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Block-sparse 
tensor 
contraction 

Moving meshes 
 

Mixed meshes 
 

What we are 
doing…. 

!   Roadmap: applications drive DSLs, delivering performance portability 

Finite-volume 
CFD 

OP2.1: 
extended with 
dynamic 
meshes 

OP2: parallel 
loops over 
unstructured 
meshes 

Mesh 
adaptation 

 
extended with 
sparse matrices 

 
with fully-
abstract graphs 

Finite-element 
assembly 

Particle 
problems – 
molecular 
dynamics 

Rolls-Royce 
HYDRA 
turbomachinery 
CFD 

Fluidity and the 
Imperial 
College Ocean 
Model (ICOM) 

FENicS finite-
element PDE 
generator 
(UFL) 

LAMMPS – 
granular 
flow 

OpenMP CUDA/
OpenCL MPI SSE/AVX 

Streaming 
dataflow 
using 
Maxeler 

? 

P-adaptivity 
 

 
with piecewise 
structured 
meshes 

3D scene 
understanding 

(DTAM) 

Ab initio 
quantum 
chemistry 
(DFT) 

Pair model 
generator 

DFT 
integration 
generator 

Access-execute descriptors as general framework for capturing complex dependence 

… 



The message 

!  Slogans 
!  Generative, instead 

of transformative 
optimisation 

!  Get the abstraction 
right, to isolate 
numerical methods 
from mapping to 
hardware 

!  Build vertically, 
learn horizontally 

!  The value of 
generative and DSL 
techniques 

!  Plenty of room at the 
top 

!  The biggest 
opportunities are at 
the highest level 
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The Moore School 
Lectures 

!   The first ever computer 
architecture conference  

!   July 8th to August 31st 
1946, at the Moore 
School of Electrical 
Engineering, University 
of Pennsylvania  

!   A defining moment in 
the history of computing 
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Example: 
 for (i=0; i<N; ++i) { 
   points[i]->x += 1; 
 } 
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!  No problem: each iteration is independent 

!  Can the iterations 
of this loop be 
executed in 
parallel? 

Easy parallelism 



Example: 
 for (i=0; i<N; ++i) { 
   points[i]->x += 1; 
 } 
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!  Oh no: not all the iterations are independent!  
!  You want to re-use piece of code in different contexts 
!  Whether it’s parallel depends on context! 

!  Can the iterations 
of this loop be 
executed in 
parallel? 

Easy parallelism 



!  Shared memory makes parallel 
programming much easier: 

 for(i=0; I<N; ++i)  
par_for(j=0; j<M; ++j)  
  A[i,j] = (A[i-1,j] + A[i,j])*0.5; 

 par_for(i=0; I<N; ++i)  
for(j=0; j<M; ++j)  
  A[i,j] = (A[i,j-1] + A[i,j])*0.5; 
 

!   First loop operates on rows in parallel 
!   Second loop operates on columns in 

parallel 
!   With distributed memory we would have 

to program message passing to 
broadcast the columns in between 

!   With shared memory… no problem! 

i 

i 
j 

j 

Loop 1: 

Loop 2: 

P1 

P1 

Sarah Talbot and Paul Kelly, "Stable Performance for cc-NUMA using 
First Touch Page Placement and Reactive Proxies". HPCS'98  

Another loss of abstraction… 



Self-optimising linear algebra library 

x:=αp+x 

A r x 

q:=A.p Θ:=r.r 

χ:=q.p 

α:= θ/χ 

A: blocked row-major x: blocked row-wise r: blocked row-wise 

transpose 

p:=r 

!  Each library function 
comes with metadata 
describing data layout 
constraints 

!  Solve for distribution 
of each variable that 
minimises 
redistribution cost 

(Olav Beckmann and Paul H J Kelly, "A Linear Algebra Formulation for 
Optimising Replication in Data Parallel Programs". LCPC'99 ) 



• Carbon • Evolve 

• Stats 

• Zoo 

• Phyto 

• Physics 
• Move 

• Nutrient 

• Energy 

• Total Biomass 
computed here 

• Used here 

• Cell Nitrogen 
computed here 

• Used here  

• And so on… 

• …
 

• Nz 
• Az 
• Iz 
• CO
2z 

• …
 

• Ocean 
• surface 

! Application: 
ocean plankton 
ecology model 

! 27 reduction operations 
in total 

! 3 communications 
actually required! 

! 60% speedup for 32-
processor AP3000 

• A.J. Field, P.H.J. Kelly and T.L. Hansen, "Optimizing Shared Reduction Variables in MPI Programs". In Euro-Par 2002  

Automatic fusion of all-reduces 



Easy parallelism – tricky engineering 

!  Parallelism breaks 
abstractions: 
!   Whether code should run in 

parallel depends on context 
!   How data and computation 

should be distributed across 
the machine depends on 
context 

!   “Best-effort”, opportunistic 
parallelisation is almost 
useless: 
!   Robust software must 

robustly, predictably, exploit 
large-scale parallelism 

How can we build 
robustly-efficient 
multicore 
software 
 
While maintaining 
the abstractions 
that keep code 
clean, reusable 
and of long-term 
value? 

It’s a software engineering problem 



Active libraries and DSLs 
!   Domain-specific languages... 
!   Embedded DSLs 
!   Active libraries 

!   Libraries that come with a 
mechanism to deliver library-
specific optimisations 

!   Domain-specific “active” library 
encapsulates specialist performance 
expertise 

!   Each new platform requires new 
performance tuning effort 

!   So domain-specialists will be doing the 
performance tuning 

!   Our challenge is to support them 

Applications 

Exotic hardware 

Active library 

GPU Multicore FPGA Quantum? 

Visual effects 
Finite element 

Linear algebra 
Game physics 

Finite difference 



!   Classical compilers have two halves 

Syntax 
Points-to 

Class-hierarchy 
Dependence 

Shape 
..... 

Register allocation 
Instruction selection/scheduling 

Storage layout 
Tiling 

Parallelisation 
Program Dependence 



!   The right domain-specific language or active library can give 
us a free ride 

Syntax 
Points-to 

Class-hierarchy 
Dependence 

Shape 
..... 

Register allocation 
Instruction selection/scheduling 

Storage layout 
Tiling 

Parallelisation 
Program Dependence 



!   It turns out that analysis is not always the interesting part.... 

Syntax 
Points-to 

Class-hierarchy 
Dependence 

Shape 
..... 

Register allocation 
Instruction selection/scheduling 

Storage layout 
Tiling 

Parallelisation 
Program Dependence 
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C,C++, C#, Java, Fortran 

Code motion 
optimisations 
Vectorisation and 
parallelisation of affine 
loops over arrays 

Capture dependence 
and communication in 
programs over  richer 
data structures 

Specify application 
requirements, leaving 
implementation to select 
radically-different solution 
approaches   



Encapsulating and delivering domain expertise 

!  Domain-specific languages & active 
libraries 
!  Raise the level of abstraction 
!  Capture a domain of variability 
!  Encapsulate reuse of a body of 

code generation expertise/
techniques 

!  Enable us to capture design space 
!  To match implementation choice to 

application context: 
!  Target hardware 
!  Problem instance  

!  This talk illustrates these ideas with 
some of our recent/current projects 

Target hardware context 

Application-domain context 

Unifying 
representation 



Having your cake and eating it 

!   If we get this right: 
!   Higher performance than you can 

reasonably achieve by hand 
!   the DSL delivers reuse of expert 

techniques 
!   Implements extremely aggressive 

optimisations 
!   Performance portability 

!   Isolate long-term value embodied 
in higher levels of the software 
from the optimisations needed for 
each platform 

!   Raised level of abstraction 
!   Promoting new levels of 

sophistication 
!   Enabling flexibility 

!   Domain-level correctness 

C/C++/Fortran 

CUDA 
VHDL 

DSL 
Reusable 
generator 

Performance 

E
as

e 
of

 u
se

 



