DOLFIN User Manual

September 23, 2005

Hoffman, Jansson, Logg

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual.
Send comments and suggestions to dolfin-dev@fenics.org.

Contents

About this manual

1 Introduction

1.1 The FEniCS project

1.2 The finite element method

1.3 Overview o,

2 Quickstart

2.1 Downloading and installing DOLFIN

2.2 Solving Poisson’s equation with DOLFIN

221

2.2.2

2.2.3

224

2.2.5

Setting up the variational formulation.
Writing the solver
Compiling the program
Running the program

Visualizing the solution

3

11

11

11

12

13

DOLFIN User Manual

Hoffman, Jansson, Logg

3 Linear algebra
3.1 The Matrix class

3.2 The VirtualMatrix class

3.3 The Vectoreclass.

3.4 The LinearSolver class

3.5 The GMRES class

3.6 The LU class

3.7 The EigenvalueSolver class

3.8 The Preconditioner class
3.9 The PETScManager class
3.10 The PETSc system

3.11 The Hypre system

4 Functions

5 The mesh

6 Ordinary differential equations

7 Partial differential equations

7.1 Boundary value problems.

7.2 Variational formulation

7.3 Compiling the variational form with FFC

27

29

31

33

4

DOLFIN User Manual

Hoffman, Jansson, Logg

74 The FEMclass
7.5 The BilinearForm class
7.6 The LinearForm class
7.7 The AffineMap class
7.8 The FiniteElement class
79 ThePDEclass

7.10 Computation of Element matrices and vectors

7.11 Boundary conditions
7.12 Finite elements

7.13 Initial value problems

8 Input/output

8.1 Pre- and post-processing
8.2 Files and objects L.
8.3 Fileformats L.
8.3.1 DOLFIN XML
8.3.2 Another format
8.3.3 Another format
8.3.4 Another format
8.4 Adding a new file format

9 The log system

43

DOLFIN User Manual Hoffman, Jansson, Logg

9.1 Generating log messages 43
9.2 Warnings and errors 44
9.3 Debug messages and assertions 45
9.4 Task notificationo 46
9.5 Progress bars Lo 47
9.6 Controlling the destination of output 48

10 Parameters 51
10.1 Retrieving the value of a parameter 51
10.2 Modifying the value of a parameter 52
10.3 Adding a new parameter 53
10.4 Saving parameters to file 54
10.5 Loading parameters from file 54

11 Solvers 35
11.1 Poisson’s equation 56
11.1.1 Usage o o o oo o 56

11.1.2 Performance L. o7

11.1.3 Limitations o7

11.2 Convection—diffusion 57
11.2.1 Usage o 58

11.2.2 Performance L. 59

DOLFIN User Manual Hoffman, Jansson, Logg

11.2.3 Limitations 59

11.3 Incompressible Navier-Stokes 59
11.3.1 Usage 29

11.3.2 Performanceo 60

11.3.3 Limitations 60

11.4 Elasticity 60
11.4.1 Usage oo 61

11.4.2 Performance oL 61

11.4.3 Limitations 61

A Reference elements 63
A.1 The reference triangle L. 63
A.2 The reference tetrahedron 65
A.3 Ordering of degrees of freedom 66
A.3.1 Meshentities 66

A.3.2 Ordering among mesh entities 69

A.3.3 Internal ordering on edges 69

A.3.4 Alignment of edges L. 70

A.3.5 Internal ordering on faces 70

A.3.6 Alignment of faces L. 70

B Installation 73

DOLFIN User Manual Hoffman, Jansson, Logg

B.1 Imstalling from source 73
B.1.1 Dependencies and requirements 73

B.1.2 Downloading the source code 75

B.1.3 Compiling the source code 76

B.1.4 Compiling the demo programs 7

B.1.5 Compiling a program against DOLFIN 7

B.2 Debian packageo 78

C Contributing code 79
C.1 Creatingapatch 79
C.2 Sending patches 80
C.3 Applying a patch (maintainers) 81
C.4 License agreement 82

D License 83

About this manual

This manual is currently being written. A first version of this manual should
be ready sometime in the fall of 2005.

Intended audience

This manual is written both for the beginning and the advanced user. There
is also some useful information for developers. More advanced topics are
treated at the end of the manual or in the appendix.

Typographic conventions

e Code is written in monospace (typewriter) like this.

e Commands that should be entered in a Unix shell are displayed as
follows:

./configure
make

Commands are written in the dialect of the bash shell. For other shells,
such as tcsh, appropriate translations may be needed.

DOLFIN User Manual Hoffman, Jansson, Logg

Enumeration and list indices

Throughout this manual, elements x; of sets {z;} of size n are enumarated

from ¢ = 0 to ¢ = n — 1. Derivatives in R" are enumerated similarly:
o 9 o

%78—1‘1,...,8xn_1.

Contact

Comments, corrections and contributions to this manual are most welcome
and should be sent to

dolfin-dev@fenics.org

10

Chapter 1

Introduction

FIXME: Automation of CMM, FEniCS, purpose of DOLFIN: PSE for dif-
ferential equations, C++ interface of FEniCS, etc

1.1 The FEnNiCS project

H FIXME: Automation of CMM, other components of FENICS

1.2 The finite element method

H FIXME: Automation of discretization

11

DOLFIN User Manual Hoffman, Jansson, Logg

1.3 Overview

H FIXME: Component diagram, user, module, kernel

H FIXME: Write about real, uint, namespace dolfin

12

Chapter 2

Quickstart

This chapter demonstrates how to get started with DOLFIN, including down-
loading and installing the latest version of DOLFIN, and solving Poisson’s
equation. These topics are discussed in more detail elsewhere in this manual.
In particular, see Appendix B for detailed installation instructions and Chap-
ter 7 for a detailed discussion of how to solve partial differential equations
with DOLFIN.

2.1 Downloading and installing DOLFIN

The latest version of DOLFIN can be found on the FENICS web page:
http://www.fenics.org/

The following commands illustrate the installation process, assuming that

you have downloaded release 0.1.0 of DOLFIN:

tar zxfv dolfin-0.1.0.tar.gz
cd dolfin-0.1.0

make

make install

13

DOLFIN User Manual Hoffman, Jansson, Logg

Note that you may need to be root on your system to do the last step.
DOLFIN depends on a number of other packages, including the linear algebra
package PETSc and the form compiler FFC. (See Appendix B for detailed
instructions.)

2.2 Solving Poisson’s equation with DOLFIN

Let’s say that we want to solve Poisson’s equation on the unit square €2 =
(0,1) % (0,1) with homogeneous Dirichlet boundary conditions on the bound-
ary I'o = {(z,y) € 002 : x = 1}, homogeneous Neumann boundary condi-
tions on the remaining part of the boundary and right-hand side given by

f = wsin(y),

—Au(z,y) = wzsin(y), ze€Q=(0,1)x(0,1), (2.1)
u(z) = 0, zely={(x,y) €00:x=1}, (2.2)
Opu(z) = 0, xe€dQ\T.

