solution of the logarithmic integral equation:
1 / 1
X) = — lo y)d for xerl. 5
9x) = = | log p—rely)dy (5)
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The Log Kernel in R°  [RLLCOC

The equation (5) has a variational formulation in the space H, '/*(I'») which
is the space of functions in H- 12(T ) satlsfylng/ f)dt = 0. ltis:

> floo etnetriatdr= [o(reir)an vt e By o) @

I'm

This operator is a bijection between ;,(;1/2(%) and the Hl/2(rm) of functions

]
in H'/2(T ,,,) satisfyin / ——g(t)dt = 0. and moreover we have
17 I 1 121
og ——¢(t)y (T)dde>CHsvHH 12 ngH (Tm)- (7)
A g \T t|

The inverse operator Ny is symmetric and coercive and is a bijection of
Hl/z(rm) onto H(;VZ(F,,,). It admits two variational formulations.
Let M(x, y) be the function and L, the associated integral operator:

M) = 5 (=0 + (VI= 4 VT=72)°) ®

1/ M(x,
Lg = — /r log { |X(X'§|) } a(y)ay (9)
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Log Kernel
The first one is:

(g.0) =1 [ [ 10a{ FELD g ()('v) e[ ctgtde (10)

m

for all g € H)/? (T'm), which gives a first norm on the space Hl/z(l'm):
L[] os | @mgmidyax = Claliyeg,iva e M) (1)
The second one is

ZT/m/mdxdy {IX ;/)

for all g' € H/?(F'm),
So we have a second norm on the space H1/3(T ) which is:

<g(x)fg<y>>(gf(x)—gf(y))dydx:/éa(x)g’(x)dx (12)

JI'm

1—x
5 / / { y 1 dydx>CHgHHu2 YgeH/Arn  (13)
T I T
where the welght funct|on w is given by
w(x) =1 — x2 forx e (—1,1). (14)
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The Log Kernel in R°  [RLLCOC

We can also consider the Neumann problem

(15)

~“Au =0 for xeQ
VhOnU = YmOpu = for X €T, e H V()

which can be represent as a double layer potential of harmonic solution in the
domain Q of the form .

- 1 X2
u(x) = W/rm ‘x_y‘za(y)dy. for xeQ, (16)

Then the unknown « is the solution of the hyper singular integral equation:

o(x) =Noa= l]Z %a(y)dy for xerl. (17)
M [X =Y

™

where « is also the jump of the Dirichlet trace of the solution of problem (15).
We look for a solution of the integral equation (17) in the space H'/2(I'y,) .
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Log Kernel
A variational formulation of the integral equation (17) in this space H'/2(I',) is

1 / Iog | ! e o/ (1)( }f(f))/dth:/ o(7)ol(7)dr, Yol e HYAT ) (18)
T T I
The associated operator N, is a bijection from H'/2(F',,) to H=1/2(T )
Moreover, this bilinear form is coercive, i.e.,
(19)

. , )
1// 09 L' (Da(r) ot C [alfy s, Vo € V().
— m

This operator admits a second variational formulation which is

/ / =) (' X)'B) ey 1 / a(x)a ( a0 g [o(x)al(x)ax (20)
2 . ‘X y| T Jr, 1-— I

for all o € H'/2(I' ), and the next expression is a norm on H'/2(

M'm)

(21)

. ‘ )
l /”/(O‘(X)”())dxdy+ 1 / (X)Z ax > C H(‘Y||/2:/1/2(r ),V(le H1/2( )
27 Jr Jr.. |x y\ T Jr 1—x .
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The Log Kernel in R°  [RLLCOC

The inverse operator is L, which is a bijection of H=1/2(I",) onto H'/2(I'y,).
This operator is symmetric and coercive in the space H="/2(T ).
It admits the following variational formulation:

/m/ {X Yl

and thus the following expression is a norm on the space H~'/2(I',)
1 / /
- log
g - rl rm

Let D be the derivation operator which operates from H'/2(I' ) to Hy '/%(F»)

and D* the adjoint operator which operates from H'/2(I',,) to H~ 1/2( m)-
D* is also a derivation but not in the sense of distribution.

