SyFi User Manual

January 10, 2007

Martin Alnaes and Kent-Andre Mardal

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual.
Send comments and suggestions to syfi-dev@fenics.org.

Contents

0.1 Introduction 5
0.2 Software 8
0.2.1 License 8
0.2.2 Installation 8
0.2.3 Python Support 9
0.2.4 Examples and Tests. 10
0.25 GiNaC Tools 11
0.3 A Finite Element 12
0.3.1 Basic Concepts 12
0.3.2 Polygons 13
0.3.3 Polynomial Spaces 26
0.3.4 A Finite Element 32
0.3.5 Degrees of Freedom 35
0.4 Some Examples of Finite Elements 44
0.4.1 Finite Elements in H* 44

SyFi User Manual

Martin Alnaes and Kent-Andre Mardal

0.5

0.6

0.7

0.8

0.4.2 Finite Elements in L2
0.4.3 Finite Elements in H(div)
0.4.4 Finite Elements in H(div,M)
0.4.5 A Finite Element in Both H(div) and H*
0.4.6 Finite Elements in H(curl)
Mixed Finite Elements
0.5.1 The Taylor-Hood and the P¢ — P, _, Elements

0.5.2 The Mixed Crouizex-Raviart Element
0.5.3 The Mixed Raviart-Thomas Element
0.5.4 The Mixed Arnold-Falk-Winther element
Computing Element Matrices
0.6.1 A Poisson Problem
0.6.2 A Poisson Problem on Mixed Form
0.6.3 A Stokes Problem
0.6.4 A Nonlinear Convection Diffusion Problem
0.6.5 Expression Simplification
Python Support
Code Generation L.
0.8.1 Basic Tools,
0.8.2 UFC code generation

0.8.3 Debugging oL

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

0.1 Introduction

The finite element package SyF1i is a C++ library built on top of the symbolic
math library GiNaC [9]. The name SyFi stands for Symbolic Finite elements.
The package provides polygonal domains, polynomial spaces, and degrees of
freedom as symbolic expressions that are easily manipulated. This makes it
easy to define and use finite elements.

All the test examples described in this tutorial can be found in the directory
tests. The reader is of course encouraged to run the examples along with
the reading.

Before we start to describe SyFi, we need to briefly review the basic concepts
in GiNaC. GiNaC is an open source C++ library for symbolic mathematics,
which has a strong support for polynomials. The basic structure in GiNaC
is an ex, which may contain either a number, a symbol, a function, a list of
expressions, etc. (see simple.cpp):

ex pi = 3.14;

ex x = symbol("x");

ex f = cos(x);

ex list = lst(pi,x,f);

Hence, ex is a quite general class, and it is the cornerstone of GiNaC. It
has a lot of functionality, for instance differentiation and integration (see
simple2. cpp),

// initialization (f = x72 + y~2)
ex f = x*x + y*xy;

// differentiation (dfdx = df/dx = 2x)
ex dfdx = f.diff(x,1);

// integration (intf=1/3+y~2, integral of f(x,y) on x=[0,1])
ex intf = integral(x,0,1,f);

SyFi User Manual Martin Alnas and Kent-Andre Mardal

GiNaC also has a structure for lists of expressions, 1st, with the function
nops () which returns the size of the list, and operator [int i] or the function
op(int i) which returns the 7'th element.

We recommend the reader to glance through the GiNaC documentation be-
fore proceeding with this tutorial. GiNaC provides all the basic tools for
manipulation of polynomials, such as differentiation and integration with re-
spect to one variable. Our goal with the SyFi package is to employ GiNaC,
but also to provide higher level constructs such as differentiation with re-
spect to several variables (e.g., V), integration of functions over polygonal
domains, and polynomial spaces. All of which are basic ingredients in the
finite element method.

Our motivation behind this project is threefold. First, we wish to make ad-
vanced finite element methods more readily available. We want to do this
by implementing a variety of finite elements and functions for computing el-
ement matrices. Second, in our experience developing and debugging codes
for finite element methods is hard. Having the basis functions and the weak
form as symbolic expressions, and being able to manipulate them may be
extremely valuable. For instance, being able to differentiate the weak form
to compute the Jacobian in the case of a nonlinear PDE, eliminates a lot
of handwriting and coding. Third, having the symbolic expressions and em-
ploying GiNaCs tools for code generation, we are able to write efficient and
directly compilable C++ code for the computation of element matrices etc.

To try to motivate the reader, we also show an example where we compute
the element matrix for the weak form of the Poisson equation, i.e.,

T

We remark that the following example is an attempt to make an appetizer.
All concepts will be carefully described during the tutorial.

void compute_element_matrix(Polygon& T, int order) {
std: :map<std::pair<int,int>, ex> A; // matrix of expression
std::pair<int,int> index; // index in matrix
LagrangeFE fe; // Lagrange element (any orderj
fe.set_order (order); // set the order
fe.set_polygon(domain) ; // set the polygon

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

fe.compute_basis_functions(); // compute the basis functions
for (int i=0; i< fe.nbf(); i++) {
index.first = i;
for (int j=0; j< fe.nbf(); j++) {
index.second = j;

ex nabla = inner(grad(fe.N(i)), // compute integrands
grad(fe.N(j)));

ex Aij = T.integrate(nabla); // compute weak form

Alindex] = Aij; // update element matrix

}
}

In the above example, everything is computed symbolically. Even the poly-
gon may be an abstract polygon, e.g., specified as a triangle with vertices x,
X1, and X5, where the vertices are symbols and not concrete points. Notice
also, that we usually use STL containers to store our datastructure. This
leads to the somewhat unfamiliar notation A[index] instead of A[i,j].

There are quite a few other projects that are similar in various respects to
SyFi. We will not give a comprehensive description of these projects, only
mention the projects such that the readers can look them up by themselves.
Within the FEniCS [4] project there are two Python projects: FIAT [6] and
FFC [5]. FIAT is a Python module for defining finite elements while FFC
generates C+-+ code based on a high—level Python description of variational
forms. The DSEL project [3] is a project which employs high-level C++ pro-
gramming techniques such as expression templates and meta-programming
for defining variational forms, performing automatic differentiation, interpo-
lation and more. Sundance [12] is a C++ library with a powerful symbolic
engine which supports automatic generation of discrete system for a given
variational form. Analysa [1], GetDP [¢], and FreeFem++ [7] define domain-
specific languages for finite element computations.

Finally, we have to warn the reader: This project is still within its initial
phase.

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.2 Software

0.2.1 License

SyFi employs GiNaC and is therefore limited by GiNaCs license, which is
the GPL-2 licence listed below.

However, SyFi is usually used to generated code. The generated code is free.

This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

Notice, however that SyFi is usually used to generate code. This code is free,
but it comes without any warranty for fitness of any purpose.

In the case where the GNU licence does not fit your need. Contact the
authors at syfi-devefenics.org.

0.2.2 Installation

Dependencies SyFi is a C++ library and therefore a C++ compiler is
needed. At present the library has only been tested with the GNU C++
compiler. The configure script is a shell script made by the tools Automake
and Autoconf. Hence, you can run this script with, e.g., the GNU Bourne-
again shell. Finally, SyFi relies on the C++ library GiNaC.

8

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Configuration and Installation As mention earlier, the configuration, build
and installation scripts are all made by the Autoconf and Automake tools.
Hence, to configure, build and install the package, simply execute the com-
mands,

bash >./configure
bash >make
bash >make install

If this does not work, it is most likely because GiNaC is not properly installed
on your system. Check if you have the script ginac-config in your path.

Reporting Bugs/Submitting Patches In case, you want to contribute
code, please create a patch with diff,

bash >diff -u -N -r SyFi SyFi-mod > SyFi-<name>-<date>.patch

Here <name> should be replaced with your name and <date> should be replaced
with the current date.

The patch should be mailed to the SyFi mailing-list at syfi-devefenics.org.

0.2.3 Python Support

SyFi comes with Python support. The Python module is made by using the
tool SWIG [13]. In addition, one should also install Swiginac [14], which is
a Python interface to GiNaC created by using SWIG. More about the usage
of the Python interface can be found in Section 0.7.

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.2.4 Examples and Tests

A series of tests are located in the subdir tests, these test serve as unit
test and document the features of SyFi as described in this tutorial. If the
tests are simple we use the function EQUAL_ORDIE, an example is (see also
simple_test.cpp

symbol x("x");

ex f = x*x;

ex intf = integral(x,0,1,f);
intf = eval_integ(intf);
EQUAL_OR_DIE(integrall, "1/3");

When the tests or computed expressions are bigger we typically store the
expressions in a GiNaC archive (.gar files) and compare the archive with a
previously created and verified archive. The following code demostrates how
the basis functions and degrees of freedom of a first order Lagrangian element
is computed, stored in an archive and then compared with the previously
verified basis functions and degrees of freedom.

int order = 1;
ReferenceTriangle triangle;
LagrangeFE fe(triangle, order);

// regression test

archive ar;

for (int i=0; i< fe.nbf(); i++) {
ar.archive_ex(fe.N(i) , istr("N",i).c_str());
ar.archive_ex(fe.dof(i) , istr("D",i).c_str());

}

ofstream vfile("fe_exl.gar.v");

vfile << ar; vfile.close();

if (! compare_archives("fe_exl.gar.v", "fe_exl.gar.r")) {
cerr << "Failure!" << endl;
return -1;

}

10

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

All examples described in this tutorial are also implemented as tests in the
tests subdir.

0.2.5 GiNaC Tools

The symbol factory

In GiNaC, the identity of a symbol is not defined by its name, but by an
internal number. Because of this, the code

ex a = symbol("x");
ex b = symbol("x");
ex c a-b;

does not yield 0 in ¢, since a and b refer to different symbols. To solve this
we have implemented a simple symbol factory, so we can refer to variables
by name without passing the symbol objects around everywhere. The user
can ask if a symbol exists, or get numbered symbols and vectors or matrices
of numbered symbols in a convenient way.

ex x1 = get_symbol("x");
ex x2 = get_symbol("x");
assert(is_zero(x1-x2));

ex u = get_symbolic_vector(3, "u");
ex A = get_symbolic_matrix(3, 3, "A");
ex ¢ = isymb("c", 2);

assert(symbol_exists("c2"));

Symbols for spatial variables

Certain operations like the differential operators diff and grad needs to know
certain symbols to operate correctly. The spatial variables x,y,z and t are par-

11

SyFi User Manual Martin Alnas and Kent-Andre Mardal

ticularly important, and because of this we have a shortcut to these variables.
Operations like grad also need to know the number of spatial dimensions, of-
ten abbreviated nsd in SyFi. Therefore, a call to initSyFi(nsd) must be made
before one can use these operators. It is safe to call initSyFi more than once.
The spatial symbols x,y,z,t can also be retrieved from the symbol factory.

initSyFi(3);

int space_dim = SyFi::nsd;
ex x = SyFi::x;

ex y = SyFi::y;

ex z = SyFi::z;

ex t = SyFi::t;

// or:

ex x = get_symbol("x");

0.3 A Finite Element

0.3.1 Basic Concepts

To keep the abstractions clear we briefly review the general definition of a
finite element, see e.g., Brenner and Scott [18] or Ciarlet [21].

Definition 0.3.1 (A Finite Element) A finite element consists of,

1. A polygonal domain, T
2. A polynomial space, V.

3. A set of degrees of freedom (linear forms), L; - V — R, fori=1,...,n,
where n = dim(V'), that determines V' uniquely.

Furthermore, to determine a basis in V', {N;}_, we form the linear system
of equations,

Li(Nj) = i, (1)

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

and solve it.

Example 0.3.1 (Linear Lagrangian element on the reference triangle)
In this example we describe how the linear Lagrangian element is defined on
the reference triangle. Let T be the unit triangle with vertices (0,0), (1,0),
and (0,1). Furthermore, the polynomial space V' consists of linear polyno-
mials, i.e., polynomials on the form N(x,y) = a + bx + cy. The degrees of
freedom for a linear Lagrangian element are simply the pointvalues at the
vertices, x;, L;(N;) = N;(x;). The degrees of freedom and (1) determined
a;, bj, and c; for each basis function N;. For instance Ny, which is on the
form ay + bix + c1y, is determined by,

Li(N1) = Ni(x;) = 91,

or written out as a system of linear equations,

1 0 0 aq 1
110 by | =10
1 01 C1 0
Hence,
Ny=1—z—y.

The functions Ny and N3 can be determined similarly.

In the next sections we will go detailed through polygons, polynomial spaces
and degrees of freedom, and the corresponding software components.

0.3.2 Polygons

In the finite element method we need the concept of simple polygons to define
integration, polynomial spaces etc. The basic polygons are lines, triangles,
tetrahedra, and orthogonal rectangles and boxes. These basic components
will be briefly described in this section.

13

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Figure 1: A line.

(9517 Y1, 21)

(an Yo, ZO)

Line

A line segment, L, between two points xg = [z, Yo, 20] and x; = [z1,y1, 21]
in 3D is defined as, see also Figure 0.3.2,

x zo+at, (2)
y = yo+D0t, (3)
z = z9+ct, (4)
t € [0,1], (5)

where a = x1 — xg, b = y1 — Yo, and ¢ = 21 — 2.

Integration of a function f(z,y, z) along the line segment L is performed by
substitution,

/L {2y, 2) do dy dz = / F(a(t), y(t), =(t) D, (6)

where D = v/a? + b2 + 2.

Software Component: Line The class Line implements a general line. It
is defined as follows (see Polygon.h):

class Line : public Polygon {
ex a_;

14

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

ex b_;
public:
Line() {}
Line(ex x0, ex x1, // x0_ and x1_ are points
string subscript = "");
“Line O {2}

virtual int no_vertices();
virtual ex vertex(int i);
virtual ex repr(ex t);
virtual string str();
virtual ex integrate(ex f);

};

Most of the functions in this class are self-explanatory. However, the function
repr deserves special attention. The function repr returns the mathematical
definition of a line. To be precise, this function returns a list of expressions
(1st), where the items are the items in (2)-(5) (see also the example below).

The basic usage of a line is as follows (see line_ex1.cpp),

ex pO
ex pl

1st(0.0,0.0,0.
1st(1.0,1.0,1.
Line line(p0,pl);

// show usage of repr

symbol t("t");

ex 1_repr = line.repr(t);

cout <<"l.repr "<<1l_repr<<endl;
EQUAL_OR_DIE(1_repr, "{x==t,y==t,z==t,{t,0,1}}");

for (int i=0; i< 1_repr.nops(); i++) {
cout <<"l_repr.op(" <<i<<"): "<<1_repr.op(i)<<endl;

}

15

SyFi User Manual Martin Alnas and Kent-Andre Mardal

// compute the integral of a function along the line
ex f = xxx + y*xyxy + z;

ex intf = line.integrate(f);

cout <<"intf "<<intf<<endl;

EQUAL_OR_DIE(intf, "13/12");

The function EQUAL_ORDIE compares the string representation of the expres-
sion with an expected expression represented as a character array. If the
string representation of the expression and the character array are not equal
the program dies, and this tells the programmer that the test faulted. The
reason for the use of this function is that our test examples also serve as
regression tests for the package.

Triangle

A triangle is defined in terms of three points xg, X1, and x5. Associated with
each triangle are three lines; the first line is between the points xy and x;, the
second line is between the points xg and x5, and the third line is between the
points x; and x,. This is shown in Figure 2. The triangle can be represented
as

x xo + ar + bs, (7)
y = yo+cr+ds, (8)
z 2o +er+ fs, 9)
s € [0,1—r], (10)
r € [0,1], (11)

where (a, ¢, e) = (x1—x0, y1—Yo, 21—20) and (b, d,) = (xa—x0, Y2—Yo, 22—20)

Integration is performed by substitution,

1 1—r
[e dedyaz= [[sy pasa
T 0 0

where D = /(cf — de)? + (af — be)? + (ad — be)?2.

16

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Figure 2: Triangle

(x27 Ya, 22)

(9507 Yo, Zo)

(1151, Y1, Zl)

Software Component: Triangle The class Triangle implements a general
triangle. It is defined as follows (see Polygon.h):

class Triangle : public Polygon {
public:
Triangle(ex x0, ex x1, ex x1, string subscript = "");
Triangle() {}
“Triangle O{}

virtual int no_vertices();
virtual ex vertex(int i);
virtual Line line(int i);
virtual ex repr();

virtual string str();
virtual ex integrate(ex f);

17

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Here the function repr returns a list with the items (7)-(11). In addition to
the functions also found in Line, Triangle has a function line(int i), return-
ing a line.

The basic usage of a triangle is as follows (see triangle ex1.cpp),

ex pO0 = 1st(0.0,0.0,1.0);
ex pl = 1st(1.0,0.0,1.0);
ex p2 = 1st(0.0,1.0,1.0);

Triangle triangle(pO,pl,p2);

ex repr = triangle.repr();
cout <<"t.repr "<<repr<<endl;
EQUAL_OR_DIE(repr, "{x==r,y==s,z==1.0,{r,0,1},{s,0,1-r}}");

ex f = xxy*xz;

ex intf = triangle.integrate(f);
cout <<"intf "<<intf<<endl;
EQUAL_OR_DIE(intf, "1/24");

Tetrahedron

A tetrahedron is defined by four points xg, X, Xo, and x3. Associated with
a tetrahedron are four triangles and six lines. The convention used so far is
that

the first line connects xy and x1,

the second line connects xy and xo,

the third line connects xy and x3,

the fourth line connects x; and X,

the fifth line connects x; and x3,

18

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

e the sixth line connects x5 and x3.

The i’th triangle has the vertices X004, X(i11)%4, and X(;2)%4, Where % is the
modulus operator. The tetrahedron can be represented as, see also Figure 3,

r = wo+ar+bs+ct, (12)
y = yo+dr+es+ ft, (13)
z = 2z9+gr+hs+kt, (14)
t € [0,1—r—s], (15)
s € [0,1—r], (16)
r e [0,1], (17)

where (a7d7 9) = ($1 —Zo, Y1 — Yo, 21 —20)7 (5767 h) = ($2—$07y2—y0722—20),
and (c, f, k) = (x5 — 2o, Y3 — Yo, 23 — 20)-

As earlier, integration is performed with substitution,
/ f(z,y,2)dedydz =
T

1 1—r 1—-r—s
[[[fatsostsn.sto) Dadsn
0 0 0

where D is the determinant of,

Q@ Q.
>0 o
TN~ O

Software Component: Tetrahedron The class Tetrahedron implements a
general tetrahedron. It is defined as follows (see Polygon.h):

class Tetrahedron : public Polygon {

public:
Tetrahedron(string subscript) {}
Tetrahedron(ex x0, ex x1, ex x1, ex x2, string s= "");

19

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Figure 3: A tetrahedron.

(9527 Ya, 22)
S v
(.1'3, Y3, Z3)
(l’o, Yo, ZO) r
(1151, Y1, Zl)
~Tetrahedron(){}

virtual int no_vertices();
virtual ex vertex(int 1i);
virtual Line line(int i);
virtual Triangle triangle(int i);
virtual ex repr();

virtual string str();

virtual ex integrate(ex f);

};

The function repr returns a list representing (12) —(17). In addition to the
usual functions it has the functions line(int i) and triangle(int i) for re-
turning the 7’th line and the ¢’th triangle, respectively.

Its basic usage is as follows (see tetrahedron_ ex1i.cpp),

20

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

ex p0 = 1st(0.0,0.0,0.0);
ex pl = 1st(1.0,0.0,0.0);
ex p2 = 1st(0.0,1.0,0.0);
ex p3 = 1st(0.0,0.0,1.0);

Tetrahedron tetrahedron(p0,pl,p2,p3);

ex repr = tetrahedron.repr();

cout <<"t.repr "<<repr<<endl;

EQUAL_OR_DIE(repr, "{x==r,y==s,z==t,{r,0,1},
{s,0,1-r},{t,0,1-s-r}}");

ex f = xxyx*xz;
ex intf = tetrahedron.integrate(f);
EQUAL_OR_DIE(intf, "1/720");

Rectangle

The rectangles currently supported by SyFi are orthogonal. Such a rectangle
is defined in terms of two points xg and x;, as shown in Figure 4.

The rectangle can be represented as

x xo + ar, (18)
y = Yo+ bs, (19)
z = zy+ct, (20)
r o€ [0,1], (21)
s € [0,1], (22)
t e [0,1], (23)

where a = x1 — xg, b = y1 — Yo, and ¢ = z; — 2y. Notice that either a, b, or
¢ needs to be zero, or else (18)-(23) defines a box (which will be described
later).

21

SyFi User Manual

Martin Alnaes and Kent-Andre Mardal

Figure 4: A rectangle.

(9017 Y1, Zl)

(9507 Yo, Zo)

As earlier, integration is performed with substitution,

[flap2)dedydz -
R

/1/1/1f(:c(r,s,t),y(r,S,t),z(fr,s,t))Ddtdsdr,
0 0 0

where D =abif c=0, D =bc, if a =0, and D = ac, if b =0.

Software Component: Rectangle The class Rectangle implements a gen-
eral orthogonal rectangle. It is defined as follows (see Polygon.h):

class Rectangle : public Polygon {

public:

Rectangle(GiNaC::ex pO, GiNaC::ex pl, string s = "");

Rectangle() {}
virtual “Rectangle(){}

virtual int no_vertices();

22

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

virtual GiNaC::ex vertex(int 1i);

virtual Line line(int i);

virtual GiNaC::ex repr(Repr_format format = SUBS_PERFORMED) ;
virtual string str();

virtual GiNaC::ex integrate(GiNaC::ex f);

};

As described with the previous polygons, the function repr returns a list
with the items (18)-(23). The basic usage of the rectangle is as follows (see
rectangle_exl.cpp%

ex f = xxy;

1st(0.0,0.0);
1st(1.0,1.0);

ex po
ex pl

Rectangle rectangle(p0,pl);

ex repr = rectangle.repr();
cout <<"s.repr "<<repr<<endl;

ex intf = rectangle.integrate(f);
cout <<"intf "<<intf<<endl;

ex 2 = (x+1)*y*z;
= 1st(0.0,0.0,1.0);
1st(0.0,1.0,0.0);

T g
= O
[

Rectangle rectangle2(p0,pl);

ex repr2 = rectangle2.repr();
cout <<"s2.repr '"<<repr2<<endl;

ex intf2 = rectangle2.integrate(£f2);
cout <<"intf2 "<<intf2<<endl;

23

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Box

Currently, SyFi only supports orthogonal boxes (as was also the case with
rectangles). Such a box is defined in terms of two points Xy and x;, as can
be seen in Figure 5. The box can be represented as

x xo + ar, (24)
y = yo+bs, (25)
z = z+ct, (26)
r o€ [0,1], (27)
s € [0,1], (28)
t e [0,1], (29)

where a = x1 — xg, b = y; — Yo, and ¢ = 21 — 2p.

As earlier, integration is performed with substitution,
| fap2) dedyaz -
R

/1/1/1f(x(r,5,15)7?J(r,5,15),2(7“,3,75))Ddtdsdr7
0 0 0

where D = abe.

Software Component: Box The class Box implements a general orthogonal
box. It is defined as follows (see Polygon.h):

class Box: public Polygon {
public:
Box(GiNaC::ex p0O, GiNaC::ex pl, string subscript = "");
Box O {}
virtual "Box(){}

virtual int no_vertices();
virtual GiNaC::ex vertex(int i);
virtual Line line(int i);

24

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Figure 5: A Box.

(.’L‘l, Y1, Zl)

(9507 Yo, Zo)

virtual GiNaC::ex repr(Repr_format format = SUBS_PERFORMED) ;
virtual string str();
virtual GiNaC::ex integrate(GiNaC::ex f);

};

The repr function returns a list of the definition of a orthogonal box in (24)-
(29). A box can be used as follows (see box_ex1.cpp),

1st(-1.0,-1.0,-1.0);
1st(1.0, 1.0, 1.0);

ex po
ex pl

Box box(p0,pl);

ex repr = box.repr();
cout <<"b.repr "<<repr<<endl;

ex intf = box.integrate(f);
cout <<"intf "<<intf<<endl;

25

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Finally, we also mention that in addition to the above mentioned classes, Line,
Triangle, Tetrahedron, Rectangle, and Box, we have implemented the corre-
sponding reference geometries in the subclasses ReferenceLine, ReferenceTriangle,

ReferenceTetrahedron, ReferenceRectangle, and ReferenceBox.

0.3.3 Polynomial Spaces

The space of polynomials of degree less or equal to n, P,,, plays a fundamental
role in the construction of finite elements. There are many ways to represent
this polynomial space. The perhaps visually nicest representation is having

it spanned by the basis (in 1D) 1,z, 22 ..., 2" This representation is not

suitable for polynomials of high degree!.
In 1D, P, is spanned by functions on the form

v:a0+a1x+...anx”:2aixi (30)
i=0

In 2D on triangles, P, is spanned by functions on the form:

i+j<=n

v = Z aijx'y’ (31)

i,j=0
In 2D on quadrilaterals, P, is spanned by functions on the form:
1,j<=n
v = Z a;;jx'y’ (32)
i,j=0

The corresponding polynomial spaces in 3D are completely analogous.

Software Component: Polynomial Space The following functions gener-
ate symbolic expressions for the above polynomial spaces (30), (31), and (32),
their corresponding polynomial spaces in 3D and their vector counterparts.

In that case, one should use the Bernstein or Legendre polynomials.

26

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

// generates a polynomial of any order on a line,
// a triangle, or a tetrahedron
ex pol(int order, int nsd, const string a);

// generates a vector polynomial of any order on a line,
// a triangle or a tetrahedron
1st polv(int order, int nsd, const string a);

// generates a polynomial of any order on a square or a box
ex polb(int order, int nsd, const string a);

// generates a vector polynomial of any order
// on a square or a box
1st polbv(int order, int nsd, const string a);

The function pol returns a list with the following 3 items,

1. The polynom, e.g., ag + a1x + ...+ a,z™ in 1D.
2. A list of variables, e.g., ag, aq,...,a, in 1D.

3. A list containing the basis, e.g., 1,x,..., 2" in 1D.

The functions polb, polv, and polbv return lists that are completely analogous.

These abstract polynomials (or polynomial spaces) can be easily manipu-
lated, e.g., (see also pol.cpp),

int order = 2;
int nsd 2;

ex polynom_space = pol(order,nsd, "a");
cout <<"polynom_space "<<polynom_space<<endl;

ex p = polynom_space.op(0);

27

SyFi User Manual Martin Alnas and Kent-Andre Mardal

cout <<"polynom p = "<<p<<endl;
EQUAL_OR_DIE(p, "y~ 2*ab+x"2*a3+a2*y+y*x*ad+alO+al*x");

ex dpdx = diff(p,x);
cout <<"dpdx = "<<dpdx<<endl;
EQUAL_OR_DIE(dpdx, "y*ad+al+2*x*a3");

Triangle triangle(1lst(0,0), 1st(1,0), 1st(0,1));

ex intp = triangle.integrate(p);

cout <<"integral of p on reference triangle="<<intp<<endl;

EQUAL_OR_DIE(intp, "1/6%a2+1/6%al+1/12*ab
+1/2%a0+1/24%ad+1/12%a3") ;

Bernstein Polynomials

Another basis for P, is the Bernstein polynomials. This basis is much better
suited for polynomials of high degree. Moreover, these polynomials can be
easily expressed in barycentric coordinates, which makes them easy to adapt
to, e.g., faces of polygons? etc.

In 1D, the polynomial basis is on the form,

B, = (z)xi(l —)"" i=0,...,n.
And with this basis, P,, can be spanned by functions on the form,
v = aoBOVn -+ alBLn + ... CLan’n

One reason for the widespread use of these polynomials is that they adapt
easily to general triangles and tetrahedra, by using barycentric coordinates.
Let by, by, and b3 be the barycentric coordinates for the triangle shown in
Figure 2. Then the basis is on the form,

n!

Bijkn = mblb;bsv fori+j+k=n.

2This will be used in the definition of the Raviart-Thomas element.

28

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

and P, is spanned by functions on the form,

U= : : a/i7jkai7jvk7n'

i+j+k=n

The Bernstein polynomials in 3D are completely analogous.

Software Components: Bernstein polynomials The following functions
generate symbolic expressions for P using the Bernstein basis,

// polynom of arbitrary order on a line, a triangle,
// or a tetrahedron using the Bernstein basis
ex bernstein(int order, Polygon& p, const string a);

// vector polynom of arbitrary order on a line, a triangle,
// or a tetrahedron using the Bernstein basis
1st bernsteinv(int order, Polygon& p, const string a);

These functions return lists that are analogous to the lists made by the
functions pol and polv described on page 27.

As described earlier, GiNaC has the tools for manipulating these polynomial
spaces, (see also pol.cpp)

ex polynom_space2 = bernstein(order,triangle, "a");

ex p2 = polynom_space2.op(0);

cout <<"polynom p2 = "<<p2<<endl;

EQUAL_OR_DIE(p2, "y 2xa0+2*(1-y-x)*x*ad+2*(1-y-x)*a3xy
+(1-y-x) "2xab+2*al*y*xx+a2xx”2") ;

ex dp2dx = diff(p2,x);

cout <<"dp2dx = '"<<dp2dx<<endl;

EQUAL_OR_DIE(dp2dx, "2*%alxy+2*(-1+y+x)*ab+2*a2*x
+2% (1-y-x) *ad-2%a3*y-2xx*ad") ;

29

SyFi User Manual Martin Alnas and Kent-Andre Mardal

ex intp2 = triangle.integrate(p2);

cout <<"integral of p2 on reference triangle="<<intp<<endl;

EQUAL_OR_DIE(intp2, "1/12%a3+1/12%a2+1/12*al+1/12%ab
+1/12%a0+1/12*a4") ;

Legendre Polynomials

A popular polynomial basis for polygons that are either rectangles or boxes
are the Legendre polynomials. This polynomial basis is also usable to repre-
sent polynomials of high degree. The basis is defined on the interval [—1, 1],
as

1 d*
2Kkl dak
A nice feature with these polynomials is that they are orthogonal with respect
to the Ly inner product, i.e.,

| s k=1
— Jr b b
/_1 Ly(x)Li(x) dx { 0 kAL

The Legendre polynomials are extended to 2D and 3D simply by taking the
tensor product,

Ly(7) (2 —1), k=0,1,...,

Ligm(,y, 2) = Li(x) Li(y) Lim(2)-
and P is defined by functions on the form (in 3D),

k,lm<=n

U= E ak,z,mLk,l,m-

k,l,m=0

Software Components: Legendre polynomials The following functions
generate symbolic expressions for P" using the Legendre basis,

// generates a Legendre polynom of arbitrary order
GiNaC::ex legendre(int order, int nsd, const string a);
// generates a Legendre vector polynom of arbitrary order
GiNaC::1st legendrev(int no_fields, int order,

int nsd, const string a);

30

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

These functions return lists that are analogous to the lists made by the

functions pol and polv described on page 27.

The following code demonstrates the use of the Legendre polynomials, and

(when runned) that the basis is orthogonal (see also legendre.cpp).

int order = 2;
int nsd 2;

ex polynom_space = legendre(order,nsd, "a");
cout <<"polynom_space "<<polynom_space<<endl;

ex p = polynom_space.op(0);
cout <<"polynom p = "<<p<<endl;

ex dpdx = diff(p,x);
cout <<"dpdx = "<<dpdx<<endl;

lst(-1,-1);
1st(1,1);

ex po
ex pl

Rectangle rectangle(pO,pl) ;
ex basis = polynom_space.op(2);
for (int i=0; i< basis.nops(); i++) {
cout <<"ji "<<i<<endl;
ex integrand = p*basis.op(i);
ex ai = rectangle.integrate(integrand);
cout <<"ai "<<ai<<endl;

Homogeneous Polynomials

Another set of polynomials which sometimes are useful are the set of homo-
geneous polynomials H™. These are polynomials where all terms have the

31

SyFi User Manual Martin Alnas and Kent-Andre Mardal

same degree. H" is in 2D spanned by polynomials on the form:

.
v = E a; j k'Y’
iy J,
t+j5=n

Software Components: Homogeneous polynomials The following func-
tions generate symbolic expressions for H",

// generates a homogeneous polynom of arbitrary order
GiNaC::ex homogenous_pol(int order, int nsd, const string a);
// generates a homogenous vector polynom of arbitrary order
GiNaC::1st homogenous_polv(int no_fields, int order,

int nsd, const string a);

The use of these polynomials are similar to the other polynomials described
earlier.

0.3.4 A Finite Element

Before we start describing how to construct a finite element based on the
Definition 0.3.1, we will concentrate on the wusage of a finite element. A
finite element has only two interesting components, the basis functions N;
and the corresponding degrees of freedom L;. The basis functions (and their
derivatives) are used to compute the element matrices and the element vec-
tors, while the degrees of freedom are used to define the mapping between
the element matrices/vectors and the global matrix/vector. As we see in the
following, the observation that only these two components are needed leads
us to a minimalistic definition of a finite element in our software tools.

Software Component: Finite Element Due to the powerful expression
class in GiNaC, ex, our base class for the finite elements can be very small.

32

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Both the basis function N; and the corresponding degree of freedom L; can be
well represented as an ex. Hence, the following definition of a finite element
is suitable,

class FE {
public:
FEO {}
“FEO {}

virtual void set_polygon(Polygon& p); // Set domain
virtual Polygon& get_polygon(); // Get polygonal domain

virtual ex N(int 1i); // The i’th basis function
virtual ex dof(int 1i); // The i’th degree of freedom
virtual int nbf(); // The number of basis

// functions/degrees of

// freedom

};

The usage of a finite element is as follows (see fe_ex1.cpp where Lagrangian
elements are used),

ex Ni;

ex gradNi;

ex dofi;

for (int i=0; i< fe.nbf(); i++) {
Ni = fe.N(i);

gradNi = grad(Ni);

dofi = fe.dof(i);

cout <<"The basis function, N("<<i<<")="<<Ni<<endl;
cout <<"The gradient of N("<<i<<")="<<gradNi<<endl;
cout <<"The corresponding dof, L("<<i<<")="<<dofi<<endl;

When you run fe_exi1, it produces the following output:

33

SyFi User Manual Martin Alnas and Kent-Andre Mardal

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

basis function, N(1)=2*y~2-y

gradient of N(1)=[[0], [-1+4x*y]]
corresponding dof, L(1)={0,1}

basis function, N(2)=4*yxx

gradient of N(2)=[[4x*y], [4xx]]

corresponding dof, L(2)={1/2,1/2}

basis function, N(3)=2*x"2-x

gradient of N(3)=[[-1+4*x], [0]]
corresponding dof, L(3)={1,0}

basis function, N(4)=-4xy*x-4*y~2+4*y
gradient of N(4)=[[-4x*y], [4-8xy-4*x]]
corresponding dof, L(4)={0,1/2}

basis function, N(5)=-4*y*x-4*x~2+4*x
gradient of N(5)=[[4-4*y-8xx], [-4*x]]
corresponding dof, L(5)={1/2,0%}

basis function, N(6)=1+4*y*kx+2xx~2+2%y~2-3%y-3*x
gradient of N(6)=[[-3+4xy+4*x], [-3+4*xy+4*x]]
corresponding dof, L(6)={0,0}

The computation of the element matrix for a Poisson problem is as follows
(see fe_ex2.cpp),

Triangle T(1st(0,0), 1st(1,0), 1st(0,1), "t");

int

std:
std:
LagrangeFE fe;
fe.set_order(order);
fe.set_polygon(T);
fe.compute_basis_functions();

for

index.first = 1i;
for (int j=0; j< fe.nbf(); j++) {

order = 2;

:map<std::pair<int,int>, ex> A;
:pair<int,int> index;

(int i=0; i< fe.nbf(); i++) {

index.second = j;

34

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

ex nabla = inner(grad(fe.N(i)), grad(fe.N(j)));
ex Aij = T.integrate(nabla);
Alindex] = Aij;
}
}

Here, we have used the class LagrangeFE, which is a subclass of FE, that im-
plements Lagrangian elements of arbitrary order. The construction of this
element is described later in Section 0.4.1.

0.3.5 Degrees of Freedom

As we have seen earlier, for each element e, we have a local set of degrees
of freedom Lf, which in general are linear forms on the polynomial space.
Degrees of freedom and linear forms are quite general concepts, but the reader
not familiar with this general definition can think of them for instance as

nodal values at vertices, i.e.,
L;(v) = v(x;).

Another example is the integral of v over an edge (or a face), e;, of the
polygon,
Li(v) = / vds.

The most important thing with the degrees of freedom, besides defining a
basis for the polynomial space, is that they provide a mapping from the local
degree of freedom, L¢, on a given element, e, to the global degree of freedom,
L;. This mapping does in turn provide the mapping between the element
matrices/vectors and the global matrix/vector. Hence, we have the following
mapping,

(e,i) = Li — Lj —j. (33)
Here e, ¢, and j are integers, while L§ and L; are degrees of freedom (or linear
forms). Additionally, given a global degree of freedom we have a mapping to
the local degrees of freedom,

j - LJ - Lf(e)eeE(j) - (672.(6))56E(j)' (34)

35

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Here E(j) is the set of elements sharing the degree of freedom Lj;.

Software Component: Degrees of Freedom Handler A degree of free-
dom, local or global, is well represented as an ex (in fact ex is more general
than a linear form). Hence, to implement proper tools for handling the de-
grees of freedom, we only need to provide the mappings (33) and (34). We
have implemented a class Dof which provides these mappings,

class Dof {
protected:
int counter;
// the structures loc2dof, dof2index, and doc2loc
// are completely dynamic. They are all initialized
// and updated by insert_dof(int e, int d, ex dof)

// (int e, int i) -> ex Li

map<pair<int,int>, ex> loc2dof;

// (ex Lj) -> int j

map<ex,int,ex_is_less> dof2index;

// (int j) -> ex Lj

map<int,ex> index2dof;

// (ex Lj) -> vector< pair<el, i1>, .. pair<en, in> >

map <ex, vector<pair<int,int> >,ex_is_less > dof2loc;

public:
Dof() { counter = 0; }
“Dof () {}

int insert_dof(int e, int j, ex Lj); // update internal
// structures

// Helper functions to be used when the dofs have been set.
// These do not modify the internal structure

int glob_dof(int e, int j);

int glob_dof(ex Lj);

ex glob_dof(int j);

int size();

36

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

vector<pair<int, int> > glob2loc(int j);
void clear();

};

Here, the function int insert_dof(int e, int i, ex Li) creates the various
mappings between the local dof Lg, in element e, and the global dof L;. This
is the only function for initializing the mappings. After the mappings have
been initialized, they can be used as follows,

e int glob.dof(int e, int i) is the mapping (e,7) — 7,

® int glob.dof(ex Lj) is the mapping L; — j,

® ex globdof (int j) is the mapping j — Lj,

® vector<pair<int, int> > glob2loc(int j) is the mapping j — (e, i(e)).
The following code shows how to make two Lagrangian elements, imple-
mented by the class LagrangeFE (The description of LagrangeFE is postponed
until Section sec:fem:examples), assign their local degrees of freedom to the

global set of degrees of freedom in Dof, and print out the local degrees of
freedom associated with each global degree of freedom (see also dof_ex.cpp):

Dof dof;

Triangle t1(1st(0,0), 1st(1,0), 1st(0,1));
Triangle t2(1st(1,1), 1st(1,0), 1st(0,1));

// Create a finite element and corresponding
// degrees of freedom on the first triangle
int order = 2;

LagrangeFE fe;

fe.set_order(order) ;

fe.set_polygon(tl);
fe.compute_basis_functions();

for (int i=0; i< fe.nbf(); i++) {

37

SyFi User Manual Martin Alnas and Kent-Andre Mardal

cout <<"fe.dof ("<<i<<")= "<<fe.dof(i)<<endl;
// insert local dof in global set of dofs
dof.insert_dof(1,i, fe.dof(i));

}

// Create a finite element and corresponding
// degrees of freedom on the second triangle
fe.set_polygon(t2);
fe.compute_basis_functions();
for (int i=0; i< fe.nbf(); i++) {
cout <<"fe.dof ("<<i<<")= "<<fe.dof(i)<<endl;
// insert local dof in global set of dofs
dof.insert_dof(2,i, fe.dof(i));
}

// Print out the global degrees of freedom an their
// corresponding local degrees of freedom
vector<pair<int,int> > vec;
pair<int,int> index;
ex exdof;
for (int i=1; i<= dof.size(); i++) {
exdof = dof.glob_dof(i);
vec = dof.glob2loc(i);
cout <<"global dof " <<i<<" dof "<<exdof<<endl;
for (int j=0; j<vec.size(); j++) {
index = vecl[j];
cout <<" element "<<index.first<<
" local dof "<<index.second<<endl;

In the previous example, the reader that also runs the companion code will
notice that the degrees of freedom in LagrangeFE are not linear forms on
polynomial spaces, i.e.,

L;(v) = v(x;).
They are instead represented as points, x;, which is the usual way to rep-
resent these degrees of freedom in finite element software (because of their

38

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

obvious simplicity compared to linear forms on polynomial spaces). Hence,
the degrees of freedom in LagrangeFE are actually implemented in the stan-
dard fashion. However, the tools we have described are far more general than
conventional finite element codes. Still the tools are equally simple to use,
due to the powerful expression class ex in GiNaC.

Our next example concerns degrees of freedom which are line integrals over
the edges of triangles. Let T be a triangle with the edges e;, i € [1,3]. The
degree of freedom associated with e; is then simply,

As our next example shows, such degrees of freedom can be implemented
equally easy as the point values shown in the previous example (see dof_ex2.cpp):

Dof dof;

// create two triangles
Triangle t1(1st(0,0), 1st(1,0), 1st(0,1));
Triangle t2(1st(1,1), 1st(1,0), 1st(0,1));

// create the polynomial space
ex Nj = pol(1,2,"a");

cout <<"Nj " <<Nj<<endl;

Line line;

ex dofi;

// dofs on first triangle
for (int i=1; i<= 3; i++) {
line = t1.line(i); // pick out the i’th line
dofi = line.integrate(Nj); // create the dof which is
// a line integral
dof.insert_dof(1,i, dofi); // insert local dof in
// global set of dofs

// dofs on second triangle

39

SyFi User Manual Martin Alnas and Kent-Andre Mardal

for (int i=1; i<= 3; i++) {
line = t2.1line(i); // pick out the i’th line
dofi = line.integrate(Nj); // create the dof which is
// a line integral
dof.insert_dof(2,i, dofi); // insert local dof in
// global set of dofs

Software Component: Degrees of Freedom Handler Template We will
also describe an equally general degree of freedom handler which is not based
on GiNaC, but which employs templates instead. This template class relies
on two classes, the degree of freedom D and a comparison function. The rest
is basically identical to the previously described Dof, except that we have
added two boolean variables which can be used to turn off the computation
of the global to local mapping in (34) and the j — N; mapping. This class
can be found in the header file DofT.h:

template <class D, class C>
class DofT {
protected:
bool create_index2dof, create_dof2loc;
int counter;
// the structures loc2dof, dof2index, and doc2loc are
// completely dynamic. They are all initialized and
// updated by insert_dof(int e, int i, ex Li).

// (int e, int i) -> int j

map<pair<int,int>, int> loc2dof;
// (ex Lj) -> int j
map<D, int,C> dof2index;

typename map<D,int,C>:: iterator iter;

// (int j) -> ex Lj
map<int,D> index2dof;
// (ex j) -> vector< pair<el, il>, .. pair<en, in> >

map <int, vector<pair<int,int> > > dof2loc;

40

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

public:
DofT(bool create_index2dof_ = false,
bool create_dof2loc_ = false)

{
counter = -1;
create_index2dof = create_index2dof_;
create_dof2loc = create_dof2loc;

}

“DofT() {}

int insert_dof(int e, int i, D Li); // update internal
// structures

// Helper functions to be used when the dofs have been set.
// These do not modify the internal structure.

int glob_dof(int e, int 1i);

int glob_dof (D Lj);

D glob_dof(int j);

int size();

vector<pair<int, int> > glob2loc(int j);

void clear();

};

The typical way to represent most common degrees of freedom is as points.
Hence, we have implemented a simple point class ptv and its comparison
function. The header file (see also Ptv.h) is as follows:

class Ptv {
private:
int dim;
doublex v;
static double tol;

public:
Ptv(int size_);
Ptv(int size_, doublex v_);

41

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Ptv(const Ptv& p);
Ptv();

virtual “Ptv();
const int size() const;
const double& operator [] (int i) const;
double& operator [] (int i);
Ptv& operator = (const Ptv& p);
bool is_less(const Ptv& p) const;
+;
struct Ptv_is_less
public std::binary_function<Ptv, Ptv, bool> {

bool operator() (const Ptv &lh, const Ptv &rh) const {
return lh.is_less(rh); }

};

std::ostream & operator<< (std::ostream& os, const Ptv& p);

The ptv class simply contain an array of doubles with variable size. The
comparison function should check whether a point € R"™ is less than y € R™,
which is not necessarily obvious how to do. For instance, which is the smallest
of 11 = (1,0) € R?, 2o =(0,1) € R? and z3 = (0,0,1) € R3 ? There are
many possible ways to compare points. The convention we have chosen so
far is to first check the size of the points. Hence, x < y, where x € R" and
yeR™ ifn<m. Ifn=m,then z < yif xg < yo. If 2o =y, then z <y
if z; <y, and we continue in this fashion, if z; = y;,0 < j <@ then x < y if
x; < y;. Notice that this comparison operator only affects the ordering of the
degrees of freedom internally in the STL map structure. But it might be that
other comparison conventions will speed up the search and insert routines in

map.

42

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Finally, we remark that the ptv class and DofT can be used also for degrees of
freedom associated with lines, edges, faces or general polygons. For instance
the edge of a 2D triangle, between the points xq = (¢, yo) and x; = (21,y1)
can be represented as a point in R, e.g., (xq,v0,71,y1) if Xo < x; and
(z1,y1, %o, Yo) otherwise. Another simpler approach is to represent an edge
by its midpoint.

For degrees of freedom that are not well represented as points we have cre-
ated the structure orderedpPtvset. This class contains a ordered set of points
Ptv, where the ordering is determined by the Ptv::less function. The class
declaraton is as follows (see also OrderedPtvSet.h):

class OrderedPtvSet
{
vector<Ptv> Ptvs;
public:
OrderedPtvSet () ;
OrderedPtvSet (const Ptv& pO, const Ptv& pl);
OrderedPtvSet (const Ptv& p0, const Ptv& pl, const Ptv& p2);
OrderedPtvSet(const Ptv& p0, const Ptv& pl, const Ptv& p2,
const Ptv& p3);
virtual ~OrderedPtvSet();
void append(const Ptv& p);
int size() const;
const Ptv& operator [] (int i) const;
Ptv& operator [] (int i);
OrderedPtvSet& operator = (const OrderedPtvSet& p);
bool less(const OrderedPtvSet& s) const;
I

43

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.4 Some Examples of Finite Elements

Earlier in Section 0.3.4, we described the usage of a general finite element. In
this section we will show how various finite elements are constructed /implemented
in SyFi.

0.4.1 Finite Elements in H'
The Lagrangian Element

We will describe the construction of a Lagrangian element on a 2D triangle.
The actual implementation of the element in both 1D, 2D and 3D can be
found in the class LagrangeFE.

As we saw in Section 0.3.3, the polynomial space P,, in 2D can be written on

the form
i+j<=n

N = Z aijxiyj .
i,j=0
Hence, to determine the basis functions N, we simply represented them in

abstract form,
i+j<=n
_ ki, g
N, = E a;;r'y’.
1,7=0

Then the coefficients aj; are to be determined by the (n+41)(n+2)/2 degrees
of freedom that are the nodal values at the the points x;, i.e.,

Hence, we need a set of (n + 1)(n + 2)/2 nodal points to determine the
coefficients afj for each basis function. We have chosen to use the Bezier
ordinates. When this is done, it is simply a matter of solving the linear
system

Li(Nk) = Nk(xi) = 5ik7

for each basis function Ny.

44

SyFi User Manual

Martin Alnaes and Kent-Andre Mardal

Software Component: The Lagrangian Element The Lagrangian element
is implemented as a subclass of StandardfE. The class definition is:

class LagrangeFE : public StandardFE {
public:
LagrangeFE() {}
virtual “LagrangeFE() {}

virtual void set_order(int order);
virtual void set_polygon(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();

virtual GiNaC::ex N(int 1i);

virtual GiNaC::ex dof(int i);

The Construction of the Lagrangian Element The Lagrangian element
of arbitrary order in 1D, 2D, and 3D, is implemented in LagrangeFE.cpp. The
following code is taken from fe_ex3.cpp.

ex

//
//
//
//
//
//

//
//

ex

Triangle t(1st(0,0), 1st(1,0), 1st(0,1));
int order = 2; //second order elements

polynom;

1st variables;

the polynomial spaces on the form:
first item, the polynom:

a0 + al*x + a2y + a3d*x"2 + adxxxy ...

second item, the coefficients:

a0, al, a2, ...
third item, the basis:

1, x, y, x72
Could also do:

GiNaC::ex polynom_space = bernstein(order, t,

polynom_space = pol(order, 2, "a");

uau) ;

45

SyFi User Manual Martin Alnas and Kent-Andre Mardal

ex polynom = polynom_space.op(0);

// the variables a0,al,a2 ..
variables = ex_to<lst>(polynom_space.op(1));

ex Nj;

// The Bezier ordinates in which the

// basis function should be either 0 or 1
1st points = bezier_ordinates(t,order);

// Loop over all basis functions Nj and all points.
// Each basis function Nj is determined
// by a set of linear equations:
// Nj(xi) = dirac(i,j)
// This system of equations is then solved by lsolve
for (int j=1; j <= points.nops(); j++) {
1st equations;
int i=0;
for (int i=1; i<= points.nops() ; i++) {
// The point xi
ex point = points.op(i-1);
// The equation Nj(x) = dirac(i,j)
ex eq = polynom == dirac(i,j);
// Substitute x = xi and y = yi and
// appended the equation to the list of equations
// to the list of equations
equations.append(eq.subs(lst(x point.op(0) ,
y == point.op(1))));

// We solve the linear system

ex subs = lsolve(equations, variables);
// Substitute to get the Nj

Nj = polynom.subs(subs);

cout <<"Nj "<<Nj<<endl;

46

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

In this example the degrees of freedom are very simple. It is only a matter
of evaluating the function vy in the point x; (which in GiNaC is performed
by substitution). Later we will see that more advanced degrees of freedom
are readily available since we have stored the degrees of freedom as a set of
exes.

The Crouizex-Raviart Element

The Crouizex-Raviart element [22] is the nonconforming equivalent of linear
continuous Lagrangian elements. The degrees of freedom are the values at
the midpoint of the sides, i.e.,

Li(v) = 0(Tim(e;))

where x,,(e;) is the midpoint on the edge, e;. An equivalent definition of the
degrees of freedom is,

This is the definition we will use.

Software Component: The Crouzeix-Raviart Element The Crouzeix-
Raviart class definition is similar to class defined for the Lagrangian element:

class CrouzeixRaviart : public StandardFE {
public:
CrouzeixRaviart();
virtual “CrouzeixRaviart() {}

void set_order(int order);
void set_polygon(Polygon& p);
void compute_basis_functions();
virtual int nbf();

virtual GiNaC::ex N(int 1i);
virtual GiNaC::ex dof(int i);

47

SyFi User Manual Martin Alnas and Kent-Andre Mardal

The Construction of the Crouzeix-Raviart Element The following code,
which is from the file CrouzeixRaviart.cpp, shows how this element can be
defined in 2D. The definition of the element in 3D can also be found in this
file.

Triangle triangle;

// create the polynomial space

ex polynom_space = bernstein(l, triangle, "a");
ex polynom = polynom_space.op(0);

ex variables = polynom_space.op(1);

ex basis = polynom_space.op(2);

// create the dofs

int counter = 0;

symbol t("t");

for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
ex dofi = line.integrate(polynom);
dofs.insert(dofs.end() ,dofi);

}

// solve the linear system to compute

// each of the basis functions

for (int i=1; i<= 3; i++) {
1st equations;
for (int j=1; j<= 3; j++) {

equations.append(dofs[j-1] == dirac(i,j));

}
ex sub = lsolve(equations, variables);
ex Ni = polynom.subs(sub);
Ns.insert(Ns.end(),Ni);

This element can be used in a standard fashion, (see also crouzeixraviart_ ex.cpp),

48

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

CrouzeixRaviart fe;
fe.set_order(1);
fe.set_polygon(p);
fe.compute_basis_functions();
for (int i=0; i< fe.nbf(); i++) {
cout <<"fe.N("<<i<<")="<<fe.N(i)<<endl;

3

See also the Python implementation of this element in Section 0.7.

0.4.2 Finite Elements in L2
The F, Element

The P, element consists of piecewise constants, i.e.,
’U‘T = 1,

where T is the polygon. This element is discontinuous across elements.

Software Component: The F, Element The F, element is implemented
in the class Po. The implementation is straightforward.

The Discontinuous Lagrangian Element

The discontinuous Lagrangian elements are similar to the continuous La-
grangian elements except for the fact that they are discontinuous. Hence,
locally on the polygon T, the basis functions are the same. The difference
is that discontinuous Lagrangian elements are not continuous between ele-
ments.

To exemplify this we consider the continuous and the discontinuous linear
Lagrangian elements in 2D. In Figure 6 we see that the triangles 1,...,5

49

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Figure 6: Some triangles with the common vertex V.

N

all share the common vertex V. For continuous Lagrangian elements, this
means that there will be only one degree of freedom associated with V. On
the other hand, for discontinuous Lagrangian elements, there will be one
degree of freedom associated with V' per triangle. Hence, in the concrete
case depictured in Figure 6, there will be 5 degrees of freedom associated
with V. Each degree of freedom is associated with a basis function which is
1in V, 0 in the other vertices, and zero outside the triangle.

Software Component: The discontinuous Lagrangian element The im-
plementation of the discontinuous Lagrangian element is really easy because
this element is identical to the continuous Lagrangian element locally. Hence,
the basis functions on each element is the same. We only need to modify the
degrees of freedom.

The degrees of freedom for the discontinuous Lagrangian elements are such
that for each element, each degree of freedom is new. Hence, none of degrees
of freedom are shared among elements. It is fairly easy to implement this.
Assume that the polygons in the mesh or the elements in the finite element
space are numbered. Then the degree of freedom can be represented by both
the vertex x; and the element number e associated with the polygon 7.,

Li(v) = v

7.(2i),

where v|7, means the restriction of v to the polygon 7T,. It is important to

20

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

take the restriction to 7, since v is in general discontinuous in x;.

We have implemented the discontinuous Lagrangian element as a subclass
of the continuous Lagrangian element, with an additional integer parameter
element which is the element number. The class declaration is as follows,

class DiscontinuousLagrangeFE : public LagrangeFE {
int element;
public:
DiscontinuousLagrangeFE() ;
“DiscontinuousLagrangeFE() {}

virtual void set_order(int order);

virtual void set_element_number(int element);
virtual void set_polygon(Polygon& p);

virtual void compute_basis_functions();
virtual int nbf();

virtual GiNaC::ex N(int 1i);

virtual GiNaC::ex dof(int i);

};

Earlier, the degrees of freedom for continuous Lagrangian elements were rep-
resented as vertices or points (instead of linear forms), as is usual in finite ele-
ment codes. We do the same simplification here, and store the degrees of free-
dom as (z;, €), where z; is the vertex/point and e is the element number asso-
ciated with T,. This is implemented in the functions compute basis_functions:

void DiscontinuousLagrangeFE:: compute_basis_functions() {
LagrangeFE:: compute_basis_functions();
for (int i=0; i< dofs.size(); i++) {
dofs[i] = lst(dofs[i], element);
}

3

The usage is standard (see disconlagrange_ex.cpp)7

o1

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Dof dof;

// create two triangles

Triangle t1(1st(0,0), 1st(1,0), 1st(0,1));
Triangle t2(1st(1,1), 1st(1,0), 1st(0,1));

int order = 2;

DiscontinuousLagrangeFE fe;
fe.set_order(order);
fe.set_polygon(tl);
fe.set_element_number(1l);
fe.compute_basis_functions();
usage(fe);
for (int i=0; i< fe.nbf(); i++) {
dof.insert_dof(1,i,fe.dof(i));
}

fe.set_polygon(t2);

fe.set_element_number(2);

fe.compute_basis_functions();

usage(fe);

for (int i=0; i< fe.nbf(); i++) {
dof.insert_dof(2,i,fe.dof(i));

}

// Print out the global degrees of freedom an their
// corresponding local degrees of freedom
vector<pair<int,int> > vec;
pair<int,int> index;
ex exdof;
for (int i=1; i<= dof.size(); i++) {
exdof = dof.glob_dof(i);
vec = dof.glob2loc(i);
cout <<"global dof " <<i<<" dof "<<exdof<<endl;
for (int j=0; j<vec.size(); j++) {
index = vec[j];
cout <<" element "<<index.first<<

02

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

" local dof "<<index.second<<endl;

When this program (disconlagrange) runs, it prints out 12 degrees of freedom
in contrast to 9 which it would be for continuous Lagrangian elements.

0.4.3 Finite Elements in H(div)
The Raviart-Thomas Element

The family of Raviart-Thomas elements [28] is popular when considering the
mixed formulation of elliptic problems. In this case the polynomial space is
not P4, but

P¢ 4 xP,,. (35)
And the degrees of freedom are,
/ VNP dS, ka S Pk(ei)7 (36>
[vepide, vp e @) (37
T

where 7' is the polygon domain and e; is its edges (in 2D) or faces (in 3D).
Degrees of freedom which are integrals have been dealt with already for the
Crouizex-Raviart element in Section 0.4.1. Hence, there are mainly two new
concepts we need to deal with to implement this element. It is the polynomial
space, which is on the form (35), and the polynomial spaces on faces or edges
of the polygon, as in (36). Both concepts will be dealt with below.

Software Component: The Raviart-Thomas Element Notice that for
the previously defined Lagrangian and Crouizex-Raviart elements, the basis
functions were scalar functions. The basis functions of the Raviart-Thomas
elements are vector functions, but still, thanks to the general ex class, the
Raviart-Thomas element class can be defined in the same way as earlier. The
class definition is:

23

SyFi User Manual Martin Alnas and Kent-Andre Mardal

class RaviartThomas : public StandardFE {
public:
RaviartThomas() {}
virtual “RaviartThomas() {}

virtual void set_order(int order);
virtual void set_polygon(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();

virtual GiNaC::ex N(int 1i);

virtual GiNaC::ex dof(int 1i);

The Construction of the Raviart-Thomas Element First, we described
how to make the polynomial space (35). The polynomial spaces, P,,(T") and
P4(T) on a polygonal domain, can be made by the functions bernstein and
bernsteinv, respectively. However, we can not just add the spaces P4(T) and
xP, (T) together. Because, some of the basis functions are the same in both
space, while others are not. Consider for instance P¢(T'), which has the basis
functions,

(0, 1), (1,0)7, (z,0)", (0,2)", (5, 0)", (0,5)"
while xIP; (K) has the following basis functions

(2,0)", (@%,0)", (z)", (0,)", (0,5%)", (0, 2y)".

Hence (x,0)” and (0,y)” are common.

The way we solve this problem is that we create the two spaces P%(T) and
xP, (T) independently. We then have two polynomial spaces, each with two
independent sets of variables (or degrees of freedom). The variables associ-
ated with a basis in xIP,,(T) which is also a basis in P4(T") is then removed.
This is done by removing all variables associated with basis functions that
have degree less than n — 1 in P, from xP, (7). This is done as follows
in 2D (both 2D and 3D elements of arbitrary order are implemented in
RaviartThomas. cpp),

o4

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Triangle& triangle = (Triangle&) (*p);

1st equations;

1st variables;

ex polynom_spacel = bernstein(order-1, triangle, "a");
ex polynoml = polynom_spacel.op(0);

ex polynoml_vars = polynom_spacel.op(l);

ex polynoml_basis = polynom_spacel.op(2);

1st polynom_space2 = bernsteinv(order-1, triangle, "b");
ex polynom2 = polynom_space2.op(0).op(0);
ex polynom3 = polynom_space2.op(0).op(1);

1st pspace = lst(polynom2 + polynoml*x,
polynom3 + polynomlx*y);

// remove multiple dofs
if (order >= 2) {
ex expanded_pol = expand(polynoml);
for (int c1=0; cl<= order-2;cl++) {
for (int c2=0; c2<= order-2;c2++) {
for (int c¢3=0; c3<= order-2;c3++) {
if (¢l + c2 + c3 <= order -2) {
ex eq = expanded_pol.coeff(x,cl)
.coeff(y,c2).coeff(z,c3);
if (eq !'= numeric(0)) {
equations.append(eq == 0);

Second, we described how to implement the degrees of freedom (36)-(37).

25

SyFi User Manual Martin Alnas and Kent-Andre Mardal

The degrees of freedom associated with the edges,
/ v -npgds,Vp, € Pr(e;),

are implemented as follows (Notice that the polynomial space on the edges of
the triangle is made by creating Bernstein polynomials in standard fashion).

ex bernstein_pol;

int counter = 0;
symbol t("t");
ex dofi;
// loop over all edges
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
1st normal_vec = normal(triangle, 1i);
bernstein_pol = bernstein(order-1, line, istr("a",i));
ex basis_space = bernstein_pol.op(2);
ex pspace_n = inner(pspace, normal_vec);

// loop over all basis functions on current edge
ex basis;
for (int i=0; i< basis_space.nops(); i++) {
counter++;
basis = basis_space.op(i);
ex integrand = pspace_n*basis;

dofi = 1line.integrate(integrand);
dofs.insert(dofs.end(), dofi);
ex eq = dofi == numeric(0);

equations.append(eq);

The degrees of freedom associated with the whole triangle,

/ v prorda, Vpg oy € PE(T),
T

26

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

is implemented as

// dofs related to the whole triangle
1st bernstein_polv;
if (order > 1) {
counter++;
bernstein_polv = bernsteinv(order-2, triangle, "a");
ex basis_space = bernstein_polv.op(2);
for (int i=0; i< basis_space.nops(); i++) {
1st basis = ex_to<lst>(basis_space.op(i));
ex integrand = inner(pspace, basis);
dofi = triangle.integrate(integrand);
dofs.insert(dofs.end(), dofi);
ex eq = dofi == numeric(0);
equations.append(eq);

In the above code we have formed the linear system,

To compute the different v; we then produce different right hand sides cor-
responding to d;; and solve the system. How this is done can be seen in the
RaviartThomas. cpp.

The Nedelec element of second kind

The Nedelec H(div) element introduced in [27], is very similar to the Raviart-
Thomas element, except that the polynomial space is P? instead of P4 +xIP,,.
Hence, it is the R? analog of the Brezzi-Douglas-Marini element [20]. The
degrees of freedom in the Nedelec H(div) element are,

/f (p-m)ds, VgePy(f),

/(p-q)dx, Vq € Ri_1.
K

27

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Here

Rk = (Pifl) ®Sk7
S* = {peH]| (r-p)=0},

where r = (z,v, 2).

Software Component: The Nedelec H(div) Element The Nedelec H(div)
element class definition is similar to the previous element definitions.

class Nedelec2Hdiv : public StandardfFE {
public:
Nedelec2Hdiv() {}
virtual “Nedelec2Hdiv() {}

virtual void set_order(int order);
virtual void set_polygon(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();

virtual GiNaC::ex N(int 1i);

virtual GiNaC::ex dof(int 1i);

The Construction of the Nedelec H(div) Element The construction of
this element is very similar to the construction of the Raviart-Thomas ele-
ment. We will therefore not discuss this here.

0.4.4 Finite Elements in H(div, M)

The Arnold, Falk and Winther element [17] for mixed elasticity problems
in 3D with weak symmetry, has recently been added to SyFi. This element
consists of basis functions which take values in M, which is the space of 3 x 3
matrices. Each row is either a null row or the Nedelec H(div) element of

o8

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

second kind as described in Section 0.4.3. The implementation is straight-
forward, since it is essentially a loop where each row is created as the basis
functions a Nedelec element. We therefore do not comment the implementa-
tion details here. The finite element is defined in ArnoldFalkWintherWeakSym.h.

0.4.5 A Finite Element in Both H(div) and H'

In [25] an element for both Darcy and Stokes types of flow was introduced.
The element is defined as:

V(T)={veP; : divvePy, (v-n,)|. € P, Ve c BE(T)},
where T' is a given triangle, F(7') is the edges of T', n. is the normal vec-

tor on edge e, and P, is the space of polynomials of degree k& and P{ the
corresponding vector space. The degrees of freedom are,

/(V~Il)7'kd7', k=01, Ve € E(T),
/(V-t)dT, Ve € E(T).

This element is implemented as follows (see also the PARAO6 proceeding
../para06/proceeding/para proceeding.pdf). First we create the polynomial
space, which consist of cubic vector functions, P

Triangle triangle

ex V_space = bernsteinv(2, 3, triangle, "a");
ex V_polynomial = V_space.op(0);

ex V_variables = V_space.op(1);

Here v_space is the above mentioned list, V_polynomial contains the polyno-
mial, and V_variables contains the variables.

In the second step we first specify the constraint divv € Py:

29

SyFi User Manual Martin Alnas and Kent-Andre Mardal

1st equatiomns;
ex divV = div(V);
ex_ex_map b2c = pol2basisandcoeff (divV);
ex_ex_it iter;
// div constraints:
for (iter = b2c.begin(); iter != b2c.end(); iter++) {
ex basis = (xiter) .first;
ex coeff= (xiter).second;
if (coeff != 0 & (basis.degree(x) > 0
|| basis.degree(y) > 0)) {
equations.append(coeff == 0);

3

Here, the divergence is computed with the div function. The divergence of a
function in P2 is in Py. Hence, it is on the form by+b z+boy+bzry+byr?+bsy>.
In the above code we find the coefficients b;, as expressions involving the
above mentioned variables a; and the corresponding polynomial basis, with
the function pol2basisandcoeff. Then we ensure that the only coefficient
which is not zero is bg.

The next constraints (v-n.)|. € P; are implemented in much of the same way
as the divergence constraint. We create a loop over each edge e of the triangle
and multiply v with the normal n.. Then we substitute the expression for
the edge, i.e., in mathematical notation |, into v - n. After substituting
the expression for these lines to get (v - n.)|. , we check that the remaining
polynomial is in Py in the same way as we did above.

// constraints on edges:
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
symbol s("s");
1st normal_vec = normal(triangle, 1i);
ex Vn = inner(V, normal_vec);
Vn = Vn.subs(line.repr(s).op(0))

60

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

.subs(line.repr(s).op(1));
b2c = pol2basisandcoeff(Vn,s);
for (iter = b2c.begin(); iter != b2c.end(); iter++){
ex basis = (*xiter).first;
ex coeff= (*iter).second;
if (coeff != 0 && basis.degree(s) > 1)
{

equations.append(coeff == 0);

In the third step we specify the degrees of freedom. First, we specify the
equations coming from fe(v -n)78 k = 0,1 on all edges. To do this we need
to create a loop over all edges, and on each edge we create the space of linear
Bernstein polynomials in barycentric coordinates on e, i.e., Pi(e). Then we
create a loop over the basis functions 7% in P;(e) and compute the integral
[.(v-n)rhdr.

// dofs related to the normal on the edges
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
1st normal_vec = normal(triangle, 1i);
ex P1_space = bernstein(l, line, istr("a",i));
ex P1 = P1_space.op(2);
ex Vn = inner(V, normal_vec);

ex basis;

for (int j=0; j< Pl.nops(); j++) {
basis = Pl.op(j);
ex integrand = Vnxbasis;
ex dofi = line.integrate(integrand);
dofs.insert(dofs.end(), 1lst(line.vertex(0),

line.vertex(1), j));

ex eq = dofi == numeric(0);
equations.append(eq);

61

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Finally, the degrees of freedom fe(v~t)d7, can be implemented in basically the
same fashion as the previously described degrees of freedom To summarize,
we have now specified 20 equations which is precisely the number of unknowns
in P2. Hence, the space V(T) is uniquely defined, what remains is simply
to solve a linear system with 20 equations and 20 unknowns. The complete
source code is in Robust.cpp.

0.4.6 Finite Elements in H(curl)
The Nedelec Element

In electromagnetic applications, [26] the family of Nedelec elements are very
common. As was also the case with the Raviart-Thomas elements, P" is not
the most convenient space to define the basis functions. Instead, we will use

]P)i—l + Hka (38)

where
H*=heH{:h-x=0

and H is the space of homogenous polynomials described in Section 0.3.3.
The degrees of freedom that defines the Nedelec elements are (in 2D),

/t -updz, Vp e Pr_q(e), (39)

/ u-pdr, VpelP; ,(T). (40)
T

Software Component: The Nedelec Element The Nedelec element class
definition is similar to the previous element definitions.

62

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

class Nedelec : public StandardfFE {
public:
Nedelec() {}
virtual “Nedelec() {}

virtual void set_order(int order);
virtual void set_polygon(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();

virtual GiNaC::ex N(int 1i);

virtual GiNaC::ex dof(int i);

The Construction of the Nedelec Element The Nedelec element of arbi-
trary order in both 2D and 3D is implemented in Nedelec.cpp. Here we will

for simplicity describe how the element is implemented in 2D.

We first consider the polynomial space (38),

// create r

GiNaC::ex R_k = homogenous_polv(2,k+1, 2, "a");
GiNaC::ex R_k_x = R_k.op(0).op(0);

GiNaC::ex R_k_y = R_k.op(0).op(1);

// Equations that make sure that r*x = 0
GiNaC::ex rx = (R_k_x*x + R_k_y*y).expand();
ex_ex_map pol_map = pol2basisandcoeff (rx);
ex_ex_it iter;
for (iter = pol_map.begin();
iter != pol_map.end(); iter++) {
if ((xiter).second != 0) {
equations.append((*iter).second == 0);
removed_dofs++;

3

63

SyFi User Manual Martin Alnas and Kent-Andre Mardal

The degree of freedom associated with the edges (39) are implemented as,

GiNaC: :ex dofi;

// dofs related to edges

for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
GiNaC::1st tangent_vec = tangent(triangle, 1i);
GiNaC::ex bernstein_pol = bernstein(order, line,

istr("a",i));

GiNaC::ex basis_space = bernstein_pol.op(2);
GiNaC::ex pspace_t = inner(pspace, tangent_vec);

GiNaC: :ex basis;

for (int j=0; j< basis_space.nops(); j++) {
counter++;
basis = basis_space.op(j);
GiNaC::ex integrand = pspace_t*basis;
dofi = line.integrate(integrand);
dofs.insert(dofs.end(), dofi);
GiNaC::ex eq = dofi == GiNaC::numeric(0);
equations.append(eq);

The degree of freedom associated with whole triangle (40) are implemented
as,

// dofs related to the whole triangle
GiNaC::1st bernstein_polv;
if (order > 0) {

counter++;

64

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

bernstein_polv = bernsteinv(2,order-1, triangle, "a");
GiNaC::ex basis_space = bernstein_polv.op(2);
for (int i=0; i< basis_space.nops(); i++) {
GiNaC: :1lst basis = GiNaC::ex_to<GiNaC::1st> (
basis_space.op(i));
GiNaC::ex integrand = inner(pspace, basis);
dofi = triangle.integrate(integrand);
dofs.insert(dofs.end(), dofi);
GiNaC::ex eq = dofi == GiNaC: :numeric(0);
equations.append(eq);

0.5 Mixed Finite Elements

Mixed finite element methods typically refer to discretization methods for
systems of PDEs where different finite elements are used for the different
unknowns. For instance, in incompressible flow problems, one typically has
(at least) two unknowns, the velocity v and the pressure p. It is wellknown
that the velocity elements should have higher order than the pressure ele-
ments. The reasons for this have been extensively studied the last 30 years,
and we will not go into details on this here, see e.g., Brezzi and Fortin [19]
and Girault and Raviart[23].

What we will do here is to describe mixed finite elements from the program-
mers point of view. In this setting, we simply refer to mixed elements as
a collection of finite elements of different types on the same polygon. The
elements themselves and their implementation were discussed in the previous
section.

65

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.5.1 The Taylor-Hood and the P! — P, , Elements

The Taylor-Hood and the P4 — P,,_, elements are mixed elements that are
popular for incompressible flow. The elements for both the velocity and the
pressure are of Lagrangian type, but have different order. The Taylor-Hood
element on a polygon T is,

v(T)e P4 and p(T) € P,
The P, — P, _5 element on a polygon T is,
v(T)€eP? and p(T)€P, 5, n>2.

For n > 2 the pressure element is of Lagrangian type, while for n=2 the
pressure element is piecewise constant. These elements satisfy the Babuska-
Brezzi condition.

The Taylor-Hood elements can be created as follows, (see also taylorhood ex.cpp)

VectorLagrangeFE v_fe;
v_fe.set_order(2);
v_fe.set_size(2);
v_fe.set_polygon(domain) ;
v_fe.compute_basis_functions();

LagrangeFE p_fe;
p_fe.set_order(1);
p_fe.set_polygon(domain) ;
p_fe.compute_basis_functions();

The P4 — P, _, element can be made by changing the order of the elements
with the set function.

0.5.2 The Mixed Crouizex-Raviart Element

The mixed Crouizex-Raviart element is a nonconforming linear element for
the velocity and piecewise constant for the pressure. The Crouizex-Raviart

66

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

element was described in Section 0.4.1, while the P, element was described
in Section 0.4.2.

These elements can be made as follows (see also crouzeixraviart_ex2.cpp)

ReferenceTriangle domain;

VectorCrouzeixRaviart v_fe;
v_fe.set_size(2);
v_fe.set_polygon(domain) ;
v_fe.compute_basis_functions();

PO p_fe;
p_fe.set_polygon(domain) ;
p_fe.compute_basis_functions();

0.5.3 The Mixed Raviart-Thomas Element

The velocity element is the Raviart-Thomas element described in Section
0.4.3. The pressure element is discontinuous polynomials of degree n. The
Py element is described in Section 0.4.2, while the discontinuous P,, element
is described in Section 0.4.2.

The can be made as such (see also raviartthomas ex2):

int order = 3;

ReferenceTriangle triangle("t");
RaviartThomas vfe;
vfe.set_polygon(triangle);
vfe.set_order(order) ;
vfe.compute_basis_functions();

DiscontinuouslLagrangeFE pfe;

67

SyFi User Manual Martin Alnas and Kent-Andre Mardal

pfe.set_polygon(triangle);
pfe.set_order(order) ;
pfe.compute_basis_functions();

for (int i=0; i< vfe.nbf(); i++)
cout <<"vfe.N("<<i<<")="<<yfe.N(i)<<endl;

for (int i=0; i< pfe.nbf(); i++)
cout <<"pfe.N("<<i<<")="<<pfe.N(i)<<endl;

0.5.4 The Mixed Arnold-Falk-Winther element

The mixed method of Arnold, Falk and Winther [17] for mixed elasticity
problems in 3D, with weakly imposed symmetry consists of three different
elements oy, € H(div,M), w, € L*(V), ps € L*(K), where M is the space of
3 x 3 matrices, V is the space of vectors in R?, and K is the space of 3 x 3
skew symmetric matrices. The o), element, described in Section 0.4.4, is
implemented as ArnoldFalkWintherWeakSymSigma. The u; element is a discon-
tinuous Galerkin vector element implemented as ArnoldFalkWintherWeakSymU.
Finally, the p; element is a discontinuous Galerkin skew symmetric matrix
element implemented as ArnoldFalkWintherWeakSymP. The implementation of
both ArnoldFalkWintherWeakSymU and ArnoldFalkWintherWeakSymP is straightfor-
ward since the code is essentially a wrap around the discontinuous Lagrangian
element described in Section 0.4.2 and we will not comment on the imple-
mentation details. The code can is in ArnoldFalkWintherWeakSym. cpp.

0.6 Computing Element Matrices

Our next task is to compute element matrices. As earlier, everything will
be done symbolically. There are several reasons for doing the computations
symbolically:

e Everything is exact (No floating point precision issues)!

68

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

e Differentiation of the weak form with respect to the variables is possible
(Easy to compute the Jacobian for nonlinear PDEs).

e In case one uses integers and rational numbers as input (e.g., the ver-
tices of the polygon) one gets rational numbers as output. This enables
nice output.

e In case one uses symbols as input, one get symbols as output. Hence,
one might actually compute an abstract element matrix, where each en-
try in the matrix is a function of the vertices of the polygon, x¢, X1, ..., X,,
which are symbols. We will consider this in more detail later.

e Every step can be checked against analytic computations. We can even,
as we will see, produce output in IXTEX format, for easy reading.

e In Section 0.8 we generate C+-+ code from the exactly computed ele-
ment matrices.

0.6.1 A Poisson Problem

The Poisson problem is on the form,

—Au = f, inQ,
u = h, ondQg,

ou
% = 9, on aQN)

where 0€) = 00 U 0Qy.

The weak form of the Poisson problem is (as we have already used): Find
u € Vj, such that
a(u,v) = b(v), Yvel.

where,

a(u,v) = /Vu-Vvdx,
Q

flv) = /foud:c—i—/FNgvds.

69

SyFi User Manual Martin Alnas and Kent-Andre Mardal

and V;, = v € H';v|gq, = k, for k=0, h.

From this weak form we obtain the element matrix, see e.g., Brenner and
Scott [18], Ciarlet [21], or Langtangen [24],

T

The computation of (41) is implemented in the function compute Poisson element matrix
in ElementComputations.cpp,

void compute_Poisson_element_matrix(
FE& fe,
Dof& dof,
std::map<std::pair<int,int>, ex>& A)
{

std::pair<int,int> index;

// Insert the local degrees of freedom into the global Dof

for (int i=0; i< fe.nbf(); i++) {
dof.insert_dof(1,i,fe.dof(i));

}

Polygon& domain = fe.get_polygon();

// The term (grad u, grad v)
for (int i=0; i< fe.nbf(); i++) {
index.first = dof.glob_dof (fe.dof(i)); // fetch the i’th
// global dof
for (int j=0; j< fe.nbf(); j++) {
index.second = dof.glob_dof(fe.dof(j));// fetch the j’th
// global dof

ex nabla = inner(grad(fe.N(i)), // compute the
grad(fe.N(j))); // integrand

ex Aij = domain.integrate(nabla); // compute integral

Alindex] += Aij; // add to matrix

+
}

70

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

3

Notice that in this example, both the degrees of freedom dof and the matrix
A are global.

This function can be used as follows (see fe_ex4.cpp),

//matrix in terms of rational numbers

int order = 1;

Triangle triangle(1st(0,0), 1st(1,0), 1st(0,1));
LagrangeFE fe;

fe.set_order(order) ;

fe.set_polygon(triangle);
fe.compute_basis_functions();

Dof dof;
std: :map<std::pair<int,int>, ex> A;
compute_Poisson_element_matrix(fe, dof, A);

In the above example, the vertices were integers, therefore the entries in the
matrix will be rational numbers. In the following example the vertices are
symbols.

//matrix in terms of symbols

symbol x0("x0"), x1("x1"), x2("x2");

symbol yO("y0"), y1("y1"), y2("y2");

Triangle triangle2(lst(x0,y0), lst(xl,yl), 1lst(x2,y2));

LagrangeFE fe2;

fe2.set_order (order) ;
fe2.set_polygon(triangle?2);
fe2.compute_basis_functions();

Dof dof2;

71

SyFi User Manual Martin Alnas and Kent-Andre Mardal

std: :map<std::pair<int,int>, ex> A2;
compute_Poisson_element_matrix(fe2, dof2, A2);

In this case A2 will contain expressions involving the vertices, (zo, yo), (1, y1),
(z2,y2) (we used a triangle above).

The GiNaC library supports many different ways to print out the output.
In the example below, we turn on KIEX output with the command cout
<<latex; before we print out A2.

cout <<"LaTeX format on output "<<endl;
cout <<latex;
print (A2);

This gives the following expression (compiled by latex) for A[l, 1] (code for
the other entries are also produced, but these are not shown here).

Lag|(—2o + 21)(y2 — ¥o) — (=0 + 22)(y1 — %)
2 (=y1o — Toy2 + Yoo + Yot + Toy1 — yo%’l)2
_ y1yol(=20 + 21)(y2 — yo) — (=m0 + 22)(y1 — Yo)|
(—y172 — Toy2 + YoTo + Yo1 + Toy1 — y09€1)2
+}y3\(—$0 +21) (Y2 — yo) — (=20 + 22)(y1 — o)
2 (=y122 — oYz + YoTa + Yoy + Loy — yo«%’l)z
_Zo|(=20 + ®1) (Y2 — yo) — (=0 + 22)(y1 — yo)|21
(—y172 — oY + YoT2 + Yor1 + Toy1 — yo«%’l)2
L[(=20 + 21)(y2 — ¥o) — (=20 + 22) (1 — yo) |27
2 (=12 — ToY2 + Yoo + Y21 + Toy1 — yof701)2
+}y%\(—$o +21) (Y2 — yo) — (=20 + 22)(y1 — o)
2 (=y122 — oYz + YoTa + Yoy + Loy — yo«%’l)z

A[L,1] =

We can also print out C code,

cout <<"C code format on output "<<endl;

72

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

cout <<csrc;
print (A2);

Then the following code for A[l, 1] is produced,

Al1,1]=(x0%*x0) /pow (-y1*x2-x0*y2+y0*x2+y2*x 1+x0*y1-y0*x1,2.0)
xfabs ((-x0+x1) (y2-y0) - (-x0+x2) *(y1-y0)) /2.0

-y1/pow (-y1*x2-x0%y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0) *y0

*fabs ((-x0+x1) * (y2-y0) - (-x0+x2) * (y1-y0))

+1.0/pow (~y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0) * (y0*y0)
*xfabs ((-x0+x1) * (y2-y0) - (-x0+x2) *(y1-y0)) /2.0

-x0/pow (-y1*x2-x0%y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)

*xfabs ((-x0+x1) * (y2-y0) - (-x0+x2) * (y1-y0)) *x1

+1.0/pow (-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1l-y0*x1,2.0)

*xfabs ((-x0+x1) * (y2-y0)

- (-x0+x2) * (y1-y0)) * (x1*x1) /2.0+(y1*y1)

/pow (-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1l-y0*x1,2.0)

*xfabs ((-x0+x1) * (y2-y0) - (-x0+x2) *(y1-y0)) /2.0

As is clear, these expressions can be rather large. GiNaC does not, by de-
fault, try to simplify these expressions. However, the above expressions is
composed of smaller expressions that appear many times and it is possi-
ble to simplify these expressions fairly easy. For instance, the expression
(9120 — Toya + Yoo + Yot + Toyy — Yox1)” appears at least six times (and
this is only in A[1,1]). Of course, this expression should be computed only
once. It seems that GiNaC has powerful tools for expression three traver-
sal that could enable generation of efficient code based on finding common
sub-expressions, but we have not exploited these tools to a great extent yet.
Some example code can be found in check_visitor.cpp in the sandbox.

73

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.6.2 A Poisson Problem on Mixed Form

The Poisson problem can also be written on mixed form,
u—Vp = 0, in,
V-u = f, inQ,
u-n = g, onJdQy,

pn = hn on JQg.

Notice that essential boundary conditions for the Poisson problem on stan-
dard form become natural conditions for the Poisson problem on mixed form
and vice versa.

The weak form of the Poisson problem on mixed form is: Findu € Vg, p € Q
such that

a(u,v)+b(v,p) = G(v), VveV, (42)
b(u,q) = Flq), Vqe@, (43)

where

a(u,v) = /Qu~vd:c, (44)

b(u,q) = /QV -ugqdz, (45)
F(q) = qudx, (46)
G(v) = / hn-vds (47)

Viy=veH(div):v-nlsn, =k k=0,g.
H(div)=velL?*:V-ve L’
Q:{ L2 if 90y = 0,

L? else.

The function compute mixed Poisson_element matrix in ElementComputations.cpp
computes the element matrix for the mixed Poisson problem. We will not
comment or list the code here because it is very similar to the code described
in the next section. An example of use is in mxpoisson_ex.cpp.

74

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

0.6.3 A Stokes Problem

The Stokes problem is on the form: Find u and p such that

—Au+Vp = f, in{,

V-u = 0, inQ,
u = g, ondg,
8_u —pn = h, on Jd¥y.
on

The weak form for the Stokes problem is: Find u € Vg, p € @ such that

a(u,v) +b(v,p) = F(v), Vv e Vy,
b(u,q) = 0, Vge@,

where

a(u,v) = /Vu:Vvdx,
Q

b(u,q) = —/V-uqda:,
Q

F(q) = /f-vdx+/ h-vds,
Q Qn

Vk:VEHl:V‘aQE:ka k:O7g7
Q= Lg if 0Qr = 09,
L? else.

Notice that we have multiplied the equation for the mass conservation, V-u =
0, with —1 to obtain symmetry.

The function compute_Stokes_element matrix in ElementComputationsimplements
the computation of an element matrix for the Stokes problem. The code is
shown below.

void compute_Stokes_element_matrix(
FE& v_fe,
FE& p_fe,
Dof& dof,
std: :map<std::pair<int,int>, ex>& A)

75

SyFi User Manual Martin Alnas and Kent-Andre Mardal

std::pair<int,int> index;
std::pair<int,int> index2;

Polygon& domain = v_fe.get_polygon();

// Insert the local degrees of freedom into the global Dof
for (int i=0; i< v_fe.nbf(); i++) {
dof.insert_dof(1,i,v_fe.dof(i));
}
for (int i=0; i< p_fe.nbf(); i++) {
dof .insert_dof (1,v_fe.nbf O +i,p_fe.dof(i));
}

// The term (grad u, grad v)
for (int i=0; i< v_fe.nbf(); i++) {
index.first = dof.glob_dof(v_fe.dof(i)); // fetch the dof for v_i
for (int j=0; j< v_fe.nbf(); j++) {
index.second = dof.glob_dof(v_fe.dof(j));// fetch the dof for v_j
GiNaC: :ex nabla = inner(grad(v_fe.N(i)),
grad(v_fe.N(j)));// compute the integrand
GiNaC::ex Aij = domain.integrate(nabla); // compute the integral
Alindex] += Aij; // add to global matrix
}
}

// The term (-div u, q)
for (int i=0; i< p_fe.nbf(); i++) {
index.first = dof.glob_dof(p_fe.dof(i)); // fetch the dof for p_i
for (int j=1; j< v_fe.nbf(); j++) {
index.second=dof.glob_dof(v_fe.dof(j)); // fetch the dof for v_j

ex divV= -p_fe.N(i)*div(v_fe.N(j)); // compute the integrand
ex Aij = domain.integrate(divV); // compute the integral
Alindex] += Aij; // add to global matrix

// Do not need to compute the term (grad(p),v), since the system is
// symmetric. We simply set Aji = Aij

index2.first = index.second;

index2.second = index.first;

Alindex2] -= Aij;

76

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

0.6.4 A Nonlinear Convection Diffusion Problem

Our next example concerns a nonlinear convection diffusion equation, where
we compute the element matrix for the Jacobian typically arising in a Newton
iteration. Let the PDE be,

(u-Viu—Au = f, in{, (48)
u = g, ondl (49)

This can be stated on weak form as: Find u € V, such that
F(u,v) =0, Vv e Vy,

where

F(u,v) = /(u-Vu)~vdx+/Vu:Vvdx—/f~vdx
Q Q

Q

and
Vk:VEHliv‘aQ:k, k=0,g.

The Jacobian is obtained by letting u =u=>_ ; 4N, v =N; and differen-
tiating F with respect to u;,

L, _OF(@N)
E an ’

This is precisely the way it is done with SyFi, (see also nljacobian ex.cpp),

void compute_nlconvdiff_element_matrix(
FE& fe,
Dof& dof,
std: :map<std::pair<int,int>, ex>& A)

std::pair<int,int> index;
Polygon& domain = fe.get_polygon();

// insert the local dofs into the global Dof object
for (int i=0; i< fe.nbf() ; i++) {

dof .insert_dof(1,i,fe.dof(i));
}

7

SyFi User Manual

Martin Alnaes and Kent-Andre Mardal

// create the local U field: U = sum_k u_k N_k

ex UU = matrix(2,1,1st(0,0));

ex ujs = symbolic_matrix(l,fe.nbf(), "u");

for (int k=0; k< fe.nbf(); k++) {

UU +=ujs.op(k)*fe.N(k); // U += u_k N_k

}

//Get U represented as a matrix
matrix U = ex_to<matrix>(UU.evalm());

for (int i=0; i< fe.nbf() ; i++) {

index.first = dof.glob_dof(fe.dof(i));

// First: the diffusion term in Fi
ex gradU = grad(U);
ex Fi_diffusion = inner(gradU,

grad(fe.N(i)));

// Second: the convection term in Fi

ex Ut = U.transpose();
ex UgradU = (Ut*gradU).evalm();

ex Fi_convection = inner (UgradU, fe.N(i),

true) ;

// fetch global dof

// compute the gradient
// grad(U)*grad(Ni)

// get the transposed of U
// compute Uxgrad(U)
// compute Uxgrad(U)*Ni

// add together terms for convection and diffusion

ex Fi = Fi_convection + Fi_diffusion;

// Loop over all uj and differentiate Fi with respect

// to uj to get the Jacobian Jij
for (int j=0; j< fe.nbf() ; j++) {

index.second = dof.glob_dof (fe.dof(j));
symbol uj = ex_to<symbol>(ujs.op(j)); //

ex Jij = Fi.diff(uj,1);
ex Aij = domain.integrate(Jij);
Alindex] += Aij;

//
//
//

// fetch global dof
cast uj to a symbol
differentiate Fi wrt. uj
intergrate the Jacobian Ji]
update the global matrix

Running the example nljacobian ex, which employs second order continuous

78

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Lagrangian elements, yields the following output for A[1, 1],

2 2 1 13 1

1
A1 = = 4 g+ oty + gy — —— 50
[1,1] 5 T 105" T 105 T 212390 T 2801 (50)
1 R 1 651

210 7 98051400 T 210" T 1a0™*

We have used GiNaC to generate the EXTEXcode, as described on Page 72.

0.6.5 Expression Simplification

When generating expressions for complicated forms, and specially non-linear
forms, there is much room for optimization of the resulting expressions to
generate more efficient code. Generating optimal code for the computation
of a large symbolic expression is a very difficult problem, and the underlying
symbolic engine in GiNaC has limited support for this. However, GiNaC
has many of the building blocks to perform this optimization. We have im-
plemented a basic algorithm to simplify general expressions, which generates
helper variables for basic binary operations that are repeated. The algorithm
is very simple, and the resulting speedup (in the tests) ranges from a fac-
tor four to slightly negative. Obviously more work is needed in this area to
make this usable. The current expression simplifier can be tested by run-
ning "make simplify && ./simplify v” under tests/. A basic code example is
shown below.

ExpressionSimplifier es;
es.add(e_symbol, e_expression);
es.add(f_symbol, f_expression);
es.simplify();

list< pair< symbol, ex > > & selist =
es.get_output () .get_symex_list();
genCodeSymbols(cout, selist);

79

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.7 Python Support

SyFi comes with Python support. The SyFi Python module is created by
using the tool SWIG (http://www.swig.org). One should also install the
Python interface to GiNaC called Swiginac (http://swiginac.berlios.de/).

The following code shows how Swiginac can be used (see also simple.py),

from swiginac import x*

X
y

symbol ("x")
symbol("y")

f = sin(x)

print "f =", £

dfdx = diff(f,x)
print "dfdx = ", dfdx

SyFi classes and functions can be used in Python just as they are used in
C++. The following example shows how to compute the element matrix for
a Poisson problem using forth order Lagrangian elements,

from swiginac import *
from SyFi import *

po0 = [0,0,0]; pt1 = [1,0,0]; p2 = [0,1,0]
triangle = Triangle(pO, pl, p2)
fe = LagrangeFE(triangle,4)
print fe.nbf()
for i in range(0,fe.nbf()):
for j in range(0,fe.nbf()):
integrand = inner(grad(fe.N(i)),grad(fe.N(j)))
Aij = triangle.integrate(integrand)
print "A(%d,%d)="%(i,j), Aij.eval()

80

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Finally, we show a Python implementation of the Crouizex-Raviart element
(The C++ implementation can be found in the file CrouzeixRaviart.cpp). No-
tice that in this code we inherit the functions ex N(int i) and ex dof(int i)
and the exvectors Ns and dofs from the C++ class StandardfE. Hence, thanks
to SWIG, cross-language inheritance works, and we therefore only need to
implement the function compute basis_functions. The following example is
implemented in crouzeixraviart.py.

from swiginac import x*
from SyFi import *

X = cvar.x; y = cvar.y; z = cvar.z # fetch global variables

class CrouzeixRaviart(StandardFE) :
nmn
Python implementation of the Crouzeix-Raviart element.
The corresponding C++ implementation is in the
file CrouzeixRaviart.cpp.

Notice that cross-language inheritance works!
The functions (used below)

ex N(int i)

ex dof (int i)
and the exvectors Ns and dofs are inherited from
the C++ class StandardFE.

nmmnn

def __init__(self):

nmnn Constructor nmnn
StandardFE.__init__(self)

def compute_basis_functions(self):
nmnn
Compute the basis functions and degrees of freedom
and put them in Ns and dofs, respectively.

nmmnn

polspace = bernstein(l,triangle,"a"

81

SyFi User Manual Martin Alnas and Kent-Andre Mardal

N = polspace[0]
variables = polspace[1]

for i in range(0,3):
line = triangle.line(i+1)
dofi = line.integrate(N)
self.dofs.append(dofi)

for i in range(0,3):
equations = []
for j in range(0,3):
equations.append(relational (self.dofs[j], dirac(i,j)))
sub = lsolve(equations, variables)
Ni = N.subs(sub)
self.Ns.append(Ni) ;

p0 = [0,0,0]; pl = [1,0,0]; p2 = [0,1,0];
triangle = Triangle(pO, pl, p2)

fe = CrouzeixRaviart()
fe.set_polygon(triangle)

fe.compute_basis_functions()
for i in range(0,fe.nbf()):

print "N(%d) = "%i, fe.N(i).eval().printc()
print "grad(N(%d)) = "%i, grad(fe.N(i)).eval().printc()
print "dof (%d) = "%i, fe.dof(i).eval().printc()

0.8 Code Generation

In this section we will describe some matrix factories created for the PyCC
project [11], which have been made by using SyFi, GiNaC and Swiginac. At
present, we have written ca. 1500 lines of Python code using SyFi, Swig-
inac etc., which have generated roughly 60 000 lines of C++ code for the

82

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

computation (of various variants) of the mass matrix, the stiffness matrix,
the convection matrix and the divergence matrix using Lagrangian elements
of order 1-5 in 2D and 1-3 in 3D. Furthermore, the generated C++ code
is efficient, since everything except the geometry mapping can be computed
exactly. Notice also that although only Lagrangian elements have been used
so far, most of the Python code that generated the C++ code is completely
element independent. In addition to the generated C++ code we have also
written about 1500 lines of code which loops over the cells of a Dolfin mesh
[2] such that global matrices are made.

We have create two matrix factories. These are implemented in MatrixFactory
and MatrixFactory highorder. There are three differences between these two
factories. The first difference is that MatrixFactory employs the numbering of
degrees of freedom in the Dolfin mesh. Therefore, this MatrixFactory is limited
to linear Lagrangian elements. On the other hand, MatrixFactory highorder
uses DofT, described in Section 0.3.5, which works for general elements. The
second difference is that in MatrixFactory the integration is performed on a
global element with global basis functions, e.g., for the stiffness matrix,

T

In MatrixFactory highorder, the integration is performed on the reference ele-
ment with a geometry tensor G (the Jacobian of the geometry mapping) and

D = det(G),

Ay = / (GTVN) - (GTVN,)D da. (53)

T

which is the typical way to do it in finite element codes. At present, we
favor (53) to (52) simply because it produces much smaller expressions and
therefore faster code. However, the large expressions in (52) typically in-
volve subexpressions repeated many times. Hence, it should be possible to
postprocess these expressions to create smaller expressions and faster code.
However, we have not done this yet. Finally, the third difference is that
MatrixFactory highorder works for the FastMatSparse matrix in PyCC, the Epe-
tra matrix in Trilinos [15] and for STL maps of type map<pair<int,int>,double>.

83

SyFi User Manual Martin Alnas and Kent-Andre Mardal

0.8.1 Basic Tools

We will illustrate the code generation by considering what was done for the
mass matrix in MatrixFactory highorder.

The entries of a mass matrix are:
Mk;l = / NkNl dr = [NiNdel‘,,
T 7

where T' is the global polygon, Ny and N; are the k’th and [’th global basis
functions, respectively, T is the reference polygon, N; and N are the 7’th
and j'th basis functions on the reference polygon correspondmg to k and [,
respectively, and D is the determinant of the Jacobian of the geometry map-
ping. The following code shows how this can be done (see also code_gen.py):

def create_A_string mass(fe):
A_str =" double A[%A] [%d];\\n "% (fe.nbf(), fe.nbf())
domain = fe.get_polygon()

loop over all N(i)
for i in range(0,fe.nbf()):

loop over all N(j)
for j in range(0,fe.nbf()):

compute the integrand N(i)*N(j)
integrand = fe.N(i).eval()*fe.N(j).eval()

integrate over the domain
Aij = domain.integrate(toex(integrand))

generate C string and append the string to the rest
A_str += " A[%d] [%d)=C%s)*D;\\n "%
(1,j,Aij.eval().evalf() .printc())

The following output is produced, when using linear element on a 2D triangle

84

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

(see also matrix factory mass_2D.cc, which also contains code for higher order
Lagrangian elements),

double A[3][3];

A[0] [0]=(8.3333333333333329e-02)*D;
A[0] [1]=(4.1666666666666664e-02)*D;
A[0] [2]=(4.1666666666666664e-02)*D;
A[1] [0]=(4.1666666666666664e-02)*D;
A[1][1]=(8.3333333333333329e-02)*D;
A[1]1[2]=(4.1666666666666664e-02)*D;
A[2] [0]=(4.1666666666666664e-02)*D;
A[2] [1]=(4.1666666666666664e-02)*D;
A[2] [2]=(8.3333333333333329e-02) *D;

Hence, this is the mass element matrix on the reference element multiplied
with D. In addition to computing the element matrix we also need to com-
puted the global degrees of freedom and generate a C function. We will not go
into details on this, but recommend the reader to have a look in code_gen.py.

The complete function for the computation of the element matrix, in the case
of linear Lagrangian elements, and the insertion of the element matrix in the
global matrix can be found in matrix factory mass_2D.cc is:

void matrix_factory_mass_2D_orderl (map<pair<int,int>,double>& matrix,
DofT<Ptv,Ptv_is_less>& dof,
int element, double ppO[2], double ppl[2], double pp2[2]){

// geometry related stuff

double x0 = pp0[0]; double yO = ppO[1];
double x1 = ppl[0]; double y1 = ppll[1];
double x2 = pp2[0]; double y2 = pp2[1];
double GOO = x1 - x0; double GO1 = x2 - x0;
double G10 = y1 - y0; double G11 = y2 - yO;

double D = fabs(GO0*G11-GO1*G10) ;

// inserting local dofs in the global dof handler (dof)

85

SyFi User Manual Martin Alnas and Kent-Andre Mardal

int iidof[3];

double dof1[2];

dof1[0]=x0; dof1[1]=y0;

Ptv pdof1(2,dofl);

iidof [0] = dof.insert_dof (element,1,pdofl);

double dof2[2];

dof2[0]=G01+x0; dof2[1]=y0+G11;

Ptv pdof2(2,dof2);

iidof[1] = dof.insert_dof (element,2,pdof2);

double dof3[2];

dof3[0]=G00+x0; dof3[1]1=G10+yO0;

Ptv pdof3(2,dof3);

iidof [2] = dof.insert_dof (element,3,pdof3);

// compute the element matrix

double A[3]1[3];

AT0] [0]=(8.3333333333333329e-02) *D;
A[0][1]1=(4.1666666666666664e-02)*D;
A[0] [2]=(4.1666666666666664e-02)*D;
A[1]1[0]=(4.1666666666666664e-02)*D;
A[1]1[1]1=(8.3333333333333329e-02) *D;
A[1]1[2]=(4.1666666666666664e-02)*D;
A[2]1[0]=(4.1666666666666664e-02)*D;
A[2][1]=(4.1666666666666664e-02)*D;
A[2] [2]=(8.3333333333333329e-02) *D;

// insert element matrix into global matrix

int nbf = 3;
pair<int,int> index;
for (int i=0; i< nbf; i++) {
index.first = iidof[i];
for (int j=0; j< nbf; j++) {
index.second = iidof[j];
matrix[index] += A[i][j];
}
}
}

86

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

Finally, we show how the above function is used in PyCC to compute the
mass matrix on a Dolfin mesh (see also MatrixFactory highorder.cpp)

void MapMatrixFactory:: computeMassMatrix()<{
int e = -1;
if (mesh->numSpaceDim() == 2) {

double p0[2];
double p1[2];
double p2[2];

for (Celllterator cell(*mesh); 'cell.end(); ++cell) {

e++;
// Obtain vertices from Dolfin mesh
Vertex& vO = (*cell).vertex(0);
Vertex& vl (*cell) .vertex(1);
Vertex& v2 (*cell) .vertex(2);

// Create double arrays with the data from the vertices

pO[0] = vO0.coord().x; pO[1] = vO.coord().y;
p1l[0] = vi.coord().x; pi1l[1] = vi.coord().y;
p2[0] = v2.coord().x; p2[1] = v2.coord().y;

switch(order1l) {

case 1 :
matrix_factory_mass_2D_orderl(*matrix,*idof,e,p0,pl,p2);
break;

case 2 :
matrix_factory_mass_2D_order2(*matrix,*idof,e,p0,pl,p2);
break;

case 3 :
matrix_factory_mass_2D_order3(*matrix,*idof,e,p0,pl,p2);
break;

case 4 :
matrix_factory_mass_2D_order4 (*matrix,*idof,e,p0,pl,p2);
break;

case 5 :
matrix_factory_mass_2D_order5 (*matrix,*idof,e,p0,pl,p2);
break;

87

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Notice that this code works for Lagrangian elements of order 1-5 in 2D.

0.8.2 UFC code generation

The UFC project (Unified Form-assembly Code, [10]) aims to define an in-
terface for the computation of element tensors for general variational forms.
This interface includes minimal classes for computing element tensor con-
tributions on a cell, for evaluating finite element functions, and mapping of
degrees of freedom (dofs) between local and global finite element spaces.

In SyFi, the Python module ufccodegen can be used to generate code compli-
ant with the UFC interface. Support for generating UFC code is also planned
for FFC [5], to make it possible to use SyFi and FFC to define elements and
equations while assembling the system with PyCC [11] or Dolfin [2]. By im-
plementing assembly using the UFC interface, other FEM packages can use
both SyFi and FFC to define elements and variational forms.

These UFC code generation tools are under development, and not all features
of SyFi and UFC are included yet. When the ufccodegen module is more
mature, it will replace the old code generation described elsewhere in this
manual, and a new and more general matrix factory will replace the older
matrix factories also described in this manual. Below we present an example
of how to use the tools for some basic forms.

def stiffness_with_M(u, v, M, G, Ginv):
Du = grad(u, Ginv)
Dv = grad(v, Ginv)
return inner(mul(M,Du), Dv)

def rhs(v, f, G, Ginv):
return inner(f, v)

88

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

def Hinorm(u, G, Ginv):
Du = grad(u, Ginv)
return inner(u, u) + inner(Du, Du)

nsd = 2
SyFi.initSyFi(nsd)

polygon = SyFi.newReferenceSimplex(nsd)
fel = SyFi.LagrangeFE(polygon, 1)
fel = SyFi.PO(polygon)

A = MatrixForm(stiffness_with_M)
b VectorForm(rhs)
H1 ScalarForm(Hlnorm)

generate UFC code
gen_form_code(A, [fel, fel, fe0])
gen_form_code(b, fel)
gen_form_code(H1, fel)

In the above code we first define the integrands of the forms

a(u,v; M) = / M grad u - grad v dz, (54)

Q
b(v) = / fevd, (55)
Q
|u|1:/u-u+gradu-gradudx, (56)
Q

by simple python functions. The operators grad, inner and mul are defined
(among others) in the ufccodegen.symbolicutils module, and use the sym-
bolic engine swiginac. We next define a linear Lagrange element fe on a
simplex, using the usual SyFi tools. The final result of the above code is
to generate UFC compliant code to compute the element tensors of these
forms with the linear Lagrange element, but with a scalar po element for the
coefficient M. An excerpt from the code is shown below. In the next section
we describe some additional options.

89

SyFi User Manual

Martin Alnaes and Kent-Andre Mardal

void cell_integral_stiffness_with_M_LagrangeFE_1_2D::
tabulate_tensor(double* A, const double * const * w,

// coordin
double x0
double yO

double x1 =

double yl1

double x2 =

double y2

// affine
double GOO
double GO1

double G10
double G11

double det
double det

double Ginv0O
double GinvO1
double Ginv1O0
double Ginvilil

A[3%0 + 0]

A[3%0 + 1]

ates

= cell.

= cell

= cell

map
= x1
= x2

= y1
y2

G_tmp

cell.

cell.
cell.

const ufc::cell& cell) const

coordinates[0] [0];
.coordinates[0] [1];
coordinates[1] [0];
.coordinates[1] [1];
coordinates[2] [0];
coordinates[2] [1];

- x0;
- x0;

— yo;
- y0;

GO0O*G11-GO1*G10;

G = fabs(detG_tmp);

(5.
+5.
+Gi
+5.
+Gi
+5.
(-5
-5.
-5.
-5.

G11 / detG_tmp;
-G10 / detG_tmp;
-GO1 / detG_tmp;

GOO / detG_tmp;

e-01*(Ginv01*Ginv01)*w [0] [0]
e-01*(Ginv00*Ginv00) *w [0] [0]
nv11*GinvO1*w[0] [O]
e-01*(Ginv11*Ginvi11)*w [0] [0]
nv10*Ginv0O*w [0] [0]
e-01*(Ginv10*Ginv10)*w[0] [0]) *detG;
.e-01*(Ginv01*Ginv01) *w[0] [0]
e-01*(Ginv00*Ginv00) *w [0] [0]
e-01*Ginv11*Ginv01*xw[0] [0]
e-01*Ginv10*Ginv00*w[0] [0])*detG;

90

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

A[3%x0 + 2]

(-5.e-01*Ginv11*Ginv01*w [0] [0]
-5.e-01*(Ginv11*Ginv11) *w[0] [0]
-5.e-01*%Ginv10*Ginv0O0*w [0] [0]
-5.e-01%(Ginv10*Ginv10) *w[0] [0]) *detG;
A[3%1 + 0] = (-5.e-01*(Ginv01*Ginv01)*w[0] [O]
-5.e-01*(Ginv00*Ginv00) *w [0] [0]
-5.e-01%Ginv11*Ginv01*w[0] [0]
-5.e-01*%Ginv10*Ginv00*xw [0] [0]) *detG;
A[3%1 + 1] = (5.e-01*(Ginv01*Ginv01)*w[0] [0]
+5.e-01*(Ginv00*Ginv00) *w [0] [0]) *detG;
A[3*%1 + 2] = (5.e-01*Ginv11*GinvO1*w[0] [0]
+5.e-01*Ginv10*Ginv00*w [0] [0]) *detG;
A[3%2 + 0] = (-5.e-01*Ginv11*Ginv01*w[0] [0]
-5.e-01%(Ginv11*Ginv11)*w[0] [0]
-5.e-01*%Ginv10*Ginv0O0*w [0] [0]
-5.e-01%(Ginv10*Ginv10)*w[0] [0]) *detG;
A[3%2 + 1] = (5.e-01*Ginv11*GinvO1*w[0] [0]
+5.e-01%Ginv10*Ginv0O0*w [0] [0]) *detG;
A[3%2 + 2] = (5.e-01*(Ginv11*Ginv11)*w[0] [0]
+5.e-01*%(Ginv10*Ginv10) *w[0] [0]) *detG;

The expressions for A had to be edited manually to fit on the page.

Additional options

The integrand functions (stiffnesswithM etc.) are wrapped in Form objects
(MatrixForm etc.), which uses introspection functionality from the Python
language to automatically choose the name of the form equal to the func-
tion name, and to set the number of coefficient arguments of the form from
the number of free arguments in the integrand function (M in the case of
stiffnesswithM). If the integrand is not a common Python function (f.ex.
a functor), the MatrixForm constructor also take the optional arguments name
and num_coefficients. VectorForm and ScalarForm are similar to MatrixForm, the
important difference being the different rank of the resulting element tensor.

91

SyFi User Manual Martin Alnas and Kent-Andre Mardal

Next, the function gen_form_code has a SyFi finite element or a list of fi-
nite elements as argument. If a list is provided, it must have one ele-
ment for each coefficient plus the rank of the form. This allows using
different test and trial functions, as well as different finite element spaces
for each coefficient. By default, integrationmode is ’symbolic’, but setting
integration mode=’quadrature’ will result in generated code using quadrature
rules for computing the integrals. Optionally, the quad order argument lets
the user specify the order of the quadrature rule. If not set, the order is
chosen by inspecting the integrand expression. The function gen form_code
can be replaced by compile form, which uses Instant [10] to wrap and compile
the generated code as a Python module, then returns the compiled ufc: : form
object. Instant does not compile the generated code if it is equal to previ-
ously generated code, which means that code generation and compilation can
be performed in the same Python application that assembles the system and
solves the equation, without a large performance hit. This is very useful for
fast development and experimentation with elements and variational forms.

from ufccodegen import compile_function
from swiginac import matrix
from SyFi import get_symbol

X, y = get_symbol("x"), get_symbol("y")
mat = matrix(2, 2, [x*x, x*y, y*x, y*y])
matfunc = compile_function(mat, "matfunc")

UFC defines a functor interface ufc::function, which can be passed to the
function evaluate.dof(...) of the ufc::finite_element class to evaluate the de-
grees of freedom of the function in the local finite element space on a cell. To
easily generate such functions from Python, ufccodegen provides the function
compile_function(expression, name). This works similar to compile_form(...).
The argument name is used both for naming the generated functor class and
to name the Python module, so function names should be different and valid
C++ names. The expression can be a number of different types. A string is
assumed to be a valid C++ expression which is inserted into the generated
code. A list of strings is treated as a vector function. Tensor functions are
the same as vector functions, just unpack the components into a list like

92

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

a matrix in C. Finally, the expression can be a swiginac expression, either
scalar or matrix. Below is an example Python code for compiling a function
from a swiginac matrix, and the resulting generated C+-+ code.

class matfunc: public ufc::function

{

public:
/// Evaluate the function at the point
/// x = (x[0], x[1], ...) in the cell

virtual void evaluate(double* values,
const double* x_,
const ufc::cell& c) const

{
const double x=x_[0], y=x_[1], z=x_[2];
values[0] = (x*x);
values[1] = y*x;
values[2] = y*x;
values[3] = (y*y);
}

Code generation

This subsection describes some implementation details of the code genera-
tion, and will be most interesting for developers. The classes and functions
described above can be seen as the user interface of ufccodegen, and are
found in forms.py, ufc_code_gen.py and symbolicutils.py.

In code_generator.py, a class code_generator and some utility functions for
code generation is defined. A code_generator object is something that can
generate a header and source contribution. Some utility functions can gen-
erate complete code files with contributions from one or more code_generator
objects.

The subclasses of code_generator closely mirror the ufc classes they generate
code for. They are dof map, finite_element, form and function. The user cre-

93

SyFi User Manual Martin Alnas and Kent-Andre Mardal

ated Form classes are thin wrappers around form which is a code_generator sub-
class for generating ufc::form implementations. A form object also has func-
tions to create dof map and finite element objects, which are code_generator
subclasses for generating ufc::dof map and ufc::finite element implementa-
tions, respectively. Both dof map and finite_element can be constructed inde-
pendently with a SyFi finite element as the only argument to the construc-
tor, but this should usually not be necessary. While the form constructor
has arguments for specifying boundary integrands, this is not completely im-
plemented yet and the arguments are therefore not explained here. In the
files affine map.py and quadrature.py, additional code generation utilities are
found. Quadrature rules are taken from [29].

0.8.3 Debugging

Debugging finite element codes is often extremely hard, at least that is the
authors’ experience. This has been one of the reasons why we have chosen
to employ a symbolic math engine behind the curtain in the first place.

One of the advantages of SyFi is that one obtain explicit symbolic expressions
for all the basis functions (and its derivatives). Another good thing is that
one can create global finite elements, that is finite elements that are not
defined on reference geometries, and perform integration and differentiation
on their geometries. For instance, when we created the divergence matrix
factory we initially had a mysterious bug which took us several hours to find.
To locate the bug, we computed the divergence element matrix on a global
element with the vertices xo = (0.2,0.2), x; = (0.4,0.2), and x5 = (0.1,0.3),
and compared it with the divergence element matrix on the reference element
with the corresponding geometry tensor. To do this, we wrote the following
code (see also main_syfi.cpp):

// create global triangle
1st p0(0.2, 0.2);

1st p1(0.4, 0.2);

1st p2(0.1, 0.3);

Triangle triangle(pO,pl,p2);

94

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

// create vector element for v on the global triangle
VectorLagrangeFE v_fe;

v_fe.set_size(2);

v_fe.set_order(vorder);

v_fe.set_polygon(triangle);
v_fe.compute_basis_functions();

// create scalar element for p on the global triangle
LagrangeFE p_fe;

p_fe.set_order(1);

p_fe.set_polygon(triangle);
p_fe.compute_basis_functions();

// compute global element matrix
map<pair<int,int>, ex> A;
pair<int,int> index;
for (int i=0; i< p_fe.nbf(); i++) {
index.first = i;
for (int j=0; j< v_fe.nbf(); j++) {
index.second= j;
ex divV= p_fe.N(i)*div(v_fe.N(j));
ex Aij = triangle.integrate(divV);
Alindex] = Aij;

The element matrix created by this code was then printed out and com-
pared with the element matrix computed by the matrix factory on the same
polygon (see dolfinmain.cpp). By comparing each entry of the two matrices
we quickly found the (uninteresting) bug. Hence, in out experience it is ex-
tremely valuable to have the concrete basis functions etc. on global element,
and being able to work with them both with a pen and a paper and the
computer, to reveal what is going on.

95

Bibliography

Analysa, 2006. http://people.cs.uchicago.edu/ridg/al/aa.html .
Dolfin, 2006. http://www.fenics.org/dolfin.

Dsel, 2006. http://www.hpe2n.umu.se/para06/papers/paper_147.pdf.
Fenics, 2006. http://www.fenics.org.

Ffc, 2006. http://www.fenics.org/ffc/.

Fiat, 2006. http://www.fenics.org/fiat/.

Freefem, 2006. http://www.freefem.org/ff++ /index.htm.

Getdp, 2006. http://www.geuz.org/getdp/.

GiNaC, 2006. http://www.ginac.de.

Instant, 2006. http://pyinstant.sf.net.

PyCC, 2006. http://home.simula.no/ skavhaug/heart_simulations.html.
Sundance, 2006. http://software.sandia.gov/sundance/.

SWIG, 2006. http://www.swig.org/.

Swiginac, 2006. http://swiginac.berlios.de/.

Trilinos, 2006. http://software.sandia.gov /trilinos.

UFC, 2006. http://www.fenics.org/ufc.

97

SyFi User Manual Martin Alnas and Kent-Andre Mardal

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

D. N. Arnold, R. S. Falk, and R. Winther. Mixed finite element methods
for linear elasticity with weakly imposed symmetry. Submitted to Math.
Comp., 2006.

S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods. Springer Verlag, 1994.

F. Brezzi and M. Fortin. Mixed and hybrid finite element methods.
Springer Verlag, 1991.

Franco Brezzi, Jim Douglas, Jr., and L. D. Marini. Two families of
mixed finite elements for second order elliptic problems. 47(2):217-235,
September 1985.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. STAM,
2002.

M. Crouzeix and P.A. Raviart. Conforming and non—conforming finite
element methods for solving the stationary stokes equations. RAIRO
Anal. Numér., 7:33-76, 1973.

V. Girault and P.-A. Raviart. Finite element methods for Navier—Stokes
equations. Springer Verlag, 1986.

H. P. Langtangen. Computational Partial Differential Equations - Nu-
merical Methods and Diffpack Programming. Textbooks in Computa-
tional Science and Engineering. Springer, 2nd edition, 2003.

K.A. Mardal, X.-C. Tai, and R. Winther. A robust finite element method
for darcy—stokes flow. SIAM J. Numer. Anal., 40:1605-1631, 2002.

J.-C. Nédélec. Mixed finite elements in R3. 35(3):315-341, October
1980.

J.-C. Nédélec. A new family of mixed finite elements in R3. 50(1):57-81,
November 1986.

P. A. Raviart and J. M. Thomas. A mixed finite element method for 2-
order elliptic problems. Matematical Aspects of Finite Element Methods,
1977.

98

SyFi User Manual Martin Alnaes and Kent-Andre Mardal

[29] P. Solin, K Segeth, and I Dolezel. Higher—Order Finite Element Methods.
Studies in Advanced Mathematics. Chapman and Hall/CRC, 2004.

99

	Introduction
	Software
	License
	Installation
	Python Support
	Examples and Tests
	GiNaC Tools

	A Finite Element
	Basic Concepts
	Polygons
	Polynomial Spaces
	A Finite Element
	Degrees of Freedom

	Some Examples of Finite Elements
	Finite Elements in H1
	Finite Elements in L2
	Finite Elements in H(div)
	Finite Elements in H(div,M)
	A Finite Element in Both H(div) and H1
	Finite Elements in H(curl)

	Mixed Finite Elements
	The Taylor--Hood and the ¶dn-¶n-2 Elements
	The Mixed Crouizex-Raviart Element
	The Mixed Raviart-Thomas Element
	The Mixed Arnold-Falk-Winther element

	Computing Element Matrices
	A Poisson Problem
	A Poisson Problem on Mixed Form
	A Stokes Problem
	A Nonlinear Convection Diffusion Problem
	Expression Simplification

	Python Support
	Code Generation
	Basic Tools
	UFC code generation
	Debugging