To solve a partial differential equation such as Poisson with DOLFIN, it
must first be rewritten in variational form. The variational formulation of
Poisson’s equation reads: Find v € V such that

a(v,u) = L(v) YveV, (2.4)

with (V,V) a pair of suitable function spaces (the test and trial spaces). The
bilinear form a : V' x V — R is given by

a(v,u) = / Vu-Vudz (2.5)
Q
and the linear form L : V — R is given by

L(v):/gfvdx. (2.6)

14

DOLFIN User Manual Hoffman, Jansson, Logg

2.2.1 Setting up the variational formulation

The variational formulation (2.4) must be given to DOLFIN as a pair of
bilinear and linear forms (a, L) using the form compiler FFC. This is done
by entering the definition of the forms in a text file with extension .form,
e.g. Poisson.form, as follows:

element = FiniteElement(‘‘Lagrange’’, ‘‘triangle’’, 1)
v = BasisFunction(element)

u = BasisFunction(element)

f = Function(element)

a = dot(grad(u), grad(v))*dx

L = f*xv*dx

The example is given for piecewise linear finite elements in two dimensions,
but other choices are available, including arbitrary order Lagrange elements
in two and three dimensions.

To compile the pair of forms (a, L), now call the form compiler on the
command-line as follows:

ffc Poisson.form

This generates the file Poisson.h which implements the forms in C++ for
inclusion in your DOLFIN program.

2.2.2 Writing the solver

Having now compiled the variational formulation (2.4) with FFC, it is now
easy to implement a solver for Poisson’s equation. We first discuss the imple-
mentation line by line and then present the complete program. The source

code for this example is available in the directory src/demo/poisson/ of the
DOLFIN source tree.

15

DOLFIN User Manual Hoffman, Jansson, Logg

At the beginning of our C++ program, which we write in a text file named
main.cpp, we must first include the header file dolfin.h, which gives our
program access to the DOLFIN class library. In addition, we include the
header file Poisson.h generated by the form compiler. Since all classes of
the DOLFIN class library are defined within the namespace dolfin, we also
specify that we want to work within this namespace:

#include <dolfin.h>
#include ‘‘Poisson.h’’

using namespace dolfin;

Next, we specify the right-hand side f of (2.1). This is done by defining a new
subclass of Function, which we here will name MyFunction, and overloading
the evaluation operator to return the value f(z,y) = xsin(y):

class MyFunction : public Function

{

real operator() (const Point& p) const

{
return p.x*sin(p.y);
}
}s

The boundary condition is specified similarly, by overloading the evaluation
operator for a subclass of BoundaryCondition:

class MyBC : public BoundaryCondition

{

const BoundaryValue operator() (const Point& p)
{
BoundaryValue value;
if (std::abs(p.x - 1.0) < DOLFIN_EPS)
value = 0.0;
return value;

}
¥

16

DOLFIN User Manual Hoffman, Jansson, Logg

We only need to specify the boundary condition explicitly on the Dirich-
let boundary. On the remaining part of the boundary, DOLFIN assumes
homogeneous Neumann boundary conditions by default.

Note that there is currently no easy way to impose non-homogeneous Neu-
mann boundary conditions or other combinations of boundary conditions.
This will most certainly be added to a future release of DOLFIN.

Since we are writing a C4++ program, we need to create a main function.
You are free to organize your program any way you like, but in this simple
example we just write our program inside the main function:

int main()

{
// Write your program here
return O;

}

The first thing we need to do is to create a mesh. DOLFIN relies on external
programs for mesh generation, and imports meshes in DOLFIN XML format.
However, for simple domains like the unit square or unit cube, DOLFIN
provides a built-in mesh generator. To generate a uniform mesh of the unit
square with mesh size 1/16 (with a total of 2 - 16 = 512 triangles), we can
just type

UnitSquare mesh(16, 16);

Next, we initialize the right-hand side, the boundary condition and the pair
of forms that we have previously defined:

MyFunction f;

MyBC bc;

Poisson: :BilinearForm a;
Poisson: :LinearForm L(f);

17

DOLFIN User Manual Hoffman, Jansson, Logg

All that remains is now to assemble the linear system Ax = b representing the
variational problem (2.4) and solve for the vector z. To assemble the system,
we define a Matrix A, a Vector b and call the function FEM: : assemble():

Matrix A;
Vector x, b;
FEM: :assemble(a, L, A, b, mesh, bc);

We may then solve the linear system Az = b for the degrees of freedom of
the solution u using the GMRES method:

GMRES solver;
solver.solve(A, x, b);

Finally, we export the solution to a file for visualization. To do this, we
define a Function which represents a field with given degrees of freedom in a
function space defined by a mesh and a finite element, which we may obtain
from the bilinear form by calling the member function trial(). Here, we
choose to save the solution in Octave/MATLAB format, which we do by
specifying a file name with extension .m:

Function u(x, mesh, a.trial());
File file(‘‘poisson.m’’);
file << u;

The complete program for Poisson’s equation now looks as follows:

#include <dolfin.h>
#include ¢ ‘Poisson.h’’

using namespace dolfin;

// Right-hand side
class MyFunction : public Function

{

real operator() (const Point& p) const

{

18

DOLFIN User Manual

Hoffman, Jansson, Logg

+s

return p.x*sin(p.y);

}

// Boundary condition
class MyBC : public BoundaryCondition

{

s

const BoundaryValue operator() (const Point& p)
{
BoundaryValue value;
if (std::abs(p.x - 1.0) < DOLFIN_EPS)
value = 0.0;
return value;

}

int main()

{

// Set up problem
UnitSquare mesh(16, 16);
MyFunction f;

MyBC bc;
Poisson::BilinearForm a;
Poisson: :LinearForm L(f);

// Assemble linear system

Matrix A;

Vector x, b;

FEM: :assemble(a, L, A, b, mesh, bc);

// Solve the linear system
GMRES solver;
solver.solve(A, x, b);

// Save function to file
Function u(x, mesh, a.trial());
File file(‘‘poisson.m’’);

file << u;

return O;

19

DOLFIN User Manual Hoffman, Jansson, Logg

2.2.3 Compiling the program

The easiest way to compile the program is to create a Makefile that tells
the standard Unix command make how to build the program. The following
example shows how to write a Makefile for the above example:

CFLAGS = ‘dolfin-config --cflags_dolfin®
LIBS = ‘dolfin-config --libs_dolfin®
CXX = ‘dolfin-config --compiler®
DEST = dolfin-poisson

OBJECTS = main.o

all: $(DEST)
install:

clean:
-rm -f *.0 core *.core $(0BJECTS) $(DEST)

$(DEST) : $(0OBJECTS)
$(CXX) -o $@ $(OBJECTS) $(CFLAGS) $(LIBS)

.cpp.o:
$(CXX) $(CFLAGS) -c $<

With the Makefile in place, we just need to type make to compile the pro-
gram, generating the executable as the file dolfin-poisson.

2.2.4 Running the program
To run the program, simply type the name of the executable:

./dolfin-poisson
Computing mesh connectivity:
Found 289 nodes

Found 512 cells

[...]

GMRES converged in 21 iterations.

20

DOLFIN User Manual Hoffman, Jansson, Logg

Saved mesh mesh [...]
Saved function u [...]

2.2.5 Visualizing the solution

DOLFIN relies on external programs for visualization. In this example we
chose to save the solution in Octave/MATLAB format, so we start Octave
(or MATLAB) using the command octave. Then, in Octave, we import the
solution and plot it using the pdesurf command:

octave:1> poisson
octave:2> pdesurf(points, cells, u)

Note that the commands pdemesh, pdesurf and pdeplot are not included
with a standard installation of Octave, but are available in the subdirectory
src/utils/octave/ of the DOLFIN source tree.

Figure 2.1: The solution of Poisson’s equation (2.1) visualized in Octave.

21

DOLFIN User Manual Hoffman, Jansson, Logg

22

Chapter 3

Linear algebra

DOLFIN uses PETSc for the linear algebra. For convenience DOLFIN pro-
vide wrappers for some of the most common linear algebra functionality.

