Brian Brennan

Texas Tech University

June 5, 2012

o = = = E 9ac
An Embedded Language for Vector Operations in OpenCL

Generate FEM code to run on various architectures:

An Embedded Language for Vector Operations in OpenCL

Generate FEM code to run on various architectures:

/Vu~Vvdx—/fvdx
Q Q

An Embedded Language for Vector Operations in OpenCL

Generate FEM code to run on various architectures:

/Vu-Vvdx —/ fvdx
Q Q

An Embedded Language for Vector Operations in OpenCL

Architectures

An Embedded Language for Vector Operations in OpenCL

Architectures

@ Multicore CPU

An Embedded Language for Vector Operations in OpenCL

Architectures

@ Multicore CPU
e NVIDIA GPU

An Embedded Language for Vector Operations in OpenCL

Architectures

e Multicore CPU e AMD GPU
e NVIDIA GPU

An Embedded Language for Vector Operations in OpenCL

Architectures

e Multicore CPU e AMD GPU
e NVIDIA GPU @ Intel MIC

An Embedded Language for Vector Operations in OpenCL

Motivation

Why are we interested in GPU computing?

An Embedded Language for Vector Operations in OpenCL

Motivation

Why are we interested in GPU computing?

Pros:
@ Very Fast
@ Inexpensive

e Many Simple Cores

An Embedded Language for Vector Operations in OpenCL

Motivation

Why are we interested in GPU computing?

Pros: Cons:
@ Very Fast e Difficult to Program

e Inexpensive @ Architecture Specific

@ Communication with CPU

M Simple C .
@ Many Simple Cores is Costly

An Embedded Language for Vector Operations in OpenCL

Where to Begin?

An Embedded Language for Vector Operations in OpenC

Where to Begin?

Back to the basics!

An Embedded Language for Vector Operations in OpenCL

Where to Begin?

Back to the basics!

y=ax (b - c) - d*x2

An Embedded Language for Vector Operations in OpenCL

PyOpenCL

What does PyOpenCL have to offer?

An Embedded Language for Vector Operations in OpenCL

PyOpenCL

What does PyOpenCL have to offer?

PyOpenCL = Python + OpenCL

An Embedded Language for Vector Operations in OpenCL

PyOpenCL

What does PyOpenCL have to offer?
PyOpenCL = Python + OpenCL

Python
@ Easy to program
@ Essential packages such as
NumPy, SciPy, PyTrilinos,
and many more

An Embedded Language for Vector Operations in OpenCL

PyOpenCL

What does PyOpenCL have to offer?
PyOpenCL = Python + OpenCL

Python OpenCL
@ Easy to program

@ Essential packages such as

NumPy, SciPy, PyTrilinos,

and many more @ Vendor-neutral

@ General purpose parallel
programming

An Embedded Language for Vector Operations in OpenCL

enCL Example

1| a = numpy.random.rand (50000).astype(numpy. float32)
b = numpy.random.rand (50000).astype(numpy. float32)

ctx = cl.create some context()
5| queue = cl.CommandQueue(ctx)

a_dev cl_array.to_device(queue, a)
7| b_dev = cl_array.to_device(queue, b)
dest_dev = cl_array.empty_like(a_dev)
9
prg = cl.Program(ctx, """
11 _ _kernel void sum(_ _global const float xa,
_ _global const float xb, _ _global float xc)
13
int gid = get global id(0);
15 c[gid] = a[gid] + b[gid];
3
17 "y Cbuild ()

19| prg .sum(queue, a.shape, None, a_dev.data, b_dev.data, destidev.data)

arraysum.py

An Embedded Language for Vector Operations in Open

Code Generation

We want all the ease of NumPy with the efficiency of PyOpenCL

An Embedded Language for Vector Operations in OpenCL

Code Generation

We want all the ease of NumPy with the efficiency of PyOpenCL

y =a+ b - 5.0kc - d*x*x2

\ /

1| prg = cl.Program(ctx, """
~_kernel void sum(_ global const float =xa,

B3] __global const float xb, global const float xc
~_global const float xd, global float =xy)

5)

int gid = get global id(0);

7 ylgid] = a[gid] + b[gid] — 5.0xc[gid] — d[gid]+d[gid];
}

9 "y Cbuild ()

kernel.py

An Embedded Language for Vector Operations in OpenC

1| if name E main

ctx = cl.create some context()
3 queue = cl.CommandQueue(ctx)
B # declare random numpy arrays here #
7 y dev = cl array.to device(queue, a)
a_dev = cl _array.to device (queue, a)
9 b”dev = cl_array.to device(queue, b)
c dev = ¢l _array.to device(queue, c)
11 D dev = cl_array.to device(queue, c)
Y = Vec("y dev")
13 A = Vec("a dev"
B = Vec("b dev")
15 C = Vec("c dev")
D = Vec("d dev")
17 N
kernel = assignVector(Y, A+ B — 5.0xC — DxD)
19

prg = cl.Program(ctx, kernel). build ()
21 prg.op(queue, a.shape, None, y dev.data, a_dev.data, b_dev.data
c_dev.data, d_dev.data)

mymain.py

An Embedded Language for Vector Operations in Open

Loop Kernel Output

_ _kernel void op(_ _global float xy_dev,
2 _ _global const float xa_dev, _global const float xb_dev,

_ _global const float xc_dev, _ global const float *d:dev)

int gid = get global id(0);
6) ylgid] = a[gid] + b[gid] — 5.0xc[gid] — d[gid]*d[gid];

mykernel.py

An Embedded Language for Vector Operations in Open

GPU vs. CPU Results

vector operations.