o(x )d(y)dydxz/‘ a(X)'(x)ax, YeeH 3(Ty)  (22)

s 1I'm

Xyl }¢(X)sﬂ(y)dydx>0wimzum)q VpeH V3(Tm)  (29)
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Cookermes
The operators Ly, Lp, Ny, N>, D, D* are linked by the identities

LooNs = —LpoD*olyoD=1,  Ie H2(y)
LioNy=—LijoDolyoD* =1, le HY3(Tm)
Nioli=—-DolyoD*olLy =1, le Flg”z(rm)
Nools——D*olpoDoly=1, le H 2T

Ly o D is continuous and invertible from H'/2(T ;) into H./2(I ).

L, o D* is continuous and invertible from H./?(T' ) into H'/2(T ).
D* o Ly is continuous and invertible from Hy '/2(I') into H="/2(T"p,).
Do Ly is continuous and invertible from H=1/2(I",) into Hy '/%(I" ).

The Dirichlet and Neumann Laplacian Ap, Ay are linked to Ly, Lo and Ny, No:
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The Log Kernel in R°  [RLLCOC

As a consequence of the previous results, we recover a new proof of some
well known results:

Theorem

H/2(T ) is exactly the space of functions g € H'/2(T' ) such that w="'g is in
L2(T';). The space H, '/?(T'm) is exactly the image of the distributional
derivative of functions in H'/2(T ).

Comments: The proofs of the above results are obtained using the expansion
of the kernel on the Tchebychev polynomials. This is also related to the links
between these polynomials and the usual trigonometric functions, and also
the use of symmetry and antisymmetry and of the projection from the 2D
circle on its diameter.
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The disc in R®

We try now to extend these results to the unit disc in R3.

We Introduce the splitting of the space R? into two half-spaces

T+ = {x €R® : x3 = 0}, by the plane x3 = 0 that will be denote as I".

Let ¢ be the circle of center at the origin and of radius 1 in the plane T'.

Let D be the plane disc delimitated by the circle ¢ and D the associated flat
domain in R3.

Now its complement in R?, is I'; := I\ D.

Henceforth, the problem domain is denoted by Q := R3 \ D,

We also consider the sphere S of radius 1 and center at the origin in R®.
The disc D divide this sphere into two half-sphere that we denote respectively
StandS—.

For any s > 0, H%(D) is the space of functions whose extension by zero to I'
belongs to H5(I"). We identify

A2@) = (H2D))  and  H'AD) = (H2D) . (26)
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The unit sphere in RS and its equatorial disc
The unit sphere in R® and its equatorial disc

We consider the unit sphere S in R3 (Fig. 1) and the spherical coordinates:
(r,0,¢), where ris the radius and 6, ¢ the two Euler angles.

X1 = rsinfcos p,
Xo = rsinfsiny, (27)
X3 = rcos 6.

T3

o Fig. 1: Spherical coordinates
The vectors ey and e, are unitary. The vector e, directed along Om.is unitary.
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some geometry

—A point x on the circular domain D will be defined using its coordinates
(x1, X2) or in circular coordinates by (0 < p < 1,0 < ¢ < 27).

—A point x* (resp. x~) on the half sphere S (resp. S™) will be defined using
(0<0<3,0<p<2rm)(resp. (3 <0 <m0<p<2m).

—The projection x of a point x* situed on the half sphere S™ onto the domain
D has for circular coordinates x : (p = sin(8), ).

— The projection x of a point x~ situed on the half sphere S~ onto the domain
D has for circular coordinates x : (p = sin(8), ).

—To a point x on the disc D, we associate the two points x™ and x~ which
projections are the point x.
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Spherical Harmonics Associated Legendre functions

The Rodrigues formula gives the expression of the Legendre polynomial P;:

—1Y !
P00 = G () (1), (28)

The Spherical Harmonics solve the following differential equation (in the
variables x = x3 and )

1 0%u 0 o O
1_)(2(%92+(9)(<(1)<)0Xu>+/(/+1)u—0. (29)
This equation admits a family of solutions with separate variables
YI(x, ) = A6 MBI (x) (30)

where the functions IP]"(x), called the Associated Legendre functions, are the
solutions of the differential equation

d d
X ((1 - xz)dxp,m> + (1 + )PP — W]}D,m =0. (31)