Having your cake and eating it 

!   If we get this right: 
!   Higher performance than you can 

reasonably achieve by hand 
!   the DSL delivers reuse of expert 

techniques 
!   Implements extremely aggressive 

optimisations 
!   Performance portability 

!   Isolate long-term value embodied 
in higher levels of the software 
from the optimisations needed for 
each platform 

!   Raised level of abstraction 
!   Promoting new levels of 

sophistication 
!   Enabling flexibility 

!   Domain-level correctness 

C/C++/Fortran 

MPI,  
 OpenMP 
  CUDA 
    VHDL 

Where 
compiler 
research 

should be 

Performance 

E
as

e 
of

 u
se

 

Bad tools! 

Powerful 
magic 



Indexed functor 
•  Functor represents function over an image 
•  Kernel accesses image via indexers 
•  Indexers carry metadata that characterises kernel’s data access pattern 

!  One-dimensional discrete wavelet transform, as indexed functor 
!  Compilable with standard C++ compiler 
!  Operates in either the horizontal or vertical axis 

!   Input indexer operates on RGB components separately 
!   Input indexer accesses ±radius elements in one (the axis) dimension 

!  Domain-specific active 
library example 



Image degrain example 

!  Recursive wavelet-based degraining visual effect in C++ 
!  Visual primitives are chained together via image temporaries to form a DAG 
!  DAG construction is captured through delayed evaluation. 

• Collaboration with The Foundry Ltd, www.thefoundry.co.uk, visual effects for film post-production 



Performance – Multicore +SSE vs NVidia GPUs 

This research prototype is part of the foundation for The Foundry’s forthcoming BLINK developer tool 



AEcute: Kernels, iteration spaces, and access descriptors 



• AEcute: Kernels, iteration spaces, and access descriptors 

What does this have to do? 



• AEcute: Kernels, iteration spaces, and access descriptors 

!   Automate synthesis of data movement code 
!   Automatically partition and parallelise 
!   Automatically select storage layouts and schedules to 

maximise spatial locality and alignment 
!   Automatically fuse loops and contract intermediate arrays 



• AEcute: Kernels, iteration spaces, and access descriptors 

!   Automate synthesis of data movement code 
!   Automatically partition and parallelise 
!   Automatically select storage layouts and schedules to 

maximise spatial locality and alignment 
!   Automatically fuse loops and contract intermediate arrays 

!   Explicitly characterise what data will be accessed 
!   At each point in the kernel’s iteration space 
!   As a function of its position 



• Idea: decoupling 

Access operands 

Execute 

Write back 

(the essence of streaming) 
 
 
(generalised) 



• Idea: decoupling 

The AEcute programming model 

Access operands 

Execute 

Write back 

Iteration space 

Read accesses 

Write accesses 

Read access descriptor 

Write access descriptor 

!   Explicitly characterise what data will be accessed 
!   At each point in the kernel’s iteration space 
!   As a function of its position 

AEcute 
!   Decoupled Access/Execute descriptors 



AEcute and Indexed functors 
•  The “indexed functors” from our visual effects framework are an 

instance of the AEcute idea 

Kernel Indexers Access descriptors 



OP2 – a  decoupled access-execute active library  
for unstructured mesh computations  

// declare sets, maps, and datasets 
op_set nodes = op_decl_set( nnodes ); 
op_set edges = op_decl_set( nedges ); 
 

op_map pedge1 = op_decl_map (edges, 
nodes, 1, mapData1 );  

op_map pedge2 = op_decl_map (edges, 
nodes, 1, mapData2 ); 

 

op_dat p_A = op_decl_dat (edges, 1, A ); 
op_dat p_r = op_decl_dat (nodes, 1, r ); 
op_dat p_u  = op_decl_dat (nodes, 1, u ); 
op_dat p_du = op_decl_dat (nodes, 1, du ); 
 

// global variables and constants declarations 
float alpha[2] = { 1.0f, 1.0f }; 
op_decl_const ( 2, alpha ); 

float u_sum, u_max, beta = 1.0f; 
 

for ( int iter = 0; iter < NITER; iter++ ) 
{  op_par_loop ( res, edges, 

  op_arg_dat ( p_A,  0, NULL,  OP_READ ), 
  op_arg_dat ( p_u, 0, &pedge2, OP_READ ), 
  op_arg_dat ( p_du, 0, &pedge1, OP_INC  ), 
  op_arg_gbl ( &beta, OP_READ ) 
  ); 
 u_sum = 0.0f; u_max = 0.0f; 
 op_par_loop ( update, nodes, 
  op_arg_dat ( p_r,  0, NULL, OP_READ ), 
  op_arg_dat ( p_du, 0, NULL, OP_RW ), 
  op_arg_dat ( p_u, 0, NULL, OP_INC ), 
  op_arg_gbl ( &u_sum, OP_INC ),  
  op_arg_gbl ( &u_max, OP_MAX )  
  ); 

} Example – Jacobi solver 



OP2- Data model 

OP2’s key data structure is a set 
A set may contain pointers that map into another set 

Eg each edge points to two vertices 

A 
Pedge1 
Pedge2 
 

r 
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// declare sets, maps, and datasets 
op_set nodes = op_decl_set( nnodes ); 
op_set edges = op_decl_set( nedges ); 
 

op_map pedge1 = op_decl_map (edges, 
nodes, 1, mapData1 );  

op_map pedge2 = op_decl_map (edges, 
nodes, 1, mapData2 ); 

 

op_dat p_A = op_decl_dat (edges, 1, A ); 
op_dat p_r = op_decl_dat (nodes, 1, r ); 
op_dat p_u  = op_decl_dat (nodes, 1, u ); 
op_dat p_du = op_decl_dat (nodes, 1, du ); 
 

// global variables and constants declarations 
float alpha[2] = { 1.0f, 1.0f }; 
op_decl_const ( 2, alpha ); 



OP2 – a  decoupled access-execute active library  
for unstructured mesh computations  

Example – Jacobi solver 

!   Each parallel loop precisely 
characterises the data that will be 
accessed by each iteration 

!   This allows staging into 
scratchpad memory 

!   And gives us precise dependence 
information 

!   In this example, the “res” kernel 
visits each edge 
!   reads edge data, A 
!   Reads beta (a global), 
!   Reads u belonging to the vertex 

pointed to by “edge2” 
!   Increments du belonging to  the 

vertex pointed to by “edge1” 

float u_sum, u_max, beta = 1.0f; 
 

for ( int iter = 0; iter < NITER; iter++ ) 
{  op_par_loop_4 ( res, edges, 

  op_arg_dat ( p_A,  0, NULL,  OP_READ ), 
  op_arg_dat ( p_u, 0, &pedge2, OP_READ ), 
  op_arg_dat ( p_du, 0, &pedge1, OP_INC  ), 
  op_arg_gbl ( &beta, OP_READ ) 
  ); 
 u_sum = 0.0f; u_max = 0.0f; 
 op_par_loop_5 ( update, nodes, 
  op_arg_dat ( p_r,  0, NULL, OP_READ ), 
  op_arg_dat ( p_du, 0, NULL, OP_RW ), 
  op_arg_dat ( p_u, 0, NULL, OP_INC ), 
  op_arg_gbl ( &u_sum, OP_INC ),  
  op_arg_gbl ( &u_max, OP_MAX )  
  ); 

} 



OP2 – parallel loops 

Example – Jacobi solver 

!   Each parallel loop precisely 
characterises the data that will be 
accessed by each iteration 

