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Introduction to GPU Computing 
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Long, long time ago, … 

1942: Digital Electric Computer 
  (Atanasoff and Berry) 

1947: Transistor  
  (Shockley, Bardeen, and Brattain) 

1958: Integrated Circuit  
  (Kilby) 

1971: Microprocessor 
  (Hoff, Faggin, Mazor) 

1956 

2000 

1971- More transistors 
 (Moore, 1965) 
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The end of frequency scaling 

1971: Intel 4004,  
2300 trans, 740 KHz 

1982: Intel 80286,  
134 thousand trans, 8 MHz 

1993: Intel Pentium P5,  
1.18 mill. trans, 66 MHz 

2000: Intel Pentium 4,  
42 mill. trans, 1.5 GHz 

2010: Intel Nehalem,  
2.3 bill. trans, 8 X 2.66 GHz 

1999-2011: 

25%  increase in  

parallelism 

1971-2004: 

29% increase in  

frequency 

2004-2011: 

Frequency  

constant 

A serial program uses 2%  

of available resources! 

Parallelism technologies: 

• Multi-core (8x) 

• Hyper threading (2x) 

• AVX/SSE/MMX/etc (8x) 
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How does parallelism help? 

GPU

Multi Core

Single Core

~10x 

170 % 

100% 

100 % 

100% 

100% 

30% 

85% 

100% 

Frequency

Power

Performance

The power density of microprocessors  

is proportional to the clock frequency cubed: 
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The GPU: Massive parallelism 

Performance Memory Bandwidth 

CPU GPU 

Cores 4 16 

Float ops / clock 64 1024 

Frequency (MHz) 3400 1544 

GigaFLOPS 217 1580 

Memory (GiB) 32+ 3 
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~2010 ~2000 ~2005 

GPU Programming: From Academic Abuse to Industrial Use 

DirectCompute, C++ AMP 

AMD CTM / CAL 

DirectX 

BrookGPU 

OpenCL 

NVIDIA CUDA 

Graphics APIs "Academic" Abstractions Dedicated C-based languages 

AMD Brook+ 
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CPU scalar op CPU SSE op GPU Warp op 

GPU Execution mode 

CPU scalar op • 1 thread, 1 operand on 1 data element 

CPU SSE op • 1 thread, 1 operand on 2-4 data elements 

GPU Warp op • 1 warp = 32 threads, 32 operands on 32 data elements 

• Exposed as individual threads 

• Actually runs the same instruction 

• Divergence implies serialization and masking 
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Hardware serializes and masks divergent code flow: 

• Programmer is relieved of fiddling with element masks (which is necessary for SSE) 

• But execution time is still the sum of branches taken 

• Worst case: 

• All warp threads takes individual branches (1/32 perfomance) 

• Thus, important to minimize divergent code flow! 

• Move conditionals into data, use min, max, conditional moves. 

Warp Serialization and Masking 
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• First if-statement 

• Masks out 

superfluous threads 

• Not significant 

• Iteration loop 

• Identical for all threads 

• Early exit 

• Possible divergence 

• Only beneficial when 

all threads in warp can 

exit 

• Removing early exit 

increases performance from 0.84ms to 0.69ms (kernel only) 

 
(But fails 7 of 1 000 000 times since multiple zeros isn’t handled properly, but that is a different story  ) 

 

Example: Warp Serialization in Newton’s Method 
__global__ 
void 
newton(float* x,const float* a,const float* b,const float* c,int N) 
{ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  if( i < N ) { 
    const float la = a[i]; 
    const float lb = b[i]; 
    const float lc = c[i]; 
    float lx = 0.f; 
    for(int it=0; it<MAXIT; it++) { 
      float f = la*lx*lx + lb*lx + lc; 
      if( fabsf(f) < 1e-7f) { 
        break; 
      } 
      float df = 2.f*la*lx + lb; 
      lx = lx - f/df; 
    } 
    x[i] = lx; 
  } 
} 
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Examples of early GPU research 

Preparation for FEM (~5x) 

Euler Equations (~25x) 
Marine aqoustics (~20x) 
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Self-intersection (~10x) 

Registration of medical 

data (~20x) 

Fluid dynamics and FSI  (Navier-Stokes) 

Inpainting (~400x matlab code) 

Water injection in a fluvial reservoir (20x) 
Matlab Interface 

Linear algebra 

SW Equations (~25x) 

Examples from SINTEF 
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Examples of GPU use today 
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Screenshot from NVIDIA website 
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Compact stencils on the GPU: 

Efficient Flood Simulations 
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The Shallow Water Equations 

• A hyperbolic partial differential equation 

• First described by de Saint-Venant (1797-1886) 

• Conservation of mass and momentum 

• Gravity waves in 2D free surface 

 

• Gravity-induced fluid motion 

• Governing flow is horizontal 

 

• Not only for water: 

• Simplification of atmospheric flow 

• Avalanches 

• ... 

Water image from http://freephoto.com / Ian Britton 
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Vector of 

Conserved 

variables 

Flux Functions 
Bed slope 

source term 

Bed friction 

source term 

The Shallow Water Equations 
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Target Application Areas 

Floods 

2010: Pakistan (2000+) 

1931: China floods (2 500 000+) 

 

 

Tsunamis 

2011: Japan (5321+) 

2004: Indian Ocean (230 000) 

Storm Surges 

2005: Hurricane Katrina (1836) 

1530: Netherlands (100 000+) 

Dam breaks 

1975:  Banqiao Dam (230 000+) 

1959: Malpasset (423) 
Images from wikipedia.org, www.ecolo.org 
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Two important uses of shallow water simulations 
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• In preparation for events: Evaluate possible scenarios 

• Simulation of many ensemble members 

• Creation of inundation maps 

• Creation of Emergency Action Plans 

 

• In response to ongoing events 

• Simulate possible scenarios in real-time 

• Simulate strategies for flood protection (sand bags, etc.) 

• Determine who to evacuate based on  
simulation, not guesswork 

 

• High requirements to performance => Use the GPU 
Simulation result from NOAA 

Inundation map from “Los Angeles County Tsunami Inundation Maps”, http://www.conservation.ca.gov/cgs/geologic_hazards/Tsunami/Inundation_Maps/LosAngeles/Pages/LosAngeles.aspx 
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Solving a partial differential equation on the GPU 

• Before we start with the shallow water 

equations, let us examine something 

slightly less complex: 

the heat equation 

• Describes diffusive heat conduction 

• Prototypical partial differential equation 

 

 

• u is the temperature, kappa is the diffusion  

coefficient, t is time, and x is space. 
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Finding a solution to the heat equation 

• Solving such partial differential equations  
analytically is nontrivial in all but a few very  
special cases 

 

• Solution strategy: replace the continuous derivatives  
with approximations at a set of grid points 

 

• Solve for each grid point  
numerically on a computer 

 

• Use many grid points, and 
high order of approximation  
to get good results 
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The Heat Equation with an implicit scheme 

1. We can construct an implicit scheme by carefully choosing  

the "correct" approximation of derivatives 

 

 

2. This ends up in a system of linear equations 

 

 

 

 

 

 

3. Solve Ax=b using standard GPU methods to evolve the solution in time 
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The Heat Equation with an implicit scheme 

• Such implicit schemes are often sought after 

– They allow for large time steps, 

– They can be solved using standard tools 

– Allow complex geometries 

– They can be very accurate 

– … 

 

• However… 

– for many time-varying phenomena, we are also interested in the 
temporal dynamics of the problem 

– Linear algebra solvers can be slow and memory hungry, especially 
on the GPU 
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Algorithmic and numerical performance 
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• For all problems, the total performance is 
the product of the algorithmic and the 
numerical performance 

• Your mileage may vary: algorithmic 
performance is highly problem dependent 

 

• Sparse linear algebra solvers have low 
numerical performance 

• Only able to utilize a fraction of the 
capabilities of CPUs, and worse on GPUs 

 

• For suitable problems, explicit schemes 
with compact stencils can give the best 
performance 

• Able to reach near-peak performance 
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Algorithmic performance 

Red-

Black 

Krylov 

Multigrid 

PLU 

Tridiag 

QR 

Explicit 

stencils 
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Explicit schemes with compact stencils 

• Explicit schemes can give rise to compact stencils  

– Embarrassingly parallel 

– Perfect for the GPU! 

 

 

 

 

 

 

24 



Technology for a better society 

Back to the shallow water equations 

• A Hyperbolic partial differential equation 

• Enables explicit schemes 

• Solutions form discontinuities / shocks 

• Require high accuracy in smooth parts  
without oscillations near discontinuities 

• Solutions include dry areas 

• Negative water depths ruin simulations 

• Often high requirements to accuracy 

• Order of spatial/temporal discretization 

• Floating point rounding errors 

• Can be difficult to capture "lake at rest" 
A standing wave or shock 
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Finding the perfect numerical scheme 

• We want to find a numerical scheme that  
• Works well for our target scenarios 

• Handles dry zones (land) 

• Handles shocks gracefully (without smearing or causing oscillations) 

• Preserves "lake at rest" 

• Have the accuracy required for capturing the physics 

• Preserves the physical quantities 

• Fits GPUs well 
• Works well with single precision 

• Is embarrassingly parallel 

• Has a compact stencil 

• … 

• … 
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Scheme of choice: A. Kurganov and G. Petrova, 

 A Second-Order Well-Balanced Positivity Preserving  

Central-Upwind Scheme for the Saint-Venant System 

Communications in Mathematical Sciences, 5 (2007), 133-160 

The Finite Volume Scheme of Choice* 

• Second order accurate fluxes 

• Total Variation Diminishing  

• Well-balanced (captures lake-at-rest) 

• Good (but not perfect) match with GPU execution model 

* With all possible disclaimers 
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Discretization 

• Our grid consists of a set of cells or volumes 

• The bathymetry is a piecewise bilinear function 

• The physical variables (h, hu, hv), are piecewise  
constants per volume 

 

• Physical quantities are transported across the cell interfaces 

 

• Algorithm: 

1. Reconstruct physical variables 

2. Evolve the solution 

3. Average over grid cells 

28 
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Kurganov-Petrova Spatial Discretization (Computing fluxes) 
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Continuous variables Discrete variables Dry states fix Reconstruction Slope evaluation Flux calculation 
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Temporal Discretization (Evolving in time) 

Gather all known terms 

Use second order Runge-Kutta to solve the ODE 

30 
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Courant-Friedrichs-Lewy condition 

• Explicit scheme, time step restriction:  

– Time step size restricted by a  

Courant-Friedrichs-Lewy condition 

– Each wave is allowed to travel at most one  

quarter grid cell per time step: 

 

 

Numerical 

propagation speed 

Space 

Stable 

Unstable 

T
im

e
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A Simulation Cycle 

3. Halfstep 

1. Calculate fluxes 

4. Calculate fluxes 5. Evolve in time 

6. Apply boundary 

conditions  

2. Calculate Dt 
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Implementation – GPU code 

Step 

• Four CUDA kernels: 

– 87%  Flux 

– <1%  Timestep size (CFL condition) 

– 12%  Forward Euler step 

– <1%  Set boundary conditions 
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Flux kernel – Domain decomposition 

• A nine-point nonlinear stencil  

– Comprised of simpler stencils 

– Heavy use of shared mem 

– Computationally demanding 

 

• Traditional Block Decomposition 

– Overlaping ghost cells (aka. apron) 

– Global ghost cells for  boundary conditions 

– Domain padding 
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Flux kernel – Block size 

• Block size is 16x14 

– Warp size: multiple of 32 

– Shared memory use: 16 shmem  

buffers use ~16 KB  

– Occupancy 

• Use 48 KB shared mem, 16 KB cache 

• Three resident blocks 

• Trades cache for occupancy 

– Fermi cache 

– Global memory access 
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Flux kernel - computations 

• Calculations 

– Flux across north and east interface 

– Bed slope source term for the cell 

– Collective stencil operations 

• n threads, and n+1 interfaces 

– one warp performs extra calculations! 

– Alternative is one thread per stencil operation 

(Many idle threads, and extra register pressure) 

Input Slopes Integration points Flux 
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Flux kernel – flux limiter 

• Limits the fluxes to obtain 

non-oscillatory solution 

– Generalized minmod limiter  

• Least steep slope, or 

• Zero if signs differ 

– Creates divergent code paths 

 

• Use branchless implementation (2007) 

– Requires special sign function 

– Much faster than naïve approach 

(2007) T. Hagen, M. Henriksen, J. Hjelmervik, and K.-A. Lie.  

How to solve systems of conservation laws numerically using the graphics processor as a high-performance computational engine.  

Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, (211–264). Springer Verlag, 2007. 

float minmod(float a, float b, float c) { 

  return 0.25f 

    *sign(a) 

    *(sign(a) + sign(b)) 

    *(sign(b) + sign(c)) 

    *min( min(abs(a), abs(b)), abs(c) ); 

} 
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Timestep size kernel 

• Flux kernel calculates wave speed per cell 

– Find global maximum  

– Calculate timestep using the CFL condition 

– Parallel reduction: 

• Models CUDA SDK sample 

• Template code  

• Fully coalesced reads 

• Without bank conflicts 

 

• Optimization 

– Perform partial reduction in  flux kernel 

– Reduces memory and bandwidth  

by a factor 192 

 

 

 

 

Image from ”Optimizing Parallel Reduction in CUDA”, Mark Harris 

16x14 1 
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Boundary conditions kernel 

• Global boundary uses ghost cells 

– Fixed inlet / outlet discharge 

– Fixed depth 

– Reflecting 

– Absorbing 

 

 

• Can also supply hydrograph 

– Tsunamies 

– Storm surges 

– Tidal waves 

 

Global boundary 

Local ghost cells 

3.5m Tsunami, 1h 10m Storm Surge, 4d 
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Boundary conditions kernel 

• Use CPU-side if-statement instead of GPU-side 

– Similar to CUDA SDK reduction sample, using templates: 

– One block sets all four boundaries 

– Boundary length (>64, >128, >256, >512) 

– Boundary type (”none”, reflecting, fixed depth, fixed discharge, absorbing outlet) 

– In total: 4*5*5*5*5 = 2500 realizations 

 

 

switch(block.x) { 

  case 512: BCKernelLauncher<512, N, S, E, W>(grid, block, stream); break; 

  case 256: BCKernelLauncher<256, N, S, E, W>(grid, block, stream); break; 

  case 128: BCKernelLauncher<128, N, S, E, W>(grid, block, stream); break; 

  case  64:  BCKernelLauncher<  64, N, S, E, W>(grid, block, stream); break; 

} 
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• Because we have a finite domain of dependence, we 

can create independent partitions of the domain and 

distribute to multiple GPUs 

• Modern PCs have up-to four GPUs 

• Near-perfect weak and strong scaling 

 

Multi-GPU simulations 

Collaboration with Martin L. Sætra 
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Early exit optimization 

• Observation: Many dry areas  

do not require computation 

– Use a small buffer to store 

wet blocks 

– Exit flux kernel if nearest  

neighbors are dry 

 

 

• Up-to 6x speedup (mileage may vary) 

– Blocks still have to be scheduled 

– Blocks read the auxiliary buffer 

– One wet cell marks the whole block as wet 
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Sparse domain optimization 

• The early exit strategy launches too 

many blocks 

• Dry blocks should not need to  

check that they are dry! 

 

 

Sparse Compute: 

 Do not perform any computations on dry parts of the domain 
 

Sparse Memory: 

 Do not save any values in the dry parts of the domain 
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Ph.D. work of Martin L. Sætra 
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Sparse domain optimization 

1. Find all wet blocks 

2. Grow to include dependencies 

3. Sort block indices and launch the required 

number of blocks 

 

• Similarly for memory, but it gets quite 

complicated… 

 

• 2x improvement over early exit (mileage may vary)! 
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Comparison using an average 

of 26% wet cells 
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Real-time visualization 

● When the data is on the GPU, visualize it directly 

● Has about 10% performance impact 

● http://www.youtube.com/watch?v=FbZBR-FjRwY  
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Accuracy and Physical correctness 
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Accuracy: Single Versus Double Precision 

• What is the relative error in mass conservation 

for single and double precision? 

• What is the discrepancy between the two? 

 

• Three different test cases 

• Low water depth (wet only) 

• High water depth (wet only) 

• Synthetic terrain with dam break (wet-dry) 

 

• Conclusions: 

• We have loss in conservation  

on the order of machine epsilon 

• Single precision gives larger error than double 

• Errors related to the wet-dry front is more  

than an order of magnitude larger 

• For our application areas, single precision  

is sufficient 
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Verification: Parabolic basin 

• Single precision is sufficient, but do we solve the equations? 

• Test against analytical 2D parabolic basin case (Thacker) 

– Planar water surface oscillates 

– 100 x 100 cells 

– Horizontal scale: 8 km 

– Vertical scale: 3.3 m 

 

• Simulation and analytical match well 

– But, as most schemes, growing errors along  wet-dry interface 
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• We model the equations correctly, but can we model real events? 

• South-east France near Fréjus: Barrage du Malpasset 

• Double curvature dam, 66.5 m high, 220 m crest length, 55 million m3 

• Bursts at 21:13 December 2nd 1959 

• Reaches Mediterranean in 30 minutes (speeds up-to 70 km/h) 

• 423 casualties, $68 million in damages 

• Validate against experimental data from 1:400 model 

• 482 000 cells (1099 x 439 cells) 

• 15 meter resolution 

• Our results match experimental data very well 

• Discrepancies at gauges 14 and 9 present in most (all?) published results 
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Validation: Barrage du Malpasset 

Image from google earth, mes-ballades.com 
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Summary 
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• Shallow water simulations on the GPU vastly outperform CPU 

implementations 

• Able to run faster-than-real-time! 

 

• Physical correctness can be ensured 

• Even single precision is sufficiently accurate 

 

• Multi-GPU and sparse domain optimizations 

• Two GPUs give twice the performance 

• Computation on land avoided 

Summary 
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Questions? 

Thank you for your attention 

Contact: 

André R. Brodtkorb 

Email: Andre.Brodtkorb@sintef.no  

Homepage: http://babrodtk.at.ifi.uio.no/  

 

 

 

Youtube: http://youtube.com/babrodtk 

SINTEF: http://www.sintef.no/heterocomp  
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