
Technology for a better society

Compact Stencils

for the Shallow Water Equations

on Graphics Processing Units

1

Technology for a better society

• Introduction to Computing on GPUs

• The Shallow Water Equations

• Compact Stencils on the GPU

• Physical correctness

• Summary

Brief Outline

2

Technology for a better society

Introduction to GPU Computing

3

Technology for a better society

Long, long time ago, …

1942: Digital Electric Computer
 (Atanasoff and Berry)

1947: Transistor
 (Shockley, Bardeen, and Brattain)

1958: Integrated Circuit
 (Kilby)

1971: Microprocessor
 (Hoff, Faggin, Mazor)

1956

2000

1971- More transistors
 (Moore, 1965)

4

Technology for a better society

The end of frequency scaling

1971: Intel 4004,
2300 trans, 740 KHz

1982: Intel 80286,
134 thousand trans, 8 MHz

1993: Intel Pentium P5,
1.18 mill. trans, 66 MHz

2000: Intel Pentium 4,
42 mill. trans, 1.5 GHz

2010: Intel Nehalem,
2.3 bill. trans, 8 X 2.66 GHz

1999-2011:

25% increase in

parallelism

1971-2004:

29% increase in

frequency

2004-2011:

Frequency

constant

A serial program uses 2%

of available resources!

Parallelism technologies:

• Multi-core (8x)

• Hyper threading (2x)

• AVX/SSE/MMX/etc (8x)

5

Technology for a better society

How does parallelism help?

GPU

Multi Core

Single Core

~10x

170 %

100%

100 %

100%

100%

30%

85%

100%

Frequency

Power

Performance

The power density of microprocessors

is proportional to the clock frequency cubed:

6

Technology for a better society

The GPU: Massive parallelism

Performance Memory Bandwidth

CPU GPU

Cores 4 16

Float ops / clock 64 1024

Frequency (MHz) 3400 1544

GigaFLOPS 217 1580

Memory (GiB) 32+ 3

7

Technology for a better society

~2010 ~2000 ~2005

GPU Programming: From Academic Abuse to Industrial Use

DirectCompute, C++ AMP

AMD CTM / CAL

DirectX

BrookGPU

OpenCL

NVIDIA CUDA

Graphics APIs "Academic" Abstractions Dedicated C-based languages

AMD Brook+

8

Technology for a better society

CPU scalar op CPU SSE op GPU Warp op

GPU Execution mode

CPU scalar op • 1 thread, 1 operand on 1 data element

CPU SSE op • 1 thread, 1 operand on 2-4 data elements

GPU Warp op • 1 warp = 32 threads, 32 operands on 32 data elements

• Exposed as individual threads

• Actually runs the same instruction

• Divergence implies serialization and masking

9

Technology for a better society

Hardware serializes and masks divergent code flow:

• Programmer is relieved of fiddling with element masks (which is necessary for SSE)

• But execution time is still the sum of branches taken

• Worst case:

• All warp threads takes individual branches (1/32 perfomance)

• Thus, important to minimize divergent code flow!

• Move conditionals into data, use min, max, conditional moves.

Warp Serialization and Masking

10

Technology for a better society

• First if-statement

• Masks out

superfluous threads

• Not significant

• Iteration loop

• Identical for all threads

• Early exit

• Possible divergence

• Only beneficial when

all threads in warp can

exit

• Removing early exit

increases performance from 0.84ms to 0.69ms (kernel only)

(But fails 7 of 1 000 000 times since multiple zeros isn’t handled properly, but that is a different story )

Example: Warp Serialization in Newton’s Method
__global__
void
newton(float* x,const float* a,const float* b,const float* c,int N)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if(i < N) {
 const float la = a[i];
 const float lb = b[i];
 const float lc = c[i];
 float lx = 0.f;
 for(int it=0; it<MAXIT; it++) {
 float f = la*lx*lx + lb*lx + lc;
 if(fabsf(f) < 1e-7f) {
 break;
 }
 float df = 2.f*la*lx + lb;
 lx = lx - f/df;
 }
 x[i] = lx;
 }
}