!   This allows staging into 
scratchpad memory 

!   And gives us precise dependence 
information 

!   In this example, the “res” kernel 
visits each edge 
!   reads edge data, A 
!   Reads beta (a global), 
!   Reads u belonging to the vertex 

pointed to by “edge2” 
!   Increments du belonging to  the 

vertex pointed to by “edge1” 

float u_sum, u_max, beta = 1.0f; 
 

for ( int iter = 0; iter < NITER; iter++ ) 
{  op_par_loop_4 ( res, edges, 

  op_arg_dat ( p_A,  0, NULL,  OP_READ ), 
  op_arg_dat ( p_u, 0, &pedge2, OP_READ ), 
  op_arg_dat ( p_du, 0, &pedge1, OP_INC  ), 
  op_arg_gbl ( &beta, OP_READ ) 
  ); 
 u_sum = 0.0f; u_max = 0.0f; 
 op_par_loop_5 ( update, nodes, 
  op_arg_dat ( p_r,  0, NULL, OP_READ ), 
  op_arg_dat ( p_du, 0, NULL, OP_RW ), 
  op_arg_dat ( p_u, 0, NULL, OP_INC ), 
  op_arg_gbl ( &u_sum, OP_INC ),  
  op_arg_gbl ( &u_max, OP_MAX )  
  ); 

} 

inline void res(const float A[1], const float u[1],  
   float du[1], const float beta[1]) 

{ 
  du[0] += beta[0]*A[0]*u[0]; 
} 

inline void update(const float r[1], float du[1],  
 float u[1], float u_sum[1], float u_max[1]) 

{ 
  u[0] += du[0] + alpha * r[0]; 
  du[0] = 0.0f; 
  u_sum[0] += u[0]*u[0]; 
  u_max[0] = MAX(u_max[0],u[0]); 
} 



!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

Edges 

Vertices 

Cross-partition 
edges 



Vertices 

Cross-partition 
edges 

Edges 

!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

!   Elements of 
the edge set 
are coloured 
to avoid 
races due to 
concurrent 
updates to 
shared 
nodes   



!   Two key 
optimisations: 

!   Partitioning 
!   Colouring 

!   At two levels 

Edges 

Vertices 

Cross-partition 
edges 



OP2 - performance 

!   Example: non-linear 2D inviscid unstructured airfoil 
code, double precision (compute-light, data-heavy) 

!   Two backends: OpenMP, CUDA (OpenCL coming) 
!   For tough, unstructured problems like this GPUs can 

win, but you have to work at it 
!   X86 also benefits from tiling; we are looking at how to 

enhance SSE/AVX exploitation 



Combining MPI, OpenMP and CUDA 

Titer = Tss + 2(Tac + Trc + Tbrc + Tu) (1)

Tss = wg,ss × ncells (2)

Tac = wg,ac × ncells (3)

Trc = max(wg,rc × ncore,edges, Tcomm,rc) +

wg,rc × (nieh,edges + neeh,edges) (4)

Tbrc = wg,brc × (nbedges + nieh,bedges) (5)

Tu = wg,u × ncells + Treduce (6)

Tcomm,rc = (nieh,cells + ninh,cells)× 8B ×
(esizep q + esizep adt) + 2LNavg,cells +

Lon chip × CNavg,cells (7)

Figure 4: Performance model for CPU cluster

Table 5: Airfoil Model validations and projections

System Nodes Pred. Actual Err

(sec) (sec) (%)

5 (120 cores) 7.39 7.86 -6.08

10 (240 cores) 3.77 4.02 -6.30

HECToR 20 (480 cores) 1.92 2.09 -8.14

40 (960 cores) 0.99 1.12 -11.14

60 (1440 cores) 1.25 1.41 -11.29

80 (1920 cores) 1.14 1.28 -10.83

5(60 cores) 12.38 12.29 0.78

6(72 cores) 10.32 10.44 -1.20

CX1 10(120 cores) 6.22 6.07 2.51

40(480 cores) 1.61 - -

80(960 cores) 0.84 - -

120(1440 cores) 1.08 - -

2 × C2070 8.29 - -

Tesla 4 × C2070 4.30 - -

C2070 12 × C2070 1.87 - -

processor to another. Thus 1/B gives the bandwidth of the
network. L is the latency associated with communicating a
message with a neighbor. To account for the critical path
time during message passing, we use the off-node message
communication times. We double the latency term as there
are two data arrays being exchanged. The esize∗ gives the
size of an element (i.e. number of double precision values per
set element) for each data array. The 8 multiplier accounts
for the size of a double precision floating-point value on the
system. C is the number of cores that share a NIC (12 cores
share a NIC in HECToR [22] and CX1). We assume that
some serialization of MPI messages are caused at the NIC
during message passing [26, 25] and approximate it as the la-
tency for communicating a message within a node (Lon chip)
multiplied by the average number of MPI messages sent si-
multaneously. The values for B, L and Lon chip were found
by benchmarking the end-to-end message transfer time (using
the Intel MPI benchmarks suite [27]) between two nodes (and
two cores) for a range of message sizes. The time for a reduce
operation Treduce was approximately modeled as a tree gather
operation [25].
Table 5 details validations of the above performance model

on HECToR (up to 1920 cores) and CX1 (up to 120 cores).
The model accuracy exceeds 90% for most runs but is more
sensitive to the system communication performance at large
scale. However the model accurately predicts the number
of cores that gives the optimum runtime and the qualitative
trend in scaling on HECToR, allowing us to establish the lim-
its of scalability for Airfoil. Table 5 also notes projected run-
times using the model for CX1 up to 960 cores. Starting
at 1440 cores the model predicts that communication times
dominate the max term in (4) on both HECToR and CX1.
To extend the above homogeneous multi-core CPU cluster

model to that of a GPU cluster model requires us to con-
sider the additional costs involved during MPI operation over
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Figure 5: Airfoil - 26M edge mesh (1000 iterations) :

HECToR - 24 core/node, CX1 - 12 core/node, C2070

cluster - 1 GPU/node

GPUs. Such techniques have been previously used for pre-
dicting GPU cluster performance with high accuracy [28]. For
this paper we develop the GPU cluster model for Airfoil as-
suming a cluster of NVIDIA C2070 GPUs that is intercon-
nected by an InfiniBand network with similar performance to
that of CX1. Computation times for each loop was bench-
marked on a single C2070 GPU for various mesh sizes. This
gives us approximate times for the GPU to execute a given
number of set elements belonging to its local partition. The
communication time for res_calc in (7) was augmented with
PCIe bandwidths and latencies (measured using the NVIDIA
CUDA SDK’s bandwidthTest benchmark, and a custom la-
tency benchmark) to copy halo data to and from the GPU.
Our measurements indicated a host to device PCIe bandwidth
and latency of about 3700 MB/sec and 9µS respectively. The
device to host bandwidth and latency was about 3130 MB/sec
and 11µS. Assuming that each C2070 has exclusive access to
a NIC we remove the serialization costs terms from (7). The
current model does not taken into consideration the possible
performance gains with NVIDIA’s new GPUDirect [24] tech-
nology. Projections from the GPU cluster model are noted in
the final three rows of Table 5.

It is clear from these results that the 1.5 million edge mesh
on the GPU cluster reaches its scalability limits with a few
C2070 GPUs compared to HEXToR and CX1. Thus we bench-
mark and project performance for solving a 26 million edge
mesh with Airfoil. Figure 5 projects the performance of Airfoil
solving this mesh on both CX1 and the hypothetical C2070
GPU cluster. Actual run times from HECToR are also pro-
vided as a reference.

The model predicts, for example, a cluster with 36 C2070
GPUs to give equivalent performance to that of over 1920
HECToR cores (80 nodes) or a Westmere/InfiniBand cluster
with 1440 cores (120 nodes). Thus, we see a C2070 cluster to
give the same performance that is equivalent to performance
given by traditional homogeneous clusters that are more than
three times its size. However this should be considered in the
context of the amount of available memory on a GPU to hold
and execute the required partition size. For example, the 26
million edge mesh could not be solved on a single C2070 GPU
due to lack of resources on the device where at least 12 C2070
GPUs are required for such a workload.

On HECToR and CX1 we see that the increase in redun-
dant computations due to ieh at large-scales degrades per-
formance. The runtime at 160 HECToR nodes and 320 CX1
nodes was particularly affected by a large ieh. However, in-
crease in redundant computation has almost a negligible af-
fect on the C2070 GPUs due to their SIMD operation over
elements. Thus the model predicts a much more smoother
performance curve on the GPU cluster. The C2070 cluster
scales up to 128 nodes after which the performance plateaus.

(Preliminary results under review) 

!   non-linear 2D 
inviscid airfoil 
code 

!   26M-edge 
unstructured 
mesh 

!   1000 
iterations 

!   Analytical 
model 
validated on 
up to 120 
Westmere 
X5650  cores 
and 1920 
HECToR 
(Cray XE6)  
cores 

Unmodified C++ OP2 source 
code exploits inter-node 
parallelism using MPI, and 
intra-node parallelism using 
OpenMP and CUDA 



What does a DSL give you? 
!   Semantic properties deriving from the domain-level 

!   example: SPIRAL's rewrite rules for decomposing linear transforms 

!   Simplified reasoning deriving from operating at a higher 
level of representation 
!   example: SPIRAL but also DESOLA's treatment of fusion of loops over 

sparse matrices 

!   Delivering optimisations and implementation techniques 
specifically known to be valuable for a class of 
applications 
!   example: OP2's partitioning, staging and colouring schemes for indirect 

loops over unstructured meshes 

!   Opening-up the design space, so that we can freely 
navigate to the optimum implementation technique for 
each application context and each hardware platform. 





A:14 Russell and Kelly

element = FiniteElement(" Lagrange " , " triangle " , 2)
element_f = FiniteElement(" Lagrange " , " triangle " , 1)

v = TestFunction(element)
u = TrialFunction(element)

f = Coefficient(element_f)
g = Coefficient(element_f)
h = Coefficient(element_f)

a = f*g*h*dot(v, u)*dx

Fig. 4: A specification for a pre-multiplied mass matrix with element order q = 2, pre-
multiplied by by nf = 3 functions of order p = 1.

nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 218 27 28 0.96 260 80 70 1.14 350 267 121 2.20 679 751 215 3.15

p = 1, q = 2 820 76 89 0.85 1483 193 160 1.20 2092 651 284 2.29 3432 1949 501 3.89

p = 1, q = 3 4946 126 161 0.78 7915 490 410 1.19 8057 1559 922 1.69 11851 3123 1205 2.59

p = 1, q = 4 17316 435 485 0.89 24915 1111 1048 1.06 25331 2542 2024 1.25 34526 4159 2797 1.48

p = 2, q = 1 253 49 55 0.89 655 315 218 1.44 1690 1970 941 1.79 2896 10637 2421 1.19

p = 2, q = 2 1533 117 134 0.87 3424 998 584 1.70 5339 5899 2372 2.25 - - - -
p = 2, q = 3 7857 318 356 0.89 11779 1966 1431 1.37 16690 7860 4732 1.66 - - - -
p = 2, q = 4 24930 853 979 0.87 34435 4306 3603 1.19 - - - - - - - -
p = 3, q = 1 356 106 90 1.17 1767 1023 501 2.04 - - - - - - - -
p = 3, q = 2 2122 223 217 1.02 5443 2743 1473 1.86 - - - - - - - -
p = 3, q = 3 8113 756 838 0.90 16927 5684 4552 1.24 - - - - - - - -
p = 3, q = 4 25165 1661 2006 0.82 46034 9856 9746 1.01 - - - - - - - -

Table I: The number of floating point operations required to perform local assembly of
pre-multiplied mass matrices of varying complexity over a two-dimensional triangular
cell. Forms use an order q Lagrangian basis multiplied with nf functions of order p,
also discretised using a Lagrangian basis. The columns Q, T and E denote the num-
ber of floating point operations required by the quadrature, tensor contraction and
EXCAFÉ implementations, respectively. The column B/E denotes the improvement in
operation count of the EXCAFÉ generated implementation over the quadrature or ten-
sor contraction implementation with the lowest floating point operation count.

ically implemented our cell entity numbering and basis function construction so that
given the same input data, our generated code should produce the same output as the
FFC generated implementations.