3.1 The Matrix class

The matrix class represents a matrix of dimension m x n. It is a simple
wrapper for a PETSc matrix Mat. The interface is intentionally simple. For
advanced usage, access the PETSc Mat pointer using the function mat() and
use the standard PETSc interface.

3.2 The VirtualMatrix class

This class represents a matrix-free matrix of dimension m x m. It is a simple
wrapper for a PETSc shell matrix. The interface is intentionally simple. For
advanced usage, access the PETSc Mat pointer using the function mat() and
use the standard PETSc interface.

The class VirtualMatrix enables the use of Krylov subspace methods for lin-

23

DOLFIN User Manual Hoffman, Jansson, Logg

ear systems Ax = b, without having to explicitly store the matrix A. All that
is needed is that the user-defined VirtualMatrix implements multiplication
with vectors. Note that the multiplication operator needs to be defined in
terms of PETSc data structures (Vec), since it will be called from PETSc.

3.3 The Vector class

The vector class represents a vector of dimension n. It is a simple wrapper
for a PETSc vector Vec. The interface is intentionally simple. For advanced
usage, access the PETSc Vec pointer using the function vec() and use the
standard PETSc interface.

3.4 The LinearSolver class

This class defines the interface of all linear solvers for systems of the form
Ax =b.

3.5 The GMRES class

This class implements the GMRES method for linear systems of the form Ax
= b. It is a wrapper for the GMRES solver of PETSc.

3.6 The LU class

This class implements the direct solution (LU factorization) for linear systems
of the form Ax = b. It is a wrapper for the LU solver of PETSc.

24

DOLFIN User Manual Hoffman, Jansson, Logg

3.7 The EigenvalueSolver class

This class computes eigenvalues of a matrix. It is a wrapper for the eigenvalue
solver of PETSc.

3.8 The Preconditioner class

This class specifies the interface for user-defined Krylov method precondition-
ers. A user wishing to implement her own preconditioner needs only supply a
function that approximately solves the linear system given a right-hand side.

3.9 The PETScManager class

This class is responsible for initializing and (automatically) finalizing PETSc.
To initialize PETSc, call PETScManager::init() once (additional calls will be
ignored). Finalization will be handled automatically.

3.10 The PETSc system

PETSc is a suite of data structures and routines for the scalable (parallel)
solution of scientific applications modeled by partial differential equations.
It employs the MPI standard for all message-passing communication.

3.11 The Hypre system

As a complement to PETSc, DOLFIN also uses Hypre, which is a library
for solving large, sparse linear systems of equations on massively parallel
computers.

25

DOLFIN User Manual Hoffman, Jansson, Logg

To use a preconditioner from Hypre with your PETSc solver in DOLFIN,
write

PCSetType (PC pc, PCHYPRE);
PCHYPRESetType (PC pc, "boomeramg") ;

In particular, the above preconditioner boomeramg is an algebraic multigrid
preconditioner, which may be very useful for some problems.

FIXME: Write about the wrappers, PETSc, using mat() and vec() to do
more advanced operations with PETSc etc.

26

Chapter 4

Functions

H FIXME: Discuss the Function class and the different representations.

27

DOLFIN User Manual Hoffman, Jansson, Logg

28

Chapter 5

The mesh

FIXME: Triangular, tetrahedral, include some images, mesh refinement,
connectivity, iterators, file formats, local ordering

29

DOLFIN User Manual Hoffman, Jansson, Logg

30

Chapter 6

Ordinary differential equations

FIXME: Mono-adaptive, multi-adaptive, ODE base class, simple example,
error control, adaptivity, complex ODE, implicit, homotopies

31

DOLFIN User Manual Hoffman, Jansson, Logg

32

Chapter 7

Partial differential equations

7.1 Boundary value problems

As a prototype of a boundary value problem in R% we consider the scalar
Poisson equation with homogeneous Dirichlet boundary conditions

—Au(zr) = f(z) ze€QcR? (7.1)
u(z) = 0 x €.

7.2 Variational formulation

A variational formulation of (7.1) take the form: find u € V' such that
a(u,v) = L(v) Yv eV, (7.2)
where a(-,-) : V' x V — R is a bilinear form on V' defined by

ou Ov

a(u,v):/Vu-Vv dr =
Q

33

DOLFIN User Manual Hoffman, Jansson, Logg

where we employ tensor notation so that the double index 7 means summation
fromi=1,...,d, and L(:) : V — R is a linear form on V' defined by

L(v) = /va dx. (7.4)

V = H}(Q) is the standard Sobolev space of square integrable functions with
also their first derivatives square integrable (in the Lebesgue sense), with the
functions being zero on the boundary (in the sense of traces).

The Finite Element Method FEM for (7.2) is now: find U € V}, such that
a(U,v) = L(v) Yv € Vj, (7.5)

where V,, C V is a finite dimensional subspace of dimension N. The finite
element space Vj, is characterized by the set of basis functions {¢;}Y,, and
thus the FEM method (7.5) is specified by the variational form and the basis
functions of Vj,.

7.3 Compiling the variational form with FFC
In DOLFIN a PDE is defined in variational form using tensor notation in a
.form file, which is compiled using FFC.

At /dolfin/src/demo/solvers/poisson/dolfin/ the following poisson.form
file for (7.5) can be found

Copyright (C) 2005 Johan Hoffman and Anders Logg.
Licensed under the GNU GPL Version 2.

First added: 2005-04-04
Last changed: 2005

The bilinear form a(u,v) and linear form L(v) for
Poisson’s equation.

HOoH OB OH OH OH O H OH O H R

Compile this form with FFC: ffc poisson.form.

34

DOLFIN User Manual Hoffman, Jansson, Logg

element = FiniteElement("Lagrange", "tetrahedron", 1)
v = BasisFunction(element)

u = BasisFunction(element)

f = Function(element)

a = v.dx(i)*u.dx (i) *dx

L = v*xf*xdx

Compiling the file with
ffc Poisson.form

generate a file Poisson.h containing the classes BilinearForm and LinearForm,
and classes for the finite element used in the forms.

7.4 The FEM class

The FEM class automates the assembly algorithm, constructing a linear sys-
tem of equations from a given partial differential equation, specified as a
variational problem (7.2), by a bilinear form a(-,-) and a linear form L(-),
according to

/// Assemble bilinear and linear forms
static void assemble(BilinearForm& a, LinearForm& L,
Matrix& A, Vector& b, Mesh& mesh);

The assemble function is called in the following way
FEM: :assemble(a,L,A,b,mesh);

where A and b is a matrix and vector respectively.

35

DOLFIN User Manual Hoffman, Jansson, Logg

7.5 The BilinearForm class

BilinearForm represents a bilinear form a(u, v) with arguments v and u basis
functions of the finite element space defined by a pair of finite elements (test
and trial).

This class is automatically generated by FFC when compiling the variational
form.

The function used in the assembly algorithm is an eval function

/// Compute element matrix (interior contribution)
virtual void eval(real block[], const AffineMap& map) const;

where the element matrix is returned in block[], and map is describes the
affine map used for mapping the reference element to the actual element.

7.6 The LinearForm class

LinearForm represents a linear form L(v) with argument v (the test function)
a basis function of the finite element space defined by a finite element.

This class is automatically generated by FFC when compiling the variational
form.

The function used in the assembly algorithm is an eval function

/// Compute element vector (interior contribution)
virtual void eval(real block[], const AffineMap& map) const;

where the element vector is returned in block[], and map is describes the
affine map used for mapping the reference element to the actual element.

36

DOLFIN User Manual Hoffman, Jansson, Logg

7.7 The AffineMap class

This class represents the affine map from the reference element to the current
element.