11

Technology for a better society

Examples of early GPU research

Preparation for FEM (~5x)

Euler Equations (~25x)
Marine aqoustics (~20x)

12

Self-intersection (~10x)

Registration of medical

data (~20x)

Fluid dynamics and FSI (Navier-Stokes)

Inpainting (~400x matlab code)

Water injection in a fluvial reservoir (20x)
Matlab Interface

Linear algebra

SW Equations (~25x)

Examples from SINTEF

Technology for a better society

Examples of GPU use today

13

Screenshot from NVIDIA website

0

5

10

15

20

25

30

35

40

okt.2006 feb.2008 jul.2009 nov.2010 apr.2012

Heterogeneous Computing (Top500)

Count top 100

Count top 500

Count Cell

Technology for a better society

Compact stencils on the GPU:

Efficient Flood Simulations

14

Technology for a better society

The Shallow Water Equations

• A hyperbolic partial differential equation

• First described by de Saint-Venant (1797-1886)

• Conservation of mass and momentum

• Gravity waves in 2D free surface

• Gravity-induced fluid motion

• Governing flow is horizontal

• Not only for water:

• Simplification of atmospheric flow

• Avalanches

• ...

Water image from http://freephoto.com / Ian Britton

15

http://freephoto.com/

Technology for a better society

Vector of

Conserved

variables

Flux Functions
Bed slope

source term

Bed friction

source term

The Shallow Water Equations

16

Technology for a better society

Target Application Areas

Floods

2010: Pakistan (2000+)

1931: China floods (2 500 000+)

Tsunamis

2011: Japan (5321+)

2004: Indian Ocean (230 000)

Storm Surges

2005: Hurricane Katrina (1836)

1530: Netherlands (100 000+)

Dam breaks

1975: Banqiao Dam (230 000+)

1959: Malpasset (423)
Images from wikipedia.org, www.ecolo.org

17

Technology for a better society

Two important uses of shallow water simulations

18

• In preparation for events: Evaluate possible scenarios

• Simulation of many ensemble members

• Creation of inundation maps

• Creation of Emergency Action Plans

• In response to ongoing events

• Simulate possible scenarios in real-time

• Simulate strategies for flood protection (sand bags, etc.)

• Determine who to evacuate based on
simulation, not guesswork

• High requirements to performance => Use the GPU
Simulation result from NOAA

Inundation map from “Los Angeles County Tsunami Inundation Maps”, http://www.conservation.ca.gov/cgs/geologic_hazards/Tsunami/Inundation_Maps/LosAngeles/Pages/LosAngeles.aspx

Technology for a better society

Solving a partial differential equation on the GPU

• Before we start with the shallow water

equations, let us examine something

slightly less complex:

the heat equation

• Describes diffusive heat conduction

• Prototypical partial differential equation

• u is the temperature, kappa is the diffusion

coefficient, t is time, and x is space.

19

Technology for a better society

Finding a solution to the heat equation

• Solving such partial differential equations
analytically is nontrivial in all but a few very
special cases

• Solution strategy: replace the continuous derivatives
with approximations at a set of grid points

• Solve for each grid point
numerically on a computer

• Use many grid points, and
high order of approximation
to get good results

20

Technology for a better society

The Heat Equation with an implicit scheme

1. We can construct an implicit scheme by carefully choosing

the "correct" approximation of derivatives

2. This ends up in a system of linear equations

3. Solve Ax=b using standard GPU methods to evolve the solution in time

21

Technology for a better society

The Heat Equation with an implicit scheme

• Such implicit schemes are often sought after

– They allow for large time steps,

– They can be solved using standard tools

– Allow complex geometries

– They can be very accurate

– …

• However…

– for many time-varying phenomena, we are also interested in the
temporal dynamics of the problem

