Imperial College
London

Generating programs works better than
transforming them, if you get the
abstraction right

Paul H J Kelly
Group Leader, Software Performance Optimisation
Co-Director, Centre for Computational Methods in Science and Engineering

Department of Computing
Imperial College London

Joint work with :

David Ham, Gerard Gorman, Florian Rathgeber (Imperial ESE/Grantham Inst for Climate Change Res)

Mike Giles, Gihan Mudalige (Mathematical Inst, Oxford)

Adam Betts, Carlo Bertolli, Nicolas Loriant, Graham Markall, George Rokos (Software Perf Opt Group, Imperial)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial) *

FENicS finite-

element PDE IL;)? i‘:e Z ration Pair model Wh at we dare
gglllirator generator generator d .

() OI n g EEER

Fluidity and the Ab initio

Rolls-Royce

. LAMMPS —
HYDRA Imperial quantum L o0 e e Block-spars
turbomachinery College Ocean chemistry flow (DTAM) tensor
CFD Model (ICOM) (DFT) contraction

Moving mesh
Particle

Finite-volume problems — Finite-element Mesh . ;
CFD molecular assembly adaptation MIXCOUMESHES
d :
MUELCES P-adaptivity

— N ==

OP2: parallel

| tended with . . ith pi]
5 ,f’) g‘fuz‘t/g rre d z;(/neanmi?; o extended with with fully- gfgg[ﬁggmsa
o - T sparse matrices || abstract graphs meshes

— —

MPI

Streaming
dataflow
using
Maxeler

B Roadmap: applications drive DSLs, delivering performance portability

OpenMP SSE/AVX

Imperial College
London

B Slogans

B Generative, instead
of transformative
optimisation

B Plenty of room at the
top

B Get the abstraction
right, to isolate
numerical methods
from mