
Solution to a Helmholtz equation in [0, 1]× [0, 1]× [0, 0.4]:

u = cos(πx) cos(2πy) sin
(

1.5π
z

0.4

)
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Part II:
Function spaces on extruded meshes
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Function spaces

Geometrically:
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Function spaces

Geometrically:

(x , y , z) ∈ prism⇐⇒ (x , y) ∈ triangle, z ∈ interval
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Function spaces

Outer-product elements

Recall: within a cell, we have local basis functions Φi(~X ).

Suppose we have {Φ2D
i (X ,Y )} and {Φ1D

j (Z )}. Then there is
a natural way to generate basis functions on the extruded cell:

Φextr
i ,j (X ,Y ,Z ) := Φ2D

i (X ,Y )× Φ1D
j (Z )

Bonus: if {Φ2D
i } and {Φ1D

j } are nodal, then so is {Φextr
i ,j }.
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Function spaces

Worked example:

CG1 on triangles: (nodal) basis functions are {X , Y , 1− X − Y }.
CG1 on intervals: (nodal) basis functions are {Z , 1− Z}.

=⇒ CG1 × CG1 on prisms: (nodal) basis functions are
{XZ ,X (1−Z ),YZ ,Y (1−Z ), (1−X −Y )Z , (1−X −Y )(1−Z )}.
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Function spaces

Firedrake/UFL syntax:
mesh = ExtrudedMesh(...)

V_horiz = FiniteElement("CG", triangle, 1)

V_vert = FiniteElement("CG", interval, 1)

V_elt = OuterProductElement(V_horiz, V_vert)

V = FunctionSpace(mesh, V_elt)

# in this case, we could have used the more compact

# FunctionSpace(mesh, "CG", 1, vfamily="CG", vdegree=1)
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Function spaces

Vector-valued spaces
Note: RT/BDM/Nédélec-type elements, NOT VectorFunctionSpace

Problems:
• Dimension mismatch. If Φ2D

i takes values in R2 (or R)
and Φ1D

j is scalar-valued, their product is in R2 (or R),

never R3.

• The result effectively needs to be “padded” with zeros to
produce a function taking values in R3.

• In some situations, there is no single “correct” padding...
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Function spaces

Vector-valued spaces

Trouble in extruded 1D:

V_horiz = FiniteElement("CG", interval, 1)

V_vert = FiniteElement("DG", interval, 0)

V_elt = OuterProductElement(V_horiz, V_vert)

• Element is scalar-valued

• Basis functions X and 1− X (indpt. of Y )

• Horizontally continuous

• Vertically discontinuous
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Function spaces

Vector-valued spaces

How to make this vector-valued?
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Function spaces

Vector-valued spaces

How to make this vector-valued? Two possibilities:

• Basis functions (X , 0) and (1−X , 0)

• Continuous normal component

• Discontinuous tangential component

• Basis functions (0,X ) and (0, 1−X )

• Continuous tangential component

• Discontinuous normal component
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Function spaces

Vector-valued spaces

Solution:
• Additional operators HDiv() and HCurl() to “expand” an
OuterProductElement into a vector-valued element of the
correct dimension, with the desired continuity.
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Function spaces

Motivation: de Rham complexes
• Sequence of function spaces, linked by differential operators and more.

• Useful in mixed problems (stability properties).

E.g. lowest-order P− complex on tetrahedra:

CG1, N1curl1, RT1, DG0

14 / 23



Function spaces

Motivation: de Rham complexes

On prisms, the equivalent is

For this, we need product complexes.

15 / 23



Function spaces

Product complexes
For any 2 complexes (U0, . . . ,Um) and (V0, . . . ,Vn),

we can build a product complex[*] (W0, . . . ,Wm+n), where

Wi =
⊕
j+k=i

Uj ⊗ Vk

• The Ui and Vi are just FiniteElement(...)

• ⊗ becomes OuterProductElement

• ⊕ becomes EnrichedElement, or just ‘+’.

[*]Douglas N. Arnold, Daniele Boffi and Francesca Bonizzoni: Finite element
differential forms on curvilinear cubic meshes and their approximation properties.
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Function spaces

Product complexes example
Here, we will use

• the 2D complex (CG1,RT1,DG0), and

• the 1D complex (CG1,DG0),

The product complex is then

W0 = CG1 ⊗ CG1

W1 = (RT1 ⊗ CG1)⊕ (CG1 ⊗ DG0)

W2 = (DG0 ⊗ CG1)⊕ (RT1 ⊗ DG0)

W3 = DG0 ⊗ DG0
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Function spaces

U0 = FiniteElement("CG", triangle, 1)

U1 = FiniteElement("RT", triangle, 1)

U2 = FiniteElement("DG", triangle, 0)

V0 = FiniteElement("CG", interval, 1)

V1 = FiniteElement("DG", interval, 0)

W0 = OuterProductElement(U0, V0)

W1 = HCurl(OPE(U1, V0)) + HCurl(OPE(U0, V1))

W2 = HDiv(OPE(U2, V0)) + HDiv(OPE(U1, V1))

W3 = OuterProductElement(U2, V1)

W0fs = FunctionSpace(mesh, W0)

...
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Function spaces

W0 = OuterProductElement(U0, V0)

W1 = HCurl(OPE(U1, V0)) + HCurl(OPE(U0, V1))

W2 = HDiv(OPE(U2, V0)) + HDiv(OPE(U1, V1))

W3 = OuterProductElement(U2, V1)

CG1 ⊗CG1 (RT1 ⊗CG1)⊕ (CG1 ⊗DG0) (DG0 ⊗CG1)⊕ (RT1 ⊗DG0) DG0 ⊗DG0
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Function spaces

Bonus:
Vincent Dumoulin (Imperial MSc student) + David Ham + Lawrence Mitchell

=⇒ UFL-like language, based on FEEC instead of vector calculus
(in-built support for complexes and product complexes)
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Function spaces

Limitations

• Should be taking advantage of product structure when doing
quadrature; currently doing more operations than necessary.

• No FIAT-level support for run-time function evaluation within
an element (not supported in Firedrake anyway).

• Shortcuts taken in Jacobian calculation =⇒ Jacobian not
exact on radially extruded meshes (to be fixed when we
implement non-affine support).
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Conclusions

• Firedrake has support for extruded meshes, which are
appropriate in geophysical and other contexts.

• For a modest number of layers, performance approaches that
of a structured mesh, since we can visit a whole column for
each unstructured cell access.

• Appropriate function spaces can be generated by manipulating
existing UFL FiniteElement objects, using
OuterProductElement and HDiv/HCurl.

http://www.firedrakeproject.org
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New arrivals at the zoo
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