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Introduction to adjoints

Example problem

What is the optimal turbine layout in a tidal stream to extract most
energy from the tidal current?

1

Problem formulation

max
m

Power(u,m)

s.t. ut +∇η = mu,

ηt +∇ · u = 0.

m: turbine positions
u: velocity
η: water elevation.

To solve this problem efficiently, we
want to apply gradient based
optimisation.
How do we compute dPower

dm ?

1Divett et al. Optimisation of multiple turbine arrays in a channel, 2011.
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Introduction to adjoints

Derivation of the adjoint equation

The general form of the example problem is:

min
m

J(u,m) subject to F (u,m) = 0, (1)

J(u,m) ∈ R is the functional of interest, m are the control variables and
F is the PDE operator with solution u(m).

We seek the total derivative of J with respect to the controls m:

dJ

dm
= Ju

du

dm
+ Jm. (2)

Taking the derivative of the constraint in (1) w.r.t. m yields:

Fu
du

dm
+ Fm = 0. (3)

(3) in (2) yields:

dJ

dm
= −

:=λ∗︷ ︸︸ ︷
JuF

−1
u Fm + Jm,

where λ is the adjoint solution.
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Introduction to adjoints

Adjoint equation

The adjoint equation is therefore:

F ∗
u (u,m)λ = J∗

u(u,m)

Key properties

1. The adjoint equation is a linear.

2. The adjoint equation is solved backward in time.

3. The functional gradient is obtained by computing

dJ

dm
= −λ∗Fm + Jm.

Hence the derivative computation requires one forward solve for u
and one adjoint solve for λ, independently of the choice of m!
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Applications

Efficient gradient computation

Applications

I Sensitivity analysis

I Data assimilation

I Design optimisation

I Inverse problems
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Applications

The turbine layout optimisation problem

Figure: Initial and optimised turbine positions and the power increase.
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Applications

Goal-oriented adaptivity

Goal-oriented adaptivity

Goal-oriented adaptivity and error control optimises the computational
resources by targeting the numerical simulations at a specific quantity of
interest.

2

2W. Bangerth, R. Rannacher. Adaptive Finite Element Methods for
Differential Equations, 2003.
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Options to adjoin a model

The stages of developing a model

Continuous 
equations

Discretised 
equations

Source
code
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Options to adjoin a model

Continuous adjoint

Continuous 
adjoint

Continuous 
equations

Discretised 
equations

Source 
code

pen+paper
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Options to adjoin a model

Algorithmic differentiation

Continuous 
equations

Discretised 
equations

Source 
code

Adjoint of the
source code

automatic
differentiation
tool
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Options to adjoin a model

Libadjoint’s approach

Continuous 
equations

Discretised 
equations

Source 
code

Adjoint of the
discretised equations

libadjoint
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Introduction to libadjoint

The fundamental idea of Libadjoint

libadjoint is a library that facilitates the development of discrete adjoint
models.

The fundamental idea of AD

A model is a sequence of elementary instructions.

The fundamental idea of libadjoint

A model is a sequence of equation solves.
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Introduction to libadjoint

Example: Burgers equation

The non-viscous Burgers equation has the form:

∂u

∂t
+ u · ∇u = 0.

The (explicit) discretisation with one nonlinear iteration per time step
yields:

−(M + ∆tA(un))︸ ︷︷ ︸
:=T (un)

un +Mun+1 = 0,

where M is the mass matrix, A is the discretised advection operator and
∆t is the time step. We linearise the advection term using the velocity at
the previous time step.
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Introduction to libadjoint

Example: Burgers equation

Three time steps can be written as a block matrix:


I

T (u0) M

T (u1) M

T (u2) M


︸ ︷︷ ︸

F (u)


u0

u1

u2

u3


︸ ︷︷ ︸

u

=


uinit
0
0
0


︸ ︷︷ ︸

b

We have cast the model in the form F (u)u = b.

The associated adjoint equation is:(
F (u) +

∂F (u)

∂u
u

)∗
λ =

∂J

∂u

∗
.

Therefore the adjoint equation reads:


I∗
(
T (u0) +

∂T (u0)

∂u0 u0
)∗

M∗
(
T (u1) +

∂T (u1)

∂u1 u1
)∗

M∗
(
T (u2) +

∂T (u2)

∂u2 u2
)∗

M∗



λ0

λ1

λ2

λ3

 =
∂J

∂u

∗
.
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Introduction to libadjoint

The development of an adjoint model with libadjoint requires two
steps:

1. Annotation

2. Callback registration
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Introduction to libadjoint

Step 1: Annotation

I libadjoint provides a set of library calls with which a model may be
annotated at runtime

I Each equation solve is annotated to record what is being computed,
what operators are acting on previously computed values, and their
nonlinear dependencies

The annotation

is sufficient to describe the discretisation matrix of the forward model...


I

T (u0) M
T (u1) M

T (u2) M


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Introduction to libadjoint

Step 1: Annotation

...and so libadjoint can derive the associated adjoint system:
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Introduction to libadjoint

Step 2. Register function callbacks

I libadjoint offers the facility to register function callbacks for
computing the action of the operators in the annotation

I ... and their derivatives (e.g. by using AD)

I It also offers the facility to record solutions

With the callbacks ...

... libadjoint can automatically assemble the adjoint equations.
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Introduction to libadjoint

Key properties of libadjoint

+ Works with modern language features and external libraries

+ The approach meshes well with AD

+ Comes with an optimal checkpointing strategy: Revolve3

− The annotation and callback implementation has to be done by hand,
however in some cases this can be automated (DOLFIN)

3A. Griewank, A. Walther, Revolve: an implementation of checkpointing for
the reverse or adjoint mode of computational differentiation, TOMS (2000)
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Summary

Summary

We have seen:

I An introduction and applications to adjoints

I Three ways how to adjoint a model

I How to adjoint a model using libadjoint
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