The 2D reference element is given by (0,0)-(1,0)-(0,1). The 3D reference
element is given by (0,0,0)-(1,0,0)-(0,1,0)-(0,0,1).

The dimension d of the map is automatically determined from the arguments
used when calling the map.

The map is initialized by the function

/// Update map for current element
void update(const Cell& cell);

When update is called the following local variables in the class are computed
for the current cell

// Determinant of Jacobian of map
real det;

// Jacobian of map
real £00, £f01, £02, f10, f11, f12, £20, f21, £22;

// Inverse of Jacobian of map
real g00, gO01, g02, gl10, gll, gl2, g20, g21, g22;

7.8 The FiniteElement class

This is the base class for finite elements automatically generated by FFC.

/// Return dimension of the finite element space
virtual unsigned int spacedim() const = O;

37

DOLFIN User Manual Hoffman, Jansson, Logg

/// Return dimension of the underlying shape
virtual unsigned int shapedim() const = O;

/// Return vector dimension of the finite element space
virtual unsigned int tensordim(unsigned int i) const = 0;

/// Return vector dimension of the finite element space
virtual unsigned int rank() const = 0;

/// Compute map from local to global degrees of freedom
virtual void dofmap(int dofs[], const Cell& cell,
const Mesh& mesh) const = O;

/// Compute map from local to global coordinates

virtual void pointmap(Point points[], uint components[],
const AffineMap& map) const = 0;

7.9 The PDE class

A PDE represents a (linearized) partial differential equation, given by a bi-
linear form a and a linear form L.

/// Constructor
PDE(BilinearForm& a, LinearForm& L);

7.10 Computation of Element matrices and vec-
tors

divide element matrix into geometry tensor and integration over reference
element FErari

38

DOLFIN User Manual Hoffman, Jansson, Logg

precomputation of integrals, quadrature, tensorrepresentation factored out,
FFC

7.11 Boundary conditions

7.12 Finite elements

Finite Element by Ciarlet, FIAT

7.13 Initial value problems

semidiscretization, space-time FEM,

39

DOLFIN User Manual Hoffman, Jansson, Logg

40

Chapter 8

Input/output

8.1 Pre- and post-processing

H FIXME: DOLFIN relies on external programs for pre- and post-processing H

8.2 Files and objects

H FIXME: Discuss operators >> and << H

8.3 File formats

H FIXME: Insert table here of filename suffixes and corresponding formats. H

41

DOLFIN User Manual

Hoffman, Jansson, Logg

8.3.1 DOLFIN XML

H FIXME: The native format

8.3.2 Another format
8.3.3 Another format

8.3.4 Another format

8.4 Adding a new file format

H FIXME: Discuss classes File, GenericFile etc

42

Chapter 9

The log system

DOLFIN provides provides a simple interface for uniform handling of log
messages, including warnings and errors. All messages are collected to a
single stream, which allows the destination and formatting of the output
from an entire program, including the DOLFIN library, to be controlled by
the user.

9.1 Generating log messages

Log messages can be generated using the function dolfin info() available
in the dolfin namespace:

void dolfin_info(const char *message, ...);

which works similarly to the standard C library function printf. The fol-
lowing examples illustrate the usage of dolfin_info():

dolfin_info(‘‘Solving linear system.’’);
dolfin_info(‘‘Size of vector: %d.’’, x.size());
dolfin_info(‘‘R = %.3e (TOL = %.3e)’’, R, TOL);

43

DOLFIN User Manual Hoffman, Jansson, Logg

As an alternative to dolfin_info(), DOLFIN provides a C++ style in-
terface to generating log messages. Thus, the above examples can also be
implemented as follows:

cout << ‘‘Solving linear system.’’ << endl;
cout << ‘‘Size of vector: ‘¢ << x.size() << “¢.?? << endl;
cout << “‘R = ‘“ << R << ““ (TOL = ‘¢ << TOL << ¢¢)?’ << endl;

Note the use of dolfin::cout and dolfin::endl from the dolfin names-
pace, corresponding to the standard standard std::cout and std: :endl in
namespace std. If log messages are directed to standard output (see below),
then dolfin::cout and std::cout may be mixed freely.

Most classes provided by DOLFIN can be used together with dolfin: :cout
and dolfin: :endl to display short informative messages about objects:

Matrix A(10, 10);
cout << A << endl;

To display detailed information for an object, use the member function
disp():

Matrix A(10, 10);
A.dispQ);

Use with caution for large objects. For a Matrix, calling disp () will displays
all matrix entries.

9.2 Warnings and errors

Warnings and error messages can be generated using the macros

dolfin_warning(message) ;
dolfin_error(message) ;

44

DOLFIN User Manual Hoffman, Jansson, Logg

In addition to displaying the given string message, the macro dolfin error ()
also displays information about the location of the code that generated the
error (file, function name and line number). Once an error is encountered,
the program is stopped.

Note that in order to pass formatting strings and additional arguments to
warnings or errors, the variations dolfin error1(), dolfin error2() and
so on must be used, as illustrated by the following examples:

dolfin_error(‘‘GMRES solver did not converge.’’);
dolfin_errorl(‘‘Unable to find face opposite to node %d.’’, n);
dolfin_error2(‘ ‘Unable to find edge between nodes %d and %d.’’, nO, nl);

9.3 Debug messages and assertions

The macro dolfin debug() works similarly to dolfin_info():
dolfin_debug(message) ;

but in addition to displaying the given message, information is printed about
the location of the code that generated the debug message (file, function
name and line number).

Note that in order to pass formatting strings and additional arguments with
debug messages, the variations dolfin debugl (), dolfin debug2() and so
on, depending on the number of arguments, must be used.

Assertions can often be a helpful programming tool. Use assertions whenever
you assume something about about a variable in your code, such as assum-
ing that given input to a function is valid. DOLFIN provides the macro
dolfin_assert () for creating assertions:

dolfin_assert(check);

This macro accepts a boolean expression and if the expression evaluates to
false, an error message is displayed, including the file, function name and

45

DOLFIN User Manual Hoffman, Jansson, Logg

line number of the assertion, and a segmentation fault is raised (to enable
easy attachment to a debugger). The following examples illustrate the use
of dolfin assert():

dolfin_assert(i >= 0);

dolfin_assert(i < n);

dolfin_assert(cell.type() == Cell::triangle);
dolfin_assert(cell.type() == Cell::tetrahedron);

Note that assertions are only active when compiling DOLFIN and your
program with DEBUG defined (configure option --enable-debug or compiler
flag ~-DDEBUG). Otherwise, the macro dolfin _assert() expands to nothing,
meaning that liberal use of assertions does not affect performance, since as-
sertions are only present during development and debugging.

9.4 Task notification

The two functions dolfin begin() and dolfin _end() available in the dolfin
name space can be used to notify the DOLFIN log system about the begin-
ning and end of a task:

void dolfin_begin();
void dolfin_end();

Alternatively, a string message (or a formatting string with optional argu-
ments) can be supplied:

void dolfin_begin(const char* message, ...);
void dolfin_end(const char* message, ...);

These functions enable the DOLFIN log system to display messages, warn-
ings and errors hierarchically, by automatically indenting the output pro-
duced between calls to dolfin begin() and dolfin end(). A program may
contain an arbitrary number of nested tasks.

46

DOLFIN User Manual Hoffman, Jansson, Logg

9.5 Progress bars

The DOLFIN log system provides the class Progress for simple creation of
progress sessions. A progress session automatically displays the progress of
a computation using a progress bar.