Figure: Ratio of CPU run times / GPU run times for 1, 2, 3, 4 basic
e ac -

‘

W

An Embedded Language for Vector Operations in Open

N

10

An Embedded Language for Vector Operations in Open

/Vu-Vvdx :/ fvdx
Q Q

o

Y

for ¢

in

for i

for

range (num_cells):
in range(num_bf):

i

in

range (num_ bf):

K loc[c,i,j] = 0.0

for

k

in

range (num_qp):
K loc[e,i,j] += jacs det[c] * qwts[k] \

“ ((jacs_inv[c,0,0] % bgrads[i, k,0] + jacs inv[c,1,0] *
bgrads[i, k,1]) \ -

* (jacs_inv[c,0,0] * bgrads[j ,k,0] + jacs_inv[c,1,0] * bgrads]
ik,1]

+ (jacs_inv[c,0,1] * bgrads[i k,0] + jacs_inv[c,1,1] * bgrads]|
ivk,11)\

* (jacs_inv[c,0,1] % bgrads[j k,0] + jacs_inv[c,1,1] x bgrads]
ivki1]1))

poissonloop.py

for ¢
for

in range(num_cells):
i in range(num_bf):

for j in range(num_bf):

K_loc[c,i,j] = 0.0
for k in range(num_qp):
K_loc[e,i,j] += jacs_det][c]

* qwts[k] \

((jacs_inv[c,0,0] * bgrads[i k,0] + jacs_inv[c,1,0] =*

bgrads[i,k,1]) \

* (jacs inv[c,0,0] * bgrads[j k,0] + jacs inv[c,1,0]

ivk,11)

\
+ (jacs _inv[c,0,1] * bgrads[i , k,0] + jacs inv[c,1,1] * bgrads][

ik,1])

* (jacs inv[c,0,1] * bgrads[j k,0] 4+ jacs inv[c,1 1]
)

k.11)

* bgrads|[

* bgrads|[

poissonloop.py

=

An Embedded Language for Vector Operations in Open

In a Galaxy Far Far Away

Expand to large scale software packages:

An Embedded Language for Vector Operations in OpenCL

In a Galaxy Far Far Away

Expand to large scale software packages:

/

4

A

3 Ferios
NPOJECE

An Embedded Language for Vector Operations in OpenCL

In a Galaxy Far Far Away

Expand to large scale software packages:

/ k
3 Ferios
NPOJECE

An Embedded Language for Vector Operations in OpenCL

In a Galaxy Far Far Away

Expand to large scale software packages:
{ B
A \ 0
3 NS '@f PETSc
NPOJECT

An Embedded Language for Vector Operations in OpenCL

Trilinos: Sundance Example

11

13

15

17

19

21

An Embedded Language for Vector Operations in Open

// create symbolic objects for test and unknown functions

Expr v = new TestFunction(new Lagrange(2));
Expr u = new UnknownFunction(new Lagrange(2));

// create symbolic differential operators
Expr dx = new Derivative (0,1);

Expr dy = new Derivative (1,1);

Expr grad = List(dx, dy);

// Write symbolic weak equation and Neumann and Robin BCs

Expr poisson = Integral(—(gradx*v)x(gradsu)—fxv,

+ Integral(top, v/3.0) + Integral(right,

// Write essential BCs:
// Bottom: u=x"2

vi(rightBCExpr — u))

EssentialBC bc = EssentialBC(bottom, vx*(u — 0.5xx%x), new

GaussQuadrature (4));
// Assemble everything into a problem object,

StaticLinearProblem prob(mesh, poisson, bc, v

with a specification
// Petra be used as the low—level linear algebra representation

u, petra);

new GaussQuadrature(2))

that

heat2d.cpp

o = =

ps

®

An Embedded Language for Vector Operations in Open

Thank you!

o Dr. Andreas Klseckner

An Embedded Language for Vector Operations in OpenCL

Thank you!

@ Dr. Andreas Kldeckner
@ Dr. Robert Kirby

An Embedded Language for Vector Operations in OpenCL

Thank you!

@ Dr. Andreas Kldeckner
@ Dr. Robert Kirby

@ Simula

An Embedded Language for Vector Operations in OpenCL

	Introduction
	Current Work
	Future Work
	Conclusion