For each tested form, we generated pseudo-random basis function coefficients be-
tween −1 and 1 and provided them as input to the FFC generated quadrature imple-
mentation and EXCAFÉ generated code. We used a fixed cell geometry to avoid aspect
ratio related issues. We verifed that the L2-norm between the matrix entries of the
two implementations remained less than 10−12.

TODO: possibly also validate over different cell geometries.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: 201Y.

!   #FLOPs for local assembly of pre-multiplied mass matrices of varying complexity 
over a two-dimensional triangular cell 

!   Forms use an order q Lagrangian basis multiplied with nf functions of order p, also 
discretised using a Lagrangian basis.  

!   Columns Q, T and E show #FLOPs for quadrature, tensor contraction and our 
optimised ́ implementations, respectively 

!   B/E denotes improvement over min(Q,T) 

Evaluation of variational forms 
involves hard-to-exploit redundant 
subexpressions 
 

Major savings are possible through 
aggressive large-scale factorisation  

(Preliminary results presented at 
FEniCS’11, paper under review) 



Mapping the design space – h/p 
!   The balance 

between local- vs 
global-assembly 
depends on 
multiple factors 

! Eg tetrahedral vs 
hexahedral  

! Eg higher-order 
elements  

!   Local vs Global 
assembly is not 
the only 
interesting option 

Relative execution time 
on CPU (dual quad Core2) 
 
Helmholtz problem with 
Hex elements 
With increasing order 
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(C.D.Cantwell, S.J.Sherwin, R.M.Kirby, P.H.J.Kelly, From h to p efficiently) 



Mapping the design space – h/p 
!   Contrast: with 

tetrahedral 
elements 

!   Local is faster 
than global only 
for much higher-
order 

!   Sum factorisation 
never wins 

Relative execution time 
on CPU (dual quad 

Core2) 
 

Helmholtz problem with 
Tet elements 

With increasing order 
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(Cantwell et al, provisional results under review) 



End-to-end accuracy drives algorithm selection 

C.D. Cantwell et al. From h to p efficiently
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Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P )-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.
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Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P )-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.
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!   Helmholtz 
problem using 
tetrahedral 
elements 

!   What is the best 
combination of h 
and p? 

!   Depends on the 
solution accuracy 
required 

!   Which, in turn 
determines 
whether to 
choose local vs 
global assembly  

Optimum 
discretisation 
for 10% 
accuracy 

Optimum 
discretisation 
for 0.1% 
accuracy 

Blue dotted lines show runtime of optimal strategy; Red solid lines show L2 error 



Conclusions and Further Work 
!  From these experiments: 
!  Algorithm choice makes a big 

difference in performance 
!  The best choice varies with the 

target hardware 
!  The best choice also varies with 

problem characteristics and 
accuracy objectives 

!  We need to automate code 
generation 

!  So we can navigate the design 
space freely 

!  And pick the best implementation 
strategy for each context 

Target hardware context 

Application-domain context 

Unifying 
representation 



Where this is going 

! For OP2: 
! For aeroengine turbomachinery CFD, funded by Rolls Royce and the 

TSB (the SILOET programme) 
! In progress: 

! For Fluidity, and thus into the Imperial College Ocean Model 
! Feasibility studies being pursued: UK Met Office (“Gung Ho” project), 

Deutsche Wetterdienst ICON model, Nektar++   

! For UFL and our Multicore Form Compiler 
! For Fluidity, supporting automatic generation of adjoint models 

! Beyond: 
! Similar DSL ideas for the ONETEP quantum chemistry code 
! Similar DSL ideas for 3D scene understanding 
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