SyFi - An Element Matrix Factory

Kent-Andre Mardal

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway,
kent-and@simula.no,
WWW home page: http://www.simula.no/portal_memberdata/kent-and

Abstract. SyFi is an open source C++ library for defining and using
variational forms and finite elements based on symbolic representations
of polygonal domains, degrees of freedom and polynomial spaces. Once
the finite elements and variational forms are defined, they are used to
generate efficient C/C++ code.

1 Introduction

SyFi [15], which stands for Symbolic Finite Elements, is a C4++ library for fi-
nite element computations. SyFi is equipped with a Python interface by using
SWIG [16]. It relies on the symbolic mathematics library GiNaC [9] and the
Python interface to GiNaC called Swiginac [17]. SyFi is open source as its de-
pendencies GiNaC and Swiginac.

This paper is only a short overview of the SyFi project in the context
of finite element methods for the incompressible Navier-Stokes equations. A
more comprehensive description of the project can be found on its webpage
http://syfi.sf.net, which contains a tutorial, a complete reference and the source
code. We will show various code snippets in this paper. The complete code ex-
amples can be found in the subdirectory para06 in the SyFi source code tree.

There are quite a few other projects that are similar in various respects to
SyFi. Within the FEniCS [4] project there are two Python projects: FIAT [6] and
FFC [5]. FIAT is a Python module for defining finite elements while FFC gen-
erates C++ code based on a high-level Python description of variational forms.
The DSEL project [3] employs high-level C++ programming techniques such
as expression templates and meta-programming for defining variational forms,
performing automatic differentiation, interpolation and more. Sundance [14] is
a C++ library with a powerful symbolic engine which supports automatic gen-
eration of a discrete system for a given variational form. Analysa [1], GetDP [8],
and FreeFem++ [7] define domain-specific languages for finite element compu-
tations. The main difference between SyFi and the other projects is that it uses
a high level symbolic framework in Python to generate efficient C/C++ code.

A key point in the design of SyFi is, as already mentioned, that we want
to employ symbolic mathematics and code generation in place of the numerics.
The powerful symbolic engine GiNaC and the combination of the high-level
languages C++ and Python have so far proven to be a solid platform. Consider

for instance, the computation of an entry in the mass matrix
T

where D is the Jacobian of the geometry mapping between the reference element
T and the global element 7', and {N;}; are the finite element basis functions. If
the geometry mapping is affine, the computation of one matrix entry based on (1)
will result in a real number times D. Because everything but the multiplication
with D (in case of a mass matrix) can be precomputed, the generated code will
be very efficient compared to traditional codes, which typically implements a
loop over quadrature points and numerical evaluation of the finite element basis
functions. See also mass.py for a demonstration of such code generation.

As will be explained later, other advantages of this approach include an easy
way of defining finite elements, and straightforward computation of the Jacobian
in the case of nonlinear PDEs.

2 Using Finite Elements and Evaluating Variational
Forms

One main goal with SyFi has been that it should be a tool with strong support
for differentiation and integration of polynomials on polygonal domains, which
are basic ingredients both when defining finite elements and using finite ele-
ments to define variational forms. Many finite elements have been implemented
in SyFi. Of particular importance for the simulation of incompressible fluids are
the continuous and discontinuous Lagrangian elements of arbitrary order and
the Crouzeix-Raviart element [2]. However, also the H (div)-Raviart-Thomas el-
ements [13] and the H(curl)- Nedelec elements [11,12] of arbitrary order have
been implemented. We will come back to the construction of finite elements in
Section 4. In this section we concentrate on the usage of already implemented
elements.

We construct the commonly used Taylor-Hood element P% — P; as follows
(see also div.py),

from swiginac import *
from SyFi import *

polygon = ReferenceTriangle()

v_element = VectorLagrangeFE(polygon,2)
v_element.set_size(2)
v_element.compute_basis_functions()

p_element = LagrangeFE(polygon,1)
p_element.compute_basis_functions()

The polygonal domain here is a reference triangle, but it may be a line, a triangle,
a square, a tetrahedron or a box. Furthermore, these geometries are not limited
to typical reference geometries. For instance, we may construct the elements

on a global triangle defined by the points (zo, o), (z1,¥1), and (z2,y2) where
Zo, - - -, Y2 might be both numbers and/or symbols. The following code shows the
Taylor-Hood element on a triangle defined in terms of the symbols xo, ..., yo,
(see also div_global.py),

x0 = symbol("x0"); yO = symbol("y0")
x1 = symbol("x1"); y1 = symbol("y1")
x2 = symbol("x2"); y2 = symbol("y2")
pO0 = [x0,y0]; pl = [x1,y1]; p2 = [x2,y2]

polygon = Triangle(pO,pl,p2)

v_element = VectorLagrangeFE(polygon,2)
v_element.set_size(2)
v_element.compute_basis_functions()

p_element = LagrangeFE(polygon,1)
p_element.compute_basis_functions()

The computed basis functions are standard polynomials also in this case, al-
though they depend on zg, ..., y2. These polynomials can be added, multiplied,
differentiated, integrated etc. in the standard way (within a symbolic frame-
work). Counsider for example, the computation of the divergence constraint,

BZJ:/TdIVNZLJdI,

where IN; and L; are the basis functions for the velocity and pressure elements,
respectively, and T is a polygonal domain. This matrix can be computed as
follows (see also div_global.py):

. construct the element

for i in range(0,v_element.nbf()):
for j in range(0,p_element.nbf()):
integrand = div(v_element.N(i))*p_element.N(j)
Bij = polygon.integrate(integrand)

Another example that demonstrates the power of this approach, in which we
utilize a symbolic mathematics engine, is the computation of the Jacobian of the
nonlinear convection-diffusion equations that typically appear in incompressible
flow simulations. Let

Fl-:/(u~Vu)~Nl-+Vu:VNl-da:,
T

where u =), uiNi. Then,

_OF, 0

J;: = =
J 8Uj 8’U,j

/ (w-Vu)-N; +Vu: VN, dz. (2)
T

The computation of such Jacobian matrices and the implementation of corre-
sponding simulation software are usually tedious and error-prone. It seems that

one main reason for this difficulty is the gap between the computations done by
hand and the corresponding numerical algorithm to be implemented. After all,
the computation of (2) only involves straightforward operations. SyFi aims at
closing this gap. We will now show the code for computing (2) with SyFi. The
complete source code is in conv-diffusion.py. First, we compute the finite
elements as shown in the previous example. Secondly, we compute the F; and
differentiate to get the Jacobian:

u, ujs = sum("u", fe)
for i in range(0,fe.nbf()):

compute diffusion term
fi_diffusion = inner(grad(u), grad(fe.N(i)))

compute convection term
uxgradu = (u.transpose()*grad(u)).evalm()
fi_convection = inner(uxgradu, fe.N(i), True)

add together diffusion and convection
fi = fi_diffusion + fi_convection

compute the integral
Fi = polygon.integrate(fi)

for j in range(0,fe.nbf()):
differentiate to get the Jacobian
uj = ujs.op(j)
Jij = diff(Fi, uj)
#print out the Jacobian
print "J[%d,%d1=Vs;\n"%(i,],Jij)

The output from conv-diffusion.py is:

J[0,0]=1+1/24*u2-1/12%ul-1/24*ub-1/6%u0-1/24*ud-1/24*u3;
J[0,1]1=-1/12%u0+1/12%u4;
J[0,2]=-1/2+1/12%u2+1/24*u0+1/24*u4;
J[0,3]1=-1/24%u0+1/24%u4;
J[0,4]1=-1/2+1/24%u2+1/12*ul+1/24*ub-1/24*u0+1/24%u3;

We can now extend the above code such that it also can include the Ostwald—
de Waele power-law viscosity model, i.e.,

FP = / (u-Vu)- N; + p(u)Vu : VN, dx,
T

where f1 = po]| Vu||™. The Jacobian matrix is then

gr — OF
Y OQuy
The only thing we need to change then in the above script is the diffusion
term (see also conv-diffusion-power-law.py):

nonlinear power-law diffusion term
mu = inner(grad(u), grad(u))
fi_diffusion = muO*pow(mu,n)*inner(grad(u), grad(fe.N(i)))

In addition, we also need to declare n and pg to be either symbols or numbers.

3 Code Generation for Quadrature Based FEM systems

SyFi can also be used to generate C++ code for other FEM systems. We will here
consider code generation for finite element basis functions in a format specified by
the user. Other code generation examples can be found in the SyFi tutorial and
source code, where code for creating both PyCC and Epetra matrices for various
problems are generated. Furthermore, notice that one can print the expressions
out in either of the formats: ASCII, C, BTEX, and Python.