If the number of steps of a computation is known, a progress session should
be defined in terms of the number of steps and updated in each step of the
computation as illustrated by the following example:

Progress p(‘‘Assembling’’, mesh.noCells());
for (CellIterator c(mesh); !c.end(); ++c)

{
-
}

It is also possible to specify the step number explicitly by assigning an integer
to the progress session:

Progress p(‘‘Iterating over vector’’, x.size())
for (uint i = 0; i < x.size(); i++)

Alternatively, if the number of steps is unknown, the progress session needs
to be updated with the current percentage of the progress:

Progress p(‘‘Time-stepping’’);
while (t < T)

{

p=t/T;

}

47

DOLFIN User Manual Hoffman, Jansson, Logg

The progress bar created by the progress session will only be updated if the
progress has changed significantly since the last update (by default at least
10%). The amount of change needed for an update can be controlled using
the parameter ¢ ‘progress step’’:

dolfin_set(‘ ‘progress step’’, 0.01);

Note that several progress sessions may be created simultaneously, or nested
within tasks.

9.6 Controlling the destination of output

By default, the DOLFIN log system directs messages to standard output (the
terminal). Other options include directing messages to a curses interface or
turning of messages completely. To specify the output destination, use the
function dolfin output () available in the dolfin namespace:

void dolfin_output(const char* destination);

where destinationisoneof ‘ ‘plain text’’ (standard output), ‘curses’’
(curses interface) or ‘silent’’ (no messages printed).

When messages are directed to the DOLFIN curses interface, a text-mode
graphical and interactive user-interface is started in the current terminal
window. To see a list of options, press ’h’ for help. The curses-interface is
updated periodically but the function dolfin update() can be used to force
a refresh of the display.

It is possible to switch the DOLFIN log system on or off using the function
dolfin log() available in the dolfin namespace. This function accepts as
argument a bool, specifying whether or not messages should be directed
to the current output destination. This function can be useful to suppress
excessive logging, for example when calling a function that generates log
messages multiple times:

48

DOLFIN User Manual Hoffman, Jansson, Logg

GMRES gmres;
while (...)

{

dolfin_log(false);
gmres.solve(A, x, b);
dolfin_log(true);

49

DOLFIN User Manual Hoffman, Jansson, Logg

20

Chapter 10

Parameters

DOLFIN keeps a global database of parameters that control the behavior of
the various components of DOLFIN. Parameters are controlled using a uni-
form type-independent interface that allows retrieving the values of existing
parameters, modifying existing parameters and adding new parameters to
the database.

10.1 Retrieving the value of a parameter

To retrieve the value of a parameter, use the function dolfin get () available
in the dolfin namespace:

Parameter dolfin_get(const char* key);

This function accepts as argument a string key and returns the value of the
parameter matching the given key. An error message is printed through the
log system if there is no parameter with the given key in the database.

The value of the parameter is automatically cast to the correct type when
assigning the value of dolfin get() to a variable, as illustrated by the fol-
lowing examples:

o1

DOLFIN User Manual Hoffman, Jansson, Logg

real TOL = dolfin_get(‘‘tolerance’’);

int num_samples = dolfin_get(‘ ‘number of samples’’);
bool solve_dual = dolfin_get(‘‘solve dual problem’’);
std: :string filename = dolfin_get(‘‘file name’’);

Note that there is a cost associated with accessing the value of a parameter,
so if the value of a parameter is to be used multiple times, then it should be
retrieved once and stored in a local variable as illustrated by the following
example:

int num_samples = dolfin_get(‘ ‘number of samples’’);
for (int i = 0; i < num_samples; i++)

{
}

10.2 Modifying the value of a parameter

To modify the value of a parameter, use the function dolfin_set () available
in the dolfin namespace:

void dolfin_set(const char* key, ...);

This function accepts as arguments a string key together with the corre-
sponding value. The value type should match the type of parameter that is
being modified. An error message is printed through the log system if there
is no parameter with the given key in the database.

The following examples illustrate the use of dolfin_set():

dolfin_set(‘‘tolerance’’, 0.01);

dolfin_set(‘ ‘number of samples’’, 10);
dolfin_set(‘‘solve dual problem’’, true);
dolfin_set(‘‘file name’’, ‘‘solution.xml’’);

02

DOLFIN User Manual Hoffman, Jansson, Logg

Note that changing the values of parameters using dolfin set() does not
change the values of already retrieved parameters; it only changes the values
of parameters in the database. Thus, the value of a parameter must be
changed before using a component that is controlled by the parameter in
question.

10.3 Adding a new parameter

To add a parameter to the database, use the function dolfin parameter ()
available in the dolfin namespace:

void dolfin_parameter (Parameter::Type type,
const charx key, ...);

This function accepts three arguments: the type of the new parameter, a
unique key identifying the new parameter and the value of the new parameter.

Possible values for type are

Parameter: :REAL, corresponding to real;

e Parameter: :INT, corresponding to int;
e Parameter: :BOOL, corresponding to bool;
e Parameter: :STRING, corresponding to std: :string.

The following examples illustrate the use of dolfin parameter():

dolfin_parameter (Parameter::REAL, ‘tolerance’’, 0.01);
dolfin_parameter (Parameter: :INT, ¢ ‘number of samples’’, 10);
dolfin_parameter (Parameter::BOOL, ‘‘solve dual problem’’, true);
dolfin_parameter (Parameter::STRING, ‘‘file name’’, ‘‘solution.xml’’);

23

DOLFIN User Manual Hoffman, Jansson, Logg

10.4 Saving parameters to file

To save the current database of parameters to a file in DOLFIN XML format,
use the function dolfin save() available in the dolfin namespace:

void dolfin_save(const char* filename);

When running a simulation in DOLFIN, saving the parameter database to a
file is an easy way to document the set of parameters used in the simulation.

10.5 Loading parameters from file

To load a set of parameters from a file into the parameter database, use the
function dolfin_load() available in the dolfin namespace:

void dolfin_load(const char* filename);

This function accepts as argument the name of a file containing a list of a
parameters in DOLFIN XML format, as illustrated below:

<?7xml version=’’1.0’’ encoding=’’UTF-8’’7>

<dolfin xmlns:dolfin=’’http://www.fenics.org/dolfin/’’>
<parameters>
<parameter name=’’tolerance’’ type=’’real’’ value=’’0.01’’/>
<parameter name=’’number of samples’’ type=’’int’’ value=’’10’’/>
<parameter name=’’solve dual problem’’ type=’’bool’’ value=’’false’’/>
<parameter name=’’file name’’ type=’’string’’ value=’’solution.xml’’/>
</parameters>
</dolfin>

o4

Chapter 11

Solvers

DOLFIN provides a number of pre-defined PDE solvers (called “modules”
in the source structure) by default. The solver interface is intentionally very
simple to facilitate users writing their own solvers. These are the pre-defined
solvers:

1. Poisson
2. Convection-Diffusion
3. Navies-Stokes

4. Elasticity
A solver for a PDE should provide the following interface:

1. a constructor which takes a mesh, equation coefficients and possibly
additional data.

2. a solve() method which solves the equation given the specified data.

3. a static solve() function which constructs and solves the equation.

95

DOLFIN User Manual Hoffman, Jansson, Logg

FIXME: List solvers, then present in detail, include lots of nice images with
solver output

11.1 Poisson’s equation

Poisson’s equation with Dirichlet and homogenous Neumann boundary con-
ditions:

—Au = f in €,
u = gp only, (11.1)
—Opu = 0 only

The variational formulation is given by

JoVu-Vode = [, fode Yo (11.2)

The boundary conditions are enforced strongly and thus don’t appear in the
variational formulation.

