
Efficient compilation of complex
tensor algebra expressions

Martin Sandve Alnæs

Center for Biomedical Computing

June 5th, FEniCS 2012

UFL is a DSL, symbolic backend,
and frontend to form compilers

• Users recently reported scalabiliy problems
when compiling complicated equations

• After some profiling sessions I reduced the
memory usage by a factor 10 for one case

• Next I have made an attempt at faster form
compiler algorithms, which I will show

UFL expressions are represented
in a symbolic expression tree

Dot

Coefficient

ListTensor

IntValue CellVolume

e = dot(as_vector((1, cell.volume)),
Coefficient(V))

Some quick design
points

• Expr objects are immutable for easy sharing

• Conservative approach to automatic
simplifications

• Canonical ordering of sum and product:

a*b a*b

b*a a*b

UFL simplifies some
expressions on construction

1*f f

0*f 0

0 + f f

op(c1) c2

Simplifications critical during
differentiation algorithm

• d/dx(x * g(y)) = 1 * g + x * 0 -> g

Aas_tensor(A[i,j], (i,j))

Performance must scale as
O(n) with size of expression

• This means almost anything must be O(1)

• In particular __eq__ and __hash__!

Transformations must be safe
for floating point computations

• Def eps: 1 + eps > 1

• (1 + eps/2) + eps/2 == 1

• 1 + (eps/2 + eps/2) > 1

I will take this expression
through the compiler algorithms

a, b, c = scalar coefficients

u = as_vector((0, a, b))

v = as_vector((c, b, a))

e = dot(u, v)

Anticipate result:

t = a*b

e = t + t

The expression tree after
translating dot to index notation

IndexSum

Index

Zero Coefficient c

ListTensor ListTensor

Indexed Indexed
Product

Coefficient a

Coefficient b

Placing nodes in array
Index V[i] Shape Size

0 0 () + () 1
1 a () + () 1
2 b () + () 1
3 c () + () 1
4 <0,a,b> (3,) + () 3
5 <c,b,a> (3,) + () 3
6 u[i] () + (3,) 3
7 v[i] () + (3,) 3
8 u[i]*v[i] () + (3,) 3
9 ISum(V[8],i) () + () 1

Scalar subexpressions are
assigned unique value numbers

Index V[i] Value number
0 0 0
1 a 1
2 b 2
3 c 3
4 <0,a,b> 0,1,2
5 <c,b,a> 3,2,1
6 u[i] 0,1,2
7 v[i] 3,2,1
8 u[i]*v[i] 4,5,6
9 ISum(V[8],i) 7

Scalar subexpressions are
reevaluated and placed in a new array

Index S[i] Simplifies to
0 0
1 a
2 b
3 c
4 S[0]*S[3] 0*c = 0
5 S[0]*S[3] a*b
6 S[0]*S[3] b*a = a*b
7 S[4]+S[5]+S[6] a*b + a*b

Throwing away the array only
keeping the final expression

a*b + a*b

Placing nodes in array!
Index V[i] Shape Size

0 a () + () 1

1 b () + () 1

2 a*b () + () 1

3 a*b + a*b () + () 1

Analyzing dependencies
Index V[i] Dep. Rev. Dep.

0 a () (2,)

1 b () (2,)

2 a*b (0,1) (3,3)

3 a*b + a*b (2,2) ()

Final steps in compiler
• Partition final array by dependencies on x,u,v

• Heuristically pick best candidates for subexpressions
to place in intermediate variables in generated code

• Format expressions and assignment statements within
nested loops

• FEM library specific code generation in separate
plugin class, e.g. how to evaluate geometry and
coefficients, how to loop over quadrature points and
basis functions

Outlook
• bzr branch lp:uflacs

• Can generate dolfin::Expression classes

• Soon SFC can use uflacs to compile forms

• Want to merge algorithms into FFC

• Write plugin class to compile to other FEM libs