The following code demonstrates how C code for the basis functions is gen-
erated (see also code_gen_simple.py):

polygon = ReferenceTriangle()
fe = LagrangeFE(polygon,2)
fe.compute_basis_functions()

N_string = ""
for i in range(0,fe.nbf()):
N_string += " N[%d]l=Vs;\n"% (i, fe.N(i).printc())
c_code = nnn
void basis2D(double N[d], double x, double y) {
%hs
} " % (fe.nbf(), N_string)

print c_code

Notice that C code for the expressions is generated with the function printc.
The output when code_gen_simple.py is runned is:

void basis2D(double N[6], double x, double y) {
N[0]=pow(-y-x+1.0,2.0)-(-y-x+1.0) *y-(-y-x+1.0) *x;
N[1]=4. 0*(‘Y‘X+1 .0)*x;
N[2]=-y*x+(x*x) - (-y-x+1.0) *x;
N[3]=4. 0*(—y—x+1 .0) xy;
N[4]=4.0%y*x;
N[5]=-y*x+(y*y)-(-y-x+1.0)*y;

}

Finally, notice that to change the above code to produce code for, e.g., 5th order
elements all you need to do is change the degree of the element i.e.,

polygon = ReferenceTriangle()
fe = LagrangeFE(polygon,5)
fe.compute_basis_functions()

4 Defining a Finite Element in SyFi

Defining a finite element may of course be more technical than using it, in
particular for advanced elements. Furthermore, the implementation shown below
involves more of GiNaC and SyFi than the earlier examples, so the reader should
have access to both the SyFi and GiNaC tutorial. The elements implemented
in SyFi so far have mostly been implemented in C++ since they then will be
available in both C++ and Python (by using SWIG).

We will describe the implementation of an element recently added to SyFi.
The element was introduced in [10]. The special feature of this element is that
it works well for both Darcy and Stokes types of flow.

The definition of the element is as follows,

V(T)={veP; : divv € Py, (v-n.)l. € Py Ve € BE(T)},

where T is a given triangle, F(T') is the edges of T, n. is the normal vector on
edge e, and Py is the space of polynomials of degree k and]P’g the corresponding
vector space. The degrees of freedom are,

/@4m*m,k:QL Ve € E(T),
/('U~t)d7', Ve € E(T).

The definition of the element is more complicated than most of the common
elements. Still, we will show that it can be implemented in SyFi in about 100
lines of codes. We will compute this element in four steps:

1. Constructing the polynomial space V (T').

2. Specifying the constraints.

3. Specifying the degrees of freedom.

4. Solving the resulting linear system of equations.

Considering the first step, SyFi implements the Bernstein polynomials (in
barycentric coordinates) with the functions bernstein and bernsteinv, for
scalar and vector polynomials, respectively. The bernstein functions returns
a list (1st) with the items:

— The polynomial (agz + a1y +as(1 —x —y) +...).
— The variables (ag, a1, az, . ..).
— The polynomial basis (z,y,1 —z —y,...).

In the following we construct P3:

Triangle triangle

ex V_space = bernsteinv(2, 3, triangle, "a");
ex V_polynomial = V_space.op(0);

ex V_variables = V_space.op(1l);

Here V_space is the above mentioned list, V_polynomial contains the polyno-
mial, and V_variables contains the variables.
In the second step we first specify the constraint divwv € Py:

1st equations;
ex divV = div(V);
ex_ex_map b2c = pol2basisandcoeff (divV);
ex_ex_it iter;
// div constraints:
for (iter = b2c.begin(); iter != b2c.end(); iter++) {
ex basis = (xiter).first;
ex coeff= (*iter).second;
if (coeff != 0 && (basis.degree(x) > 0
|| basis.degree(y) > 0)) {
equations.append(coeff == 0);

}

Here, the divergence is computed with the div function. The divergence of a
function in P3 is in Py. Hence, it is on the form by + b2+ boy + b3y +baz? +bsy?.
In the above code we find the coefficients b;, as expressions involving the above
mentioned variables a; and the corresponding polynomial basis, with the function
pol2basisandcoeff. Then we ensure that the only coefficient which is not zero
is bo.

The next constraints (v-n.)|e € P1 are implemented in much of the same way
as the divergence constraint. We create a loop over each edge e of the triangle and
multiply v with the normal n.. Then we substitute the expression for the edge,
i.e., in mathematical notation |., into v - n. After substituting the expression for
these lines to get (v - n.)|. , we check that the remaining polynomial is in Py in
the same way as we did above.

// constraints on edges:
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
symbol s("s");
1st normal_vec = normal(triangle, i);
ex Vn = inner(V, normal_vec);
Vn = Vn.subs(line.repr(s).op(0)).subs(line.repr(s).op(1));
b2c = pol2basisandcoeff(Vn,s);
for (iter = b2c.begin(); iter != b2c.end(); iter++) {
ex basis = (xiter).first;
ex coeff= (*xiter).second;
if (coeff != 0 && Dbasis.degree(s) > 1)
{

equations.append(coeff == 0);

In the third step we specify the degrees of freedom. First, we specify the
equations coming from fe(v -n)7tFdr,k = 0,1 on all edges. To do this we need
to create a loop over all edges, and on each edge we create the space of linear

Bernstein polynomials in barycentric coordinates on e, i.e., P1(e). Then we create
a loop over the basis functions 7" in Py (¢) and compute the integral [(v-n)r" dr.

// dofs related to the normal on the edges
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
1st normal_vec = normal(triangle, i);
ex P1_space = bernstein(l, line, istr("a",i));
ex P1 = P1_space.op(2);
ex Vn = inner(V, normal_vec);

ex basis;

for (int j=0; j< Pl.nops(); j++) {
basis = Pl.op(j);
ex integrand = Vn*basis;
ex dofi = 1line.integrate(integrand);
dofs.insert(dofs.end(), lst(line.vertex(0),

line.vertex(1), j));

ex eq = dofi == numeric(0);
equations.append(eq) ;

}

Finally, the degrees of freedom fe (v - t)dr can be implemented in basically the
same fashion as the previously described degrees of freedom. To summarize, we
have now specified 20 equations which is precisely the number of unknowns in
PZ. Hence, the space V(T is uniquely defined, what remains is simply to solve
a linear system with 20 equations and 20 unknowns. The complete source code
is in Robust. cpp.

5 Summary

In this paper we have tried to demonstrate that symbolic mathematics com-
bined with code generation can be an alternative to the traditional numerical
apporach for implemention finite elements and finite element methods. By com-
bining Python, C++ and legacy libraries we have created a library which is both
easy to use and powerful enough for advanced methods and complicated PDEs.
Furthmore, the generated code is often efficient compared to the traditional
quadrature based approach.

References

1. B. Bagheri, L. R. Scott, Analysa software package,
http://people.cs.uchicago.edu/ ridg/al/aa.html

2. M. Crouzeix and P.A. Raviart. Conforming and non-conforming finite element
methods for solving the stationary stokes equations. RAIRO Anal. Numér., 7:33—
76, 1973.

3. C. Prud’homme, DSEL software package,
http://www.hpc2n.umu.se/para06/papers/paper_147.pdf

4. T. Dupont, J. Hoffman, J. Jansson, C. Johnson R. C. Kirby, M. Knepley, M. Larson,
A. Logg, R. Scott, G. N. Wells, FEniCS software package, http://www.fenics.org

5. A. Logg, FFC software package, http://www.fenics.org/ffc/

6. R. C. Kirby, FIAT software package, http://www.fenics.org/fiat/

7. O. Pironneau, F. Hecht, A. L. Hyaric, FreeFEM software package,
http://www.freefem.org/ff++ /index.htm

8. P. Dular, C. Geuzaine, GetDP software package,
http://www.geuz.org/getdp/

9. C. Bauer, C. Dams, A. Frink, V. V. Kisil, R. Kreckel, A. Sheplyakov, J. Vollinga,
GiNaC - is not a CAS, http://www.ginac.de

10. K.-A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for
Darcy—Stokes flow, SIAM J. Numer. Anal. 40 (2002), pp. 1605-1631.

11. J.-C. Nédélec. Mixed finite elements in R*. 35(3):315-341, October 1980.

12. J.-C. Nédélec. A new family of mixed finite elements in R®. 50(1):57-81, November
1986.

13. P. A. Raviart and J. M. Thomas. A mixed finite element method for 2-order elliptic
problems. Matematical Aspects of Finite Element Methods, 1977.

14. K. Long, Sundance software package, http://software.sandia.gov/sundance/

15. K.-A. Mardal, SyFi - Symbolic Finite Elements, http://syfi.sf.net

16. D. Beazley et. al., SWIG - Simplified Wrapper and Interface Generator,
http://www.swig.org

17. O. Skavhaug, O. Certik, Swiginac - Python interface to GiNaC
http://swiginac.berlios.de/

18. M. Heroux et. al., Trilinos,
http://software.sandia.gov /trilinos/