11.1.1 Usage
The API for the Poisson solver:

// Create Poisson solver
PoissonSolver (Mesh& mesh, Function& f, BoundaryCondition& bc);

// Solve Poisson’s equation
void solve();

// Solve Poisson’s equation (static version)
static void solve(Mesh& mesh, Function& f, BoundaryCondition& bc);

26

DOLFIN User Manual Hoffman, Jansson, Logg

A simple example of using the solver:

int main()

{
Mesh mesh("mesh.xml.gz");
MyFunction f;
MyBC bc;

PoissonSolver: :solve(mesh, f, bc);

return O;

Where “t” is a Function specifying the right-hand side of the equation and
“bc” is a BoundaryCondition.

11.1.2 Performance

The solver is an illustrative example and performance has not been a goal.
It uses a GMRES linear solver, where a multi-grid linear solver would give
optimal performance.

11.1.3 Limitations

The solver is meant to be the simplest example solver, and therefore some
simplifications have been made. Typically the general form of Poisson’s equa-
tion includes a diffusion coefficient which has been omitted here.

11.2 Convection—diffusion

The convection-diffusion equation with Dirichlet and homogenous Neumann
boundary conditions is given by:

27

DOLFIN User Manual Hoffman, Jansson, Logg

u+b-Vu—V-(aVu) = f inQx (0,7,
= ¢gp only x (0,77,
—0,u = 0 onTyx(0,7T],
u(-,0) = wo in £,

(11.3)

u
u
where the convection is given by the vector b = b(z,t) and the diffusion is

given by a = a(x, t).

The variational formulation is:

H FIXME: Stabilized convection-diffusion

This is a stabilized FEM-formulation, so the solver can handle convection-
dominated problems.

The time integration is done using ¢G(1) (Crank-Nicolson).

11.2.1 Usage

The API for the convection-diffusion solver:

// Create convection-diffusion solver
ConvectionDiffusionSolver (Mesh& mesh, Function& w, Function& f,
BoundaryCondition& bc);

// Solve convection-diffusion
void solve();

// Solve convection-diffusion (static version)

static void solve(Mesh& mesh, Function& w, Function& f,
BoundaryCondition& bc);

A simple example of using the solver:

o8

DOLFIN User Manual Hoffman, Jansson, Logg

int main()

{
dolfin_output("curses");
Mesh mesh("dolfin.xml.gz");
Convection w;

Source f;
MyBC bc;

ConvectionDiffusionSolver: :solve(mesh, w, f, bc);

return O;

11.2.2 Performance

There are no particular performance issues with the solver. GMRES is used
for solving the linear system.

11.2.3 Limitations

Currently many coefficients (such as diffusitivity) are not user-definable, they
need to be exposed by the interface.

11.3 Incompressible Navier—Stokes

Write introduction here, equations etc.

11.3.1 Usage

Present API of solver and give an example.

29

DOLFIN User Manual Hoffman, Jansson, Logg

11.3.2 Performance

Write something about the performance of the solver.

11.3.3 Limitations

Write something about the limitations of the solver.

11.4 Elasticity

Navier’s equations of elasticity with Dirichlet and homogenous Neumann
boundary conditions:

u=ux—X,
w—v=0 inQ°,
OV—V-o=f inQ°,
0= Ee(u) = E(Vu' + Vu)
Ee = Xtr(e)I 4 2pue,
v(0,) =%, w(0,:)=u’ inQ°
u=gp onlyx(0,T],
—0pu=0 onI'yx(0,7]

The variational form:

Joowde = [, —o(u)e(v) + fwdr, Yw. (11.4)

The time integration is done using dG(0) (backward Euler).

The mass matrix appearing from fQ vwdx is lumped (equivalent to computing
it using nodal quadrature).

60

DOLFIN User Manual Hoffman, Jansson, Logg

11.4.1 Usage

Present API of solver and give an example.

11.4.2 Performance

Write something about the performance of the solver.

11.4.3 Limitations

Write something about the limitations of the solver.

61

DOLFIN User Manual Hoffman, Jansson, Logg

62

Appendix A

Reference elements

A.1 The reference triangle

The reference triangle (Figure A.1) is defined by the following three vertices:

v’ = (0,0),
o' = (1,0), (A1)
v? = (0,1).

Note that this corresponds to a counter-clockwise orientation of the vertices
in the plane.

The edges of the reference triangle are ordered following the convention that
edge e’ should be opposite to vertex v’ for ¢ = 0, 1,2, with the vertices of
each edge ordered to give a counter-clockwise orientation of the triangle in
the plane:

e : (vhv?),
et (v? 1Y), (A.2)
e (000!

63

DOLFIN User Manual Hoffman, Jansson, Logg

UO

Figure A.1: Physical coordinates of the reference triangle.

v
ol 0
V0 e? vl

Figure A.2: Ordering of mesh entities (vertices and edges) for the reference
triangle.

64

DOLFIN User Manual Hoffman, Jansson, Logg

A.2 The reference tetrahedron

The reference tetrahedron (Figure A.3) is defined by the following four ver-
tices:

v? = (0,0,0),
v' = (1,0,0)

))) A3
v? = (0,1,0), (A.3)
vt = (0,0,1)

The faces of the reference tetrahedron are ordered following the convention
that face f* should be opposite to vertex v* for i = 0, 1,2, 3, with the vertices
of each face ordered to give a counter-clockwise orientation of each face as
seen from the outside of the tetrahedron and the first vertex of face f? given

by vertex v+t mod 4.
£ (0l o v?),
£ 00), »
f2: (0% 0t 00, '
£ 00 0?)

The edges of the reference tetrahedron are ordered following the convention
that edges €°, e!, e? should correspond to the edges of the reference triangle.

Edges €3, e, €5 all ending up at vertex v? are ordered based on their first
vertex:
O (o),
o),
& (00,0, .
& (009), '
),
e’ 1 (v, v%).

The ordering of vertices on faces implicitly defines an ordering of edges on

65

DOLFIN User Manual Hoffman, Jansson, Logg

faces by identifying an edge on a face with the opposite vertex on the face:

fo (e e eh),

1.3 1 5
R, (A6
3% et).

Note that the ordering of edges on f? is the same as the ordering of edges
on the reference triangle. Also note that the internal ordering of vertices
on edges does not always follow the orientation of the face (which is not
possible).

A.3 Ordering of degrees of freedom

The local and global orderings of degrees of freedom or nodes are obtained
by associating each node with a mesh entity, locally and globally.

A.3.1 Mesh entities

We distinguish between mesh entities of different topological dimensions:

vertices | topological dimension 0

edges topological dimension 1
faces topological dimension 2
cells topological dimension 2 or 3

A cell can be either a triangle or a tetrahedron depending on the type of
mesh. For a mesh consisting of triangles, the mesh entities involved are
vertices, edges and cells, and for a mesh consisting of tetrahedrons, the mesh
entities involved are vertices, edges, faces and cells.

66

DOLFIN User Manual Hoffman, Jansson, Logg

X2

Figure A.3: Physical coordinates of the reference tetrahedron.

67

DOLFIN User Manual Hoffman, Jansson, Logg

Figure A.4: Ordering of mesh entities (vertices, edges, faces) for the reference
tetrahedron.

68

DOLFIN User Manual Hoffman, Jansson, Logg

A.3.2 Ordering among mesh entities

With each mesh entity, there can be associated zero or more nodes and the
nodes are ordered locally and globally based on the topological dimension of
the mesh entity with which they are associated. Thus, any nodes associated
with vertices are ordered first and nodes associated with cells last.