For m =0, Y? is the Legendre polynomial P;.
FEnICS 14 June 15,2014  16/46



Spherical Harmonics and Associated L
We introduce the kinetic moments express in the angles (6, )

10
Lsu=—~—u. 2
sU l,&pu (32)
i 1o} cost 0
L.u=e (89u+lsin¢9 899”)' (33)
_j 0 cosf 0
L.u=e ( 09U+Isin6 &OU)' (34)

The operators L, and L_ are associated to the representation of a two
dimension real vector x (resp. y) in R? by a complex number ¢ = xy + ixz
(resp. d = y1 +iy2) .

The Laplace-Beltrami operator A g takes the different forms

As = 3Lyl +LLy) — (Ls)?
=L, L —(L3)?+ Ls (35)
=L L. (L)~ Ly
and the following relations of commutation hold:
[As, L] =[As, L] = [As, Lg] = 0. (36)
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Sphericalltamoniceiand/Aseociated}
The relations of commutation (36) show that each eigenspace of the operator
Ag is invariant by the action of the operators L, L_ and Ls. Using these
property, we can express the spherical harmonics in the form (30) and thus
the spherical harmonics of order / are the 2/ + 1 functions of the form

o 1/2
Y0, ) = [(/+2:r/2) E; +Z;: e/Mepm(cosh). (37)

Further, they are the solution of the differential equation (29).
The associated Legendre functions P]” (cosf) has the parity of / + m and are
given in terms of the Legendre polynomials by

m
P"(cosf) = (sing)" <;i> P/(cosh);if 0<m<|, (38)
Ls Ylm = my/ma (39)
LY =(I—m)(I+m+ 1)y, (40)
LY = /(I +m(I—m+1)y"". (41)
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Symmetry and antisymmetry on the sphere
Symmetry and antisymmetry on the sphere

We introduce the simple layer potential on the sphere S defined, for x € S
andy €S, as

(S |x - x) sin(0)dody (42)
We consider also the hyper smgular potentlal on the sphere S given by
1 [ 0P 1
(Nu(y) = 4 Sm(m) u(x)sin(9)dédy (43)

The double layer potential (]D>l) on the sphere Sis equal to —1S

Ohu = 3 [ G ey X0, (44)
The kernel of the hyper singular potential has a symmetric expression
02 1 (nx.ny) 3 1 1
— — + = + 45
dnxdny<|X—y\> x—y® 4x—-yl |x—y?® 4x-yl )
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The disc in R® Symmetry and antisymmetry on the sphere

So in that situation, the Calderon relations for the operators (S, N), are
NoS/=SloN, (46)

1 1 1
~(N— Zg/) oSl=—Slo(N-— ZS/) =40 (47)

— To a function u(x) defined on the sphere S, we associate its symmetric and
its antisymmetric parts defined on ST and S~ as

us(x™) = us(x™) = P 1 (48)

Uas(XT) = —Uas(X7) = = (u(x™) — u(x™))

To a point y on the sphere S, we associated the symmetric point y° which is
either y~ or y* and we define the four following operators
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The disc in RS Symmetry and antisymmetry on the sphere

(Suly) = (Sus(y) = 5

(‘ 1 1 )us(xﬂsin(e))dew
S+

Xy Xy
(49)

(Sae)uly) = ENuss(V) = 5 | (g~ ey sl sin(o)ol

mwm:mmm:ﬁé( a ()

ONy+ Ony+ \ [ X+ —yT|

0 1 L
Ny 0Ny <|x+_y,‘>)us(x )sin(0)dOdy

(Nas)U(y):(N)uas(v):‘J—Wfé( > ( 1 ) (50)

OnNy+Ony+ \ |XT —yT|

- 52 < 1
Ony+Ony— \ | Xt —y~|

(Ss)Uas(y) = (Ns)Uas(y) =0 (51)

)) Ugs(XT) sin(6)dOdy

(Sas)us(y) = (Nas)us(y) =0 (52)
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Symmetry and antisymmetry on the sphere
Using the Calderon identities (46) and (47), we obtain

Theorem
NsoSs = Ss0Ng; Nas 0 Sas = Sas 0 Nas; Ss 0Sas = 0; (53)
Ngs0Ss =Sg0Ng = 0; Ngs0Ss =Sg0Ng = 0; NgoNg =0 (54)
S¢2 —4Ng o0 Sg = 1, (55)

Sas2 — 4Ngs 0 Sgs = /: (56)

—
We define the operator curls on the sphere S as

ou 1 ou au cosf ou ou

mu(x)— €,— — —€=—€,— ——€,+—8 (57)
ST907¢  singdp © T 00 7 sinfdp © ' dp°
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Symmetry and antisymmetry on the sphere
The bilinear form associated to the surfacic Laplacian Ag is

(~Dsu, V)g = / (mgu(x)-mgwx)) sin 0dody (58)
The operator N defined by (43) is an isomorphism from H'/2(S)/R onto the
space H~'/2(S) with (up, 1) = 0. It admits two variational formulations

< - V 871—//0/’7)(31’1\, ‘X y| ( (x)_u(y))W(y)_v(x))d“/(x)dfy(y)

(59)
curlsu curlﬁv(y)) e
= / / <y (X (y): Y u, v € H'2(S)/R.
Using the identity (59) and the Calderon relations (46) and (47), we obtain

SI7" o N = Ag, (60)

1 A
si-z(-aetg) 61)

1 1 2
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The disc in R3 Operators on the disc

Operators on the disc

We associate to the functions Us(x™) and U,s(x™)), both defined on the
sphere ST (variables: 6, ), the functions us(x) and u,s(x) defined on the disc
D (variables: p = sin(f), ¢, 0 < 6 < 7), where x is the projection of x*.

Let w(x) = \/1—p(x)?. We define the following vectors grad;, and aﬁm as

—— ou 10u
radpu(x) = —e, + ——e, (63)
—— 10u ou
Ip =———e,+ —e 4
curlpu(x) pawe, + ape¢ (64)
We define the operators £, £_, L3 of derivation on the disc
i, (ou .10u
L _ a2 i =
ru=e (ap L &,;)
: au 10u
L. Uu=e " (——4j—— 65
u=e ( 5t Ip@;p> (65)
10u
£ - T
sl I Oy
FEniCS 14
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Operators on the disc
They satisfy

Liu=—L_T; L u=-L.T; Lau=—L3U (66)
When u = 0 or v = 0 on the circle ¢, an integration by part give the result

ou 10u ov 10v
/me (d—p +i— dJW)dpd(" /De (dp —|—/—d—>Updpd¢ (67)

which means that the operators £., £ and L3 are formally anti-adjoint with
respect to the duality in L?(DD).

Ap = —%(.c+z:_+.c_ .c+> - (1 aap( aapw 1208;) (68)
(coe—ccy)= %Ls Qp’ di (69)

(curlbu(x).curisv(y)) = (gradsu(x).gradsv(y))
(70)

1
= —5 (L4 ux) Lo v(y) + Lo u(x) Ly v(y))
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Operators on the disc
We introduce the four following integral operators defined for x e D andy € D:

1 1 1

Susly) = 3= [ (g + ey e odode ()
1 1 1

(Sas)Uas(y) = E/D(\)ﬁ v 7y,‘>Uas(X) pdpdyp (72)

1 ? 1
(Ns)us(y):= Ar ﬁ;(anxu“)nw <\X+_y+|>
2 1

0 (73)
+0nx+any, (|x+_y—|)>US(X)Pdpdp
1 82 1
(Nas)Uas(Y) = 7% : :
' D<dn"'d§"’* <|’”*V*|) (74)

- 0
Ony+Ony—

ey estnci
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The disc in R3 Operators on the disc

We will denoted by K, Kzs, NKs and NKjs the associated kernels

1 1 1
Ko = 2 (rmy i ey )

1 1 1
Kae = 22 (g7 oy 1)

1, o 1 ” 1
NKs = An <0nxA0f7y+ <|x+—y+|>+ Oy Oy <|X+—y7‘)>

1 Py 1 0? 1

These kernels are not the kernels of the Laplace operator on the disk. But
they are closely related to them.
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The disc in R3 Operators on the disc

Consider the following function

E2 = 1 — p()nly) cos?( P2,

5 (76)
We have the inequalities
E? _ l( 1 N 1 ) _ 2
4t |x—y| ~ Ax \[xT—y*[ |xT—y~|/ T 47 |x-y| -
Pwbowly) 1 11y 1 weowy)
2 47 |x—y| ~ 4x \|xt—yt| |xt—-y- |/~ E3 47 |x—y|

The function E? is regular with a positive value between zero and one.
It is zero on the circle ¢, when p(x) = p(y) = 1 and ¢(x)—¢(y) = 0.