– Linear algebra solvers can be slow and memory hungry, especially
on the GPU

22

Technology for a better society

Algorithmic and numerical performance

23

• For all problems, the total performance is
the product of the algorithmic and the
numerical performance

• Your mileage may vary: algorithmic
performance is highly problem dependent

• Sparse linear algebra solvers have low
numerical performance

• Only able to utilize a fraction of the
capabilities of CPUs, and worse on GPUs

• For suitable problems, explicit schemes
with compact stencils can give the best
performance

• Able to reach near-peak performance

N
u

m
e

ri
ca

l p
e

rf
o

rm
a

n
ce

Algorithmic performance

Red-

Black

Krylov

Multigrid

PLU

Tridiag

QR

Explicit

stencils

Technology for a better society

Explicit schemes with compact stencils

• Explicit schemes can give rise to compact stencils

– Embarrassingly parallel

– Perfect for the GPU!

24

Technology for a better society

Back to the shallow water equations

• A Hyperbolic partial differential equation

• Enables explicit schemes

• Solutions form discontinuities / shocks

• Require high accuracy in smooth parts
without oscillations near discontinuities

• Solutions include dry areas

• Negative water depths ruin simulations

• Often high requirements to accuracy

• Order of spatial/temporal discretization

• Floating point rounding errors

• Can be difficult to capture "lake at rest"
A standing wave or shock

25

Technology for a better society

Finding the perfect numerical scheme

• We want to find a numerical scheme that
• Works well for our target scenarios

• Handles dry zones (land)

• Handles shocks gracefully (without smearing or causing oscillations)

• Preserves "lake at rest"

• Have the accuracy required for capturing the physics

• Preserves the physical quantities

• Fits GPUs well
• Works well with single precision

• Is embarrassingly parallel

• Has a compact stencil

• …

• …

26

Technology for a better society

Scheme of choice: A. Kurganov and G. Petrova,

 A Second-Order Well-Balanced Positivity Preserving

Central-Upwind Scheme for the Saint-Venant System

Communications in Mathematical Sciences, 5 (2007), 133-160

The Finite Volume Scheme of Choice*

• Second order accurate fluxes

• Total Variation Diminishing

• Well-balanced (captures lake-at-rest)

• Good (but not perfect) match with GPU execution model

* With all possible disclaimers

27

http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf

Technology for a better society

Discretization

• Our grid consists of a set of cells or volumes

• The bathymetry is a piecewise bilinear function

• The physical variables (h, hu, hv), are piecewise
constants per volume

• Physical quantities are transported across the cell interfaces

• Algorithm:

1. Reconstruct physical variables

2. Evolve the solution

3. Average over grid cells

28

Technology for a better society

Kurganov-Petrova Spatial Discretization (Computing fluxes)

29

Continuous variables Discrete variables Dry states fix Reconstruction Slope evaluation Flux calculation

Technology for a better society

Temporal Discretization (Evolving in time)

Gather all known terms

Use second order Runge-Kutta to solve the ODE

30

Technology for a better society

Courant-Friedrichs-Lewy condition

• Explicit scheme, time step restriction:

– Time step size restricted by a

Courant-Friedrichs-Lewy condition

– Each wave is allowed to travel at most one

quarter grid cell per time step:

Numerical

propagation speed

Space

Stable

Unstable

T
im

e

31

Technology for a better society

A Simulation Cycle

3. Halfstep

1. Calculate fluxes

4. Calculate fluxes 5. Evolve in time

6. Apply boundary

conditions

2. Calculate Dt

32

Technology for a better society

Implementation – GPU code

Step

• Four CUDA kernels:

– 87% Flux

– <1% Timestep size (CFL condition)

– 12% Forward Euler step

– <1% Set boundary conditions

33

Technology for a better society

Flux kernel – Domain decomposition

• A nine-point nonlinear stencil

– Comprised of simpler stencils

– Heavy use of shared mem

– Computationally demanding

• Traditional Block Decomposition

– Overlaping ghost cells (aka. apron)

– Global ghost cells for boundary conditions

– Domain padding

34

Technology for a better society

Flux kernel – Block size

• Block size is 16x14

– Warp size: multiple of 32

– Shared memory use: 16 shmem

buffers use ~16 KB

– Occupancy

• Use 48 KB shared mem, 16 KB cache

• Three resident blocks

• Trades cache for occupancy

– Fermi cache

– Global memory access

35

Technology for a better society

Flux kernel - computations

• Calculations

– Flux across north and east interface

– Bed slope source term for the cell

– Collective stencil operations

• n threads, and n+1 interfaces

– one warp performs extra calculations!

– Alternative is one thread per stencil operation

(Many idle threads, and extra register pressure)

Input Slopes Integration points Flux

36

Technology for a better society

Flux kernel – flux limiter

• Limits the fluxes to obtain

non-oscillatory solution

– Generalized minmod limiter

• Least steep slope, or

• Zero if signs differ

– Creates divergent code paths

• Use branchless implementation (2007)

– Requires special sign function

– Much faster than naïve approach

(2007) T. Hagen, M. Henriksen, J. Hjelmervik, and K.-A. Lie.

How to solve systems of conservation laws numerically using the graphics processor as a high-performance computational engine.

Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, (211–264). Springer Verlag, 2007.

float minmod(float a, float b, float c) {

 return 0.25f

 *sign(a)

 *(sign(a) + sign(b))

 *(sign(b) + sign(c))

 *min(min(abs(a), abs(b)), abs(c));

}

37

http://kalie.at.ifi.uio.no/papers/conslaws-GPU.pdf
http://kalie.at.ifi.uio.no/papers/conslaws-GPU.pdf
http://kalie.at.ifi.uio.no/papers/conslaws-GPU.pdf

Technology for a better society

Timestep size kernel

• Flux kernel calculates wave speed per cell

– Find global maximum

– Calculate timestep using the CFL condition

– Parallel reduction:

• Models CUDA SDK sample

• Template code

• Fully coalesced reads

• Without bank conflicts

• Optimization

– Perform partial reduction in flux kernel

– Reduces memory and bandwidth

by a factor 192

Image from ”Optimizing Parallel Reduction in CUDA”, Mark Harris

16x14 1

38

Technology for a better society

Boundary conditions kernel

• Global boundary uses ghost cells

– Fixed inlet / outlet discharge

– Fixed depth

– Reflecting

– Absorbing

• Can also supply hydrograph

– Tsunamies

– Storm surges

– Tidal waves

Global boundary

Local ghost cells

3.5m Tsunami, 1h 10m Storm Surge, 4d

Technology for a better society

Boundary conditions kernel

• Use CPU-side if-statement instead of GPU-side

– Similar to CUDA SDK reduction sample, using templates:

– One block sets all four boundaries

– Boundary length (>64, >128, >256, >512)

– Boundary type (”none”, reflecting, fixed depth, fixed discharge, absorbing outlet)

– In total: 4*5*5*5*5 = 2500 realizations

switch(block.x) {

 case 512: BCKernelLauncher<512, N, S, E, W>(grid, block, stream); break;

 case 256: BCKernelLauncher<256, N, S, E, W>(grid, block, stream); break;

 case 128: BCKernelLauncher<128, N, S, E, W>(grid, block, stream); break;

 case 64: BCKernelLauncher< 64, N, S, E, W>(grid, block, stream); break;

}

40

Technology for a better society

• Because we have a finite domain of dependence, we

can create independent partitions of the domain and

distribute to multiple GPUs

• Modern PCs have up-to four GPUs

• Near-perfect weak and strong scaling

Multi-GPU simulations

Collaboration with Martin L. Sætra

41

Technology for a better society

Early exit optimization

• Observation: Many dry areas

do not require computation

– Use a small buffer to store

wet blocks

– Exit flux kernel if nearest

neighbors are dry

• Up-to 6x speedup (mileage may vary)

– Blocks still have to be scheduled

– Blocks read the auxiliary buffer

– One wet cell marks the whole block as wet

42

Technology for a better society

Sparse domain optimization

• The early exit strategy launches too

many blocks

• Dry blocks should not need to

check that they are dry!

Sparse Compute:

 Do not perform any computations on dry parts of the domain

Sparse Memory:

 Do not save any values in the dry parts of the domain

43

Ph.D. work of Martin L. Sætra

Technology for a better society

Sparse domain optimization

1. Find all wet blocks

2. Grow to include dependencies

3. Sort block indices and launch the required

number of blocks

• Similarly for memory, but it gets quite

complicated…

• 2x improvement over early exit (mileage may vary)!

44

Comparison using an average

of 26% wet cells

Technology for a better society

Real-time visualization

● When the data is on the GPU, visualize it directly

● Has about 10% performance impact

● http://www.youtube.com/watch?v=FbZBR-FjRwY

45

http://www.youtube.com/watch?v=FbZBR-FjRwY
http://www.youtube.com/watch?v=FbZBR-FjRwY
http://www.youtube.com/watch?v=FbZBR-FjRwY
http://www.youtube.com/watch?v=FbZBR-FjRwY

Technology for a better society

Accuracy and Physical correctness

46

Technology for a better society

Accuracy: Single Versus Double Precision

• What is the relative error in mass conservation

for single and double precision?

• What is the discrepancy between the two?

• Three different test cases

• Low water depth (wet only)

• High water depth (wet only)

• Synthetic terrain with dam break (wet-dry)

• Conclusions:

• We have loss in conservation

on the order of machine epsilon

• Single precision gives larger error than double

• Errors related to the wet-dry front is more

than an order of magnitude larger

• For our application areas, single precision

is sufficient

47

Technology for a better society

Verification: Parabolic basin

• Single precision is sufficient, but do we solve the equations?

• Test against analytical 2D parabolic basin case (Thacker)

– Planar water surface oscillates

– 100 x 100 cells

– Horizontal scale: 8 km

– Vertical scale: 3.3 m

• Simulation and analytical match well

– But, as most schemes, growing errors along wet-dry interface

48

Technology for a better society

• We model the equations correctly, but can we model real events?

• South-east France near Fréjus: Barrage du Malpasset

• Double curvature dam, 66.5 m high, 220 m crest length, 55 million m3

• Bursts at 21:13 December 2nd 1959

• Reaches Mediterranean in 30 minutes (speeds up-to 70 km/h)

• 423 casualties, $68 million in damages

• Validate against experimental data from 1:400 model

• 482 000 cells (1099 x 439 cells)

• 15 meter resolution

• Our results match experimental data very well

• Discrepancies at gauges 14 and 9 present in most (all?) published results

49

Validation: Barrage du Malpasset

Image from google earth, mes-ballades.com

Technology for a better society

Summary

50

Technology for a better society

• Shallow water simulations on the GPU vastly outperform CPU

implementations

• Able to run faster-than-real-time!

• Physical correctness can be ensured

• Even single precision is sufficiently accurate

• Multi-GPU and sparse domain optimizations

• Two GPUs give twice the performance

• Computation on land avoided

Summary

51

Technology for a better society

Questions?

Thank you for your attention

Contact:

André R. Brodtkorb

Email: Andre.Brodtkorb@sintef.no

Homepage: http://babrodtk.at.ifi.uio.no/

Youtube: http://youtube.com/babrodtk

SINTEF: http://www.sintef.no/heterocomp

52

mailto:Andre.Brodtkorb@sintef.no
http://babrodtk.at.ifi.uio.no/
http://babrodtk.at.ifi.uio.no/
http://youtube.com/babrodtk
http://www.sintef.no/heterocomp
http://www.sintef.no/heterocomp

Technology for a better society

"This slide is intentionally left blank"

53