If more than one node is associated with a single mesh entity, the internal
ordering of the nodes associated with the mesh entity becomes important, in
particular for edges and faces, where the nodes of two adjacent cells sharing
a common edge or face must lign up.

A.3.3 Internal ordering on edges

For edges containing more than one node, the nodes are ordered in the di-
rection from the first vertex (v?) of the edge to the second vertex (v!) of the
edge as in Figure A.5.

—

0
Ve

Figure A.5: Internal ordering of nodes on edges.

69

DOLFIN User Manual Hoffman, Jansson, Logg

A.3.4 Alignment of edges

Depending on the orientation of any given cell, an edge on the cell may be
aligned or not aligned with the corresponding edge on the reference cell if the
vertices of the cell are mapped to the reference cell. We define the alignment
of an edge with respect to a cell to be 0 if the edge is aligned with the
orientation of the reference cell and 1 otherwise.

Example 1: The alignment of the first edge (¢°) on a triangle is 0 if the
first vertex of the edge is the second vertex (v!) of the triangle.

Example 2: The alignment of the second edge (e') on a tetrahedron is 0 if
the first vertex of the edge is the third vertex (v?) of the tetrahedron.

If two cells share a common edge and the edge is aligned with one of the cells
and not the other, we must reverse the order in which the local nodes are
mapped to global nodes on one of the two cells. As a convention, the order
is kept if the alignment is 0 and reversed if the alignment is 1.

A.3.5 Internal ordering on faces

For faces containing more than one node, the ordering of nodes is nested
going from the first to the third vertex and in each step going from the first
to the second vertex as in Figure A.6.

A.3.6 Alignment of faces

There are six different ways for a face to be aligned on a tetrahedron; there are
three ways to pick the first edge of the face, and once the first edge is picked,
there are two ways to pick the second edge. To define an alignment of faces as
an integer between 0 and 5, we compare the ordering of edges on a face with
the ordering of edges on the corresponding face on the reference tetrahedron.
If the first edge of the face matches the first edge on the corresponding face
on the reference tetrahedron and also the second edge matches the second
edge on the reference tetrahedron, then the alignment is 0. If only the first

70

DOLFIN User Manual Hoffman, Jansson, Logg

Figure A.6: Internal ordering of nodes on faces.

71

DOLFIN User Manual Hoffman, Jansson, Logg

edge matches, then the alignment is 1. We similarly define alignments 2,3
by matching the first and second edges with the second and third edges on
the corresponding face on the reference tetrahedron, and alignments 4,5 by
matching the first and second edges with the third and first edges on the
corresponding face on the reference tetrahedron.

Example 1: The alignment of the first face of a tetrahedron is 0 if the first
edge of the face is edge number 5 and the second edge is edge number 0.

Example 2: The alignment of the first face of a tetrahedron is 1 if the first
edge of the face is edge number 5 and the second edge is not edge number 0.
(It must then be edge number 4.)

Example 3: The alignment of the first face of a tetrahedron is 4 if the first
edge of the face is edge number 4 and the second edge is edge number 5.

Example 4: The alignment of the first face of a tetrahedron is 5 if the first
edge of the face is edge number 4 and the second edge is not edge number 5.
(It must then be edge number 0.)

72

Appendix B

Installation

The source code of DOLFIN is portable and should compile on any Unix
system, although it is developed mainly under GNU/Linux (in particular
Debian GNU /Linux). Questions, bug reports and patches concerning the
installation should be directed to the DOLFIN mailing list at the address

dolfin-dev@fenics.org

DOLFIN must currently be compiled directly from source, but effort is under-
way to provide precompiled Debian packages of DOLFIN and other FENICS
components.

B.1 Installing from source

B.1.1 Dependencies and requirements

DOLFIN depends on a number of libraries that need to be installed on your
system. These libraries include Libxml2 and PETSc. In addition to these
libraries, you need to install FIAT and FFC if you want to define your own
variational forms.

73

DOLFIN User Manual Hoffman, Jansson, Logg

Installing Libxml2

Libxml2 is a library used by DOLFIN to parse XML data files. Libxml2 can
be obtained from

http://xmlsoft.org/

For Debian users, the package to install is 1ibxml2-dev.

Installing PETSc

PETSc is a library for the solution of linear and nonlinear systems, function-
ing as the backend for the DOLFIN linear algebra classes. DOLFIN depends
on PETSc version 2.3.0, which can be obtained from

http://www-unix.mcs.anl.gov/petsc/petsc-2/

Follow the installation instructions on the PETSc web page. Normally, you
should only have to perform the following simple steps in the PETSc source
directory:

export PETSC_DIR=‘pwd°
./config/configure.py --with-clanguage=cxx --with-shared=1
make all

Add --download-hypre=yes to configure.py if you want to install Hypre
which provides a collection of preconditioners, including algebraic multigrid
(AMG).

DOLFIN assumes that PETSC DIR is /usr/local/lib/petsc/ but this can
be controlled using the flag —-with-petsc-dir=<path> when configuring
DOLFIN (see below).

74

DOLFIN User Manual Hoffman, Jansson, Logg

Installing FFC

DOLFIN uses the FEniCS Form Compiler FFC to process variational forms.
FFC can be obtained from

http://www.fenics.org/

Follow the installation instructions given in the FFC manual. FFC follows
the standard for Python packages, which means that normally you should
only have to perform the following simple step in the FFC source directory:

python setup.py install

Note that FFC depends on FIAT | which in turn depends on the Python pack-
ages Numeric (Debian package python-numeric) and LinearAlgebra (Debian
package python-numeric-ext). Refer to the FFC manual for further details.

B.1.2 Downloading the source code

The latest release of DOLFIN can be obtained as a tar.gz archive in the
download section at

http://www.fenics.org/

Download the latest release of DOLFIN, for example do1fin-0.1.0.tar.gz,
and unpack using the command

tar zxfv dolfin-0.1.0.tar.gz

This creates a directory dolfin-0.1.0 containing the DOLFIN source code.

If you want the very latest version of DOLFIN, there is also a version named
dolfin-cvs-current.tar.gz which provides a snapshot of the current CVS

75

DOLFIN User Manual Hoffman, Jansson, Logg

version of DOLFIN, updated automatically from the CVS repository each
hour. This version may contain features not yet present in the latest release,
but may also be less stable and even not work at all.

B.1.3 Compiling the source code

DOLFIN is built using the standard GNU Autotools (Automake, Autoconf),
which means that the installation procedure is simple:

./configure
make

followed by an optional
make install

to install DOLFIN on your system.

The configure script will check for a number of libraries and try to figure out
how compile DOLFIN against these libraries. The configure script accepts a
collection of optional arguments that can be used to control the compilation
process. A few of these are listed below. Use the command

./configure --help

for a complete list of arguments.

e Use the option —-prefix=<path> to specify an alternative directory for
installation of DOLFIN. The default directory is /usr/local/, which
means that header files will be installed under /usr/local/inlude/
and libraries will be installed under /usr/local/lib/. This option
can be useful if you don’t have root access but want to install DOLFIN
locally on a user account as follows:

76

DOLFIN User Manual Hoffman, Jansson, Logg

mkdir ~/local

./configure --prefix="/local
make

make install

e Use the option --enable-debug to compile DOLFIN with debugging
symbols and assertions.

e Use the option --enable-optimization to compile an optimized ver-
sion of DOLFIN without debugging symbols and assertions.

e Use the option --disable-curses to compile DOLFIN without the
curses interface (a text-mode graphical user interface).

e Use the option --disable-mpi to compile DOLFIN without support
for MPI (Message Passing Interface), assuming PETSc has been com-
piled without support for MPI.

e Use the option --with-petsc-dir=<path> to specify the location of
the PETSc directory. By default, DOLFIN assumes that PETSc has
been installed in /usr/local/lib/petsc/.