Its order closed to the zero (1 — p(x)2 < |x—yl|), expressed in term of [x—y| is
one or two, depending on the direction of the vector x—y.
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The disc in R3 Operators on the disc

E (8 wx)?2w(y)
4 |x—y\3 (Z N 4 )

<—————(5+=+
4r|x—y[P\2 E

Twx)w(y) (3 | w(x)*w(y)?
247 [x—y[® <Z - 4 )

< woowty) (1 1

B34 |x—yP\4  2E

J.C. Nédélec (CMAP) FEniCS 14
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iy |x+fy*\)

- l( 1 B 1 ) L
~ 47 ‘x+_y+|3 ‘x+_y—‘3 167

w(x)?w(y)?

xt—yf| Ix+fvﬂ)
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The disc in RS Operators on the disc

Using the anti-duality (67), and the variational formulations of the hyper
singular operators A's and N ;s we obtain the following identities

——A@s::%<£, Ssly+ Lo ssa,)

5385

+ 1 L3S ! L
V=) T A=) (79)
1
L
=)

1 1
,/\/5:§<£7 Sas Ly + Ly Sasﬁf)er VO=2)
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Images of the Spherical Harmonics
Images of the Spherical Harmonics

The parity of the Spherical Harmonics Y,” with respect to the variable
x = cos(#) is the parity of / + m. Thus the vectorial space Y generated by the
Spherical Harmonics Y/";0 < I, —/ < m </, can be split into two subspaces
Ys and Y5 defined on ST which are respectively :

Ys={Y/",0</l;, —I<m<I, |I+m even}

Yas ={Y™ 1</, —I+1<m</-1; [I+m odd}
The Spherical Harmonics functions Y,:”‘ are an orthogonal basis and thus

/ (Y,:"‘ (x)VZz(x)> sin(0)dfdy = ~ "’25’"2, (80)
\ - . 1 .
/§+ (grads Y™ (x).grads YZ’Z(X)> sin(#)dody = 5/(/ + 1)5{120,’212, (81)

/ (mgy,ﬁ(x).cﬁigvf" (x)) sin(6)dody = § 0+ 1)skome,  (82)

1 I(1+1)

[Yym— __ _ym ym— _
SHY; 2[+1 17 NY 2/ +1

L (83)
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The disc in R® Images of the Spherical Harmonics

We introduce now the functions y;” defined on the disc D, images of the
Spherical Harmonics, which are

Y (x, ) = 4B ([ (1—p2)) (84)

1 3
Ko =\ o) =—\g-e%p
v
Y2 (X, 9) =\ z- \/ (1-p?)

We associated to the two subspaces Y and Y ,s defined on S*, the
corresponding subspaces on the disc D:

(85)

Vs ={y"(x) = Y"(x*); Y7 € Ys}

Vas = {y"(x) = Y"(x7);  Y" € Yas}
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Images of the Spheical Harmonics
Using (80) and the identities (83), we obtain the identities

y/m _ 1 m m
Ss( (17/)2))* 2/+1,V/ ;Y €Y
y 1 m m
e (1f,)2)>* o1 Y€ Vs

]
/ R ) Y/2 Pdpd¢:§5f5$f-,

Using the relation , (40), (41), and (39)), we obtain

=—m)(+m+1) y,
\/ —p?)
= \/(/+m)(/—m+1)y’7;
V(1-p2)
L3y =my/"
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The disc in RS Images of the Spherical Harmonics

Using the identities (89) (86) and (87) , we remark that the operators
Ss,Sas, Ly, L_,Ns, N 55, satisfy the identities

Ss . ) B Sas o
\/(1*02)£+\/ﬁ—3as£+, /(1 p?) L+ 7M—Ss£+
Ss . Sas o
\/(1—/)2)/37\/ﬁ =SasL; \/(1—/’2)57ﬁ =S8sL- (90)
SS Sas

SS Sas
L = La3: L = L
VA=) V-2 =2 Ja-,»)

Using the identities (89) and (79), we obtain
I(/+1 m
UX1) W ymey, (91)

N5<y’m>: T2t J1-A)

m
/(/+ 1) yl . }//m c Yas (92)

my__
Nas(9)= =515 o)
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Theorem

The operators N zs, N's, Sas, Ss, AN and AL are linked by the identities

NasSas = (AN — \/('153_[)2 \/(fipz)) Sas Sas
L L (93)

SasNaszsasSaS(Ag_ \/(13_,02 \/(1ip2)>

Moo= (8- %(fa—pz wfipg)) o (94)

L L

SsNs = SsSs<Ag - \/(13_/)2 NGE ip2)>
NeSy! =8 Ne = (88 - mﬁapz ¢(1£3p2))
Sz Nas= (B4 - = - ) -

V=02 V(1-1?)
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The disc in RS Images of the Spherical Harmonics

y" I(1+1) 7 .
—NsSs G <(2/+1)2) (1’_p2), I+ m even;

I+ 1
—Ssty/m = ((2(/+1))2>y/m; [+ m even;

_ i i+1) 7 :
NasSas (1—p2)_((2/+1)2> (1_/)2), [+ m odd;

I(1+1
—SasNas}//m = ((2(/+1))2>y,’"; [+ m odd;

~NsSs =

Ss Ss
)

(O A v

1 S S
N asSas = as as )

(1
(A

1
— SN = (H 1S, S,

—)
V-2 )

1
- Sas Nas (H + Sas

1
T )
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The disc in RS Images of the Spherical Harmonics

NeS:' =8N = (Ag+

5;51 Nas = <Ag+ Ty

(1—p?) 0p?

J.C. Nédélec (CMAP) FEniCS 14

dp2 4
1

(1—p?

y?

1= (884 (2
= SSSS(AH@+
e ot
= SusSas <Ag +

-2

(1-p?) 042
1 92
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Numerical Experiments: Meshes
Numerical Experiments: Meshes

All numerical tests on I' = (—1, 1) by Carolina Urzua, SAM, ETH Zurich:

Focus: graded meshes

@ I, = uniform (equidistant) mesh
@ T, = mesh from Chebychev nodes (— dense towards endpoints)
© I, = algebraically graded mesh with

2k \?° N+ 1
_1+(2/V—|-1) ,k—O,...,T

2k

e ° N+ 1

J.C. Nédélec (CMAP) FEniCS 14 June 15, 2014
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Preconditioners for Single Layer Potential Operator
Tests: Single Layer Potential Operator

Preconditioning Results for V'

0
4 -~ 0
10¢ ~- e
/:gi// -—9-Du.m.
. %E://U -8 -W wm.
. 2§77 —— W w.m.
5 -~ -z 21
g 107 éj -z ” 10 —©—-D Cheb.m.
£ o227 5 ~ &~ W Cheb.m.
2 &7 e -
5 o ---n g W Cheb.m.
= _g- - a- - =
T10F = -~ E’7<24>7ﬂk, ////// o 8 -6 -D alg.m.
3 r---8" o 7 ol
&} - —-O -8 -W alg.m.
___s---m---®8---7® _
. —&— W alg.m.
10"} G--zg-=--g-Ig---H8===-8
ol oo —E--ce---g----g
10° : .
10° 10° 10° 10°
DOFs DOFs

(D = diagonal scaling, W/W = operator preconditiong with plain hypersingular
operator. )
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Numerical Experiments P

Tests: Hypersingular Operator

for Hyg

Preconditioning Results for W

pel o
///,O ///
107l Pt o .o
s -7 7 o[ ec
-4 5 e - Dum
//:O/:' - 1027 e e -B8-V um.
-5 , _
i ///g —A—V u.m.
- - [%2] 13 -
z -
§102— . o e 5 e ~© ~D Cheb.m.
3 g 27 —8 -V Cheb.m.
< z P ——V Cheb.m.
35 — 5 zZ C6-Dale
k] - g & © -D alg.m.
3 [ S S _ 8-V al
_a- E _ = g -V alg.m.
i B z a----p---8--- % -
10} - -—7F Ea g ---—8-~---&F---8|—-4—Valg.m.
g - -0 e --
- & B
10't —
10° :
10° 10° 10° 10°
DOFs DOFs

(D = diagonal scaling, V/V Zoperator preconditiong with plain single layer

operator.)

FEniCS 14
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Test: Exterior Helmholiz BVP

Operator preconditioningon ' = (—1, 1), wave number k = 8:

Residual error

~10

GMRES for Vg

- - - GMRES NM=1024
—— P-GMRES NM=1024
- - - GMRES NM=2048
—— P-GMRES NM=2048
- - =
Fremma, ) GMRES NM=4096 5
<o ——P-GMRES NM=4096 £
AN E
NNN -
ALY <
AN Y =
A YRY =]
AR YRY -
ARAYRY S
Vi =
ARAYRY
ARRIRY
LIRY
10° 10' 10° 10°

Number of iterations

GMRES for W§

- - - GMRES NM=1024
—— P-GMRES NM=1024
= = = GMRES NM=2048
—— P-GMRES NM=2048
- = = GMRES NM=4096
—— P-GMRES NM=4096

10 10° 10°

Number of iterations

Number of GMRES iterations with and without operator preconditioning based
on modified Bl-operators and dual meshes.

J.C. Nédélec (CMAP)

FEniCS 14
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Numerical Tests on Curves

*

inner spiral

< R ;
AN = outer spiral

e D, « diagonal preconditioning

o M, opposite order operator
preconditioning

@ M, «~ modified operators for
operator preconditioning

]
R - S - N S R~ I S - S

8 -6 -4 -2 0 2 4 6

@ geodesically equidistant meshes
@ operator preconditioning based on dual meshes

(Computations by Carolina Urzua, SAM, ETH Zurich)
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Preconditioning Weakly Singular BI-Op on Curves

Spectral condition numbers
Inner spiral Outer spiral
N |[D,'Ay MpA, MpA,D, Ay MpA, MpA,
128 |309.9 11.8 4.067/272.8 7.104 2.118
256 |622.4 1292 4.105/547.9 7.722 2.168
512 | 1247 141 4.129/ 1098 8.389 2.211
1024 | 2497 15.34 4.146| 2198 9.107 2.249
2048 | 4996 16.66 4.159| 4398 9.875 2.283
4096 | 9995 18.04 4.169| 8799 10.69 2.314
Numbers of PCG iterations
128 57 11 12 56 11 10
256 76 12 12 78 11 10
512 | 105 12 12 | 104 11 10
1024 | 142 12 12 | 143 11 10
2048 | 198 13 12 197 12 10
4096 | 270 13 12 | 272 12 10

J.C. Nédélec (CMAP)

FEniCS 14

A, = boundary ele-
ment Galerkin ma-
trix for weakly sin-
gular boundary in-
tegral operator.
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Preconditioning Hypersingular BI-Op on Curves

Spectral condition numbers
Inner spiral Outer spiral
N |[D,'Ay MpA, MpA,D, Ay MpA, MpA,
128 |103.4 10.09 2.307|/62.14 6.164 1.335
256 | 208 11.55 2.311|124.9 7.008 1.335
512 [417.3 13.09 2.313/250.3 7.908 1.335
1024 |835.7 14.73 2.314/501.3 8.866 1.335
2048 | 1673 16.46 2.315/ 1003 9.886 1.335
4096 | 3347 18.30 2.315/ 2007 10.97 1.335
Numbers of PCG iterations
128 41 11 10 35 11 9
256 59 11 10 | 49 11 8
512 84 12 10 70 11 8
1024 | 120 13 10 | 101 12 8
2048 | 170 13 10 144 13 8
4096 | 242 14 10 | 212 13 8

J.C. Nédélec (CMAP)

FEniCS 14

A, = boundary ele-
ment Galerkin ma-
trix for hypersingu-
lar boundary inte-
gral operator.
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