B.1.4 Compiling the demo programs

After compiling the DOLFIN library according to the instructions above, you
may want to try one of the demo programs in the subdirectory src/demo/
of the DOLFIN source tree. Just enter the directory containing the demo
program you want to compile and type make. You may also compile all demo
programs at once using the command

make demo

B.1.5 Compiling a program against DOLFIN

Whether you are writing your own Makefiles or using an automated build
system such as GNU Autotools or BuildSystem, it is straightforward to com-
pile a program against DOLFIN. The necessary include and library paths

7

DOLFIN User Manual Hoffman, Jansson, Logg

can be obtained through the script dolfin-config which is automatically
generated during the compilation of DOLFIN and installed in the bin sub-
directory of the <path> specified with —-prefix. Assuming this directory is
in your executable path (environment variable PATH), the include path for
building DOLFIN can be obtained from the command

dolfin-config --cflags
and the path to DOLFIN libraries can be obtained from the command
dolfin-config --1libs

If dolfin-config is not in your executable path, you need to provide the
full path to dolfin-config.

Examples of how to write a proper Makefile are provided with each of the
example programs in the subdirectory src/demo/ in the DOLFIN source
tree.

B.2 Debian package

In preparation.

78

Appendix C

Contributing code

If you have created a new module, fixed a bug somewhere, or have made a
small change which you want to contribute to DOLFIN, then the best way to
do so is to send us your contribution in the form of a patch. A patch is a file
which describes how to transform a file or directory structure into another.
The patch is built by comparing a version which both parties have against
the modified version which only you have.

C.1 Creating a patch

The tool used to create a patch is called diff and the tool used to apply
the patch is called patch. These tools are free software and are standard on
most Unix systems.

Here’s an example of how it works. Start from the latest release of DOLFIN,
which we here assume is release 0.1.0. You then have a directory structure
under dolfin-0.1.0 where you have made modifications to some files which
you think could be useful to other users.

1. Clean up your modified directory structure to remove temporary and
binary files which will be rebuilt anyway:

79

DOLFIN User Manual Hoffman, Jansson, Logg

make clean

2. From the parent directory, rename the DOLFIN directory to something
else:

mv dolfin-0.1.0 dolfin-0.1.0-mod
3. Unpack the version of DOLFIN that you started from:
tar zxfv dolfin-0.1.0.tar.gz

4. You should now have two DOLFIN directory structures in your current
directory:

1s
dolfin-0.1.0
dolfin-0.1.0-mod

5. Now use the diff tool to create the patch:

diff -u -—new-file --recursive dolfin-0.1.0
dolfin-0.1.0-mod > dolfin-<identifier>-<date>.patch

written as one line, where <identifier> is a keyword that can be used
to identify the patch as coming from you (your username, last name,
first name, a nickname etc) and <date> is today’s date in the format

yyyy-mm-dd.

6. The patch now exists as dolfin-<identifier>-<date>.patch and
can be distributed to other people who already have dolfin-0.1.0 to
easily create your modified version. If the patch is large, compressing
it with for example gzip is advisable:

gzip dolfin-<identifier>-<date>.patch

C.2 Sending patches

Patch files should be sent to the DOLFIN mailing list at the address

80

DOLFIN User Manual Hoffman, Jansson, Logg

dolfin-dev@fenics.org

Include a short description of what your patch accomplishes. Small patches
have a better chance of being accepted, so if you are making a major con-
tribution, please consider breaking your changes up into several small self-
contained patches if possible.

C.3 Applying a patch (maintainers)

Let’s say that a patch has been built relative to DOLFIN release 0.1.0. The
following description then shows how to apply the patch to a clean version
of release 0.1.0.
1. Unpack the version of DOLFIN which the patch is built relative to:
tar zxfv dolfin-0.1.0.tar.gz

2. Check that you have the patch dolfin-<identifier>-<date>.patch
and the DOLFIN directory structure in the current directory:

1s
dolfin-0.1.0
dolfin-<identifier>-<date>.patch

Unpack the patch file using gunzip if necessary.
3. Enter the DOLFIN directory structure:
cd dolfin-0.1.0
4. Apply the patch:
patch -pl < ../dolfin-<identifier>-<date>.patch

The option -p1 strips the leading directory from the filename references
in the patch, to match the fact that we are applying the patch from
inside the directory. Another useful option to patch is --dry-run
which can be used to test the patch without actually applying it.

5. The modified version now exists as dolfin-0.1.0.

81

DOLFIN User Manual Hoffman, Jansson, Logg

C.4 License agreement

By contributing a patch to DOLFIN, you agree to license your contributed
code under the GNU General Public License (a condition also built into
the GPL license of the code you have modified). Before creating the patch,
please update the author and date information of the file(s) you have modified
according to the following example:

// Copyright (C) 2004-2005 Johan Hoffman and Anders Logg.
// Licensed under the GNU GPL Version 2.

//

// Modified by Johan Jansson 2005.

// Modified by Garth N. Wells 2005.

//

// First added: 2004-06-22

// Last changed: 2005-09-01

As a rule of thumb, the original author of a file holds the copyright.

82

Appendix D

License

DOLFIN is licensed under the GNU General Public License (GPL) version
2, included verbatim below.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. QOur General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for

83

DOLFIN User Manual Hoffman, Jansson, Logg

this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another

84

DOLFIN User Manual Hoffman, Jansson, Logg

language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

85

DOLFIN User Manual Hoffman, Jansson, Logg

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to

86

DOLFIN User Manual Hoffman, Jansson, Logg

control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you

87

DOLFIN User Manual Hoffman, Jansson, Logg

may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

88

DOLFIN User Manual Hoffman, Jansson, Logg

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS) , EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

89

DOLFIN User Manual Hoffman, Jansson, Logg

90

Index

Progress, 47 diff, 79

cout, 43 downloading, 13, 75
dolfin_assert(), 45 :

dolfin begin(). 46 enumeration, 10
dolfin_debug(), 45 errors, 44
dolfin_end(), 46 FEniCS, 11
dolfin_error(), 44 FFC, 75

dolfin get(), 51 ffc, 15
dolfin_info(), 43 FIAT, 75

dolfin load(), 54
dolfin log(), 48
dolfin output(), 48
dolfin parameter (), 53
dolfin _save(), 54

file formats, 41

finite element method, 11
Function, 27

functions, 27

dolfin_set(), 52 GNU General Public License, 83
dolfin warning(), 44 GPL, 83
endl, 43
1/0, 41
assertions, 45 incompressible Navier—Stokes, 59
automation, 11 indices, 10
input/output, 41
compiling, 76, 77 installation, 13, 73
contact, 10
contributing, 79 Libxml2, 74
convection—diffusion, 57 license, 82, 83
curses interface, 48 log system, 43

Debian package, 78 Navier—Stokes, 59

debugging, 45
demo programs, 77
dependencies, 73 parameters, 51

output destination, 48

91

DOLFIN User Manual Hoffman, Jansson, Logg

partial differential equations, 33
patch, 79-81

PETSc, 74

Poisson’s equation, 14, 56
post-processing, 41
pre-processing, 41

progress bar, 47

quickstart, 13

reference tetrahedron, 65
reference triangle, 63

source code, 75

tasks, 46
typographic conventions, 9

warnings, 44

XML, 42, 54

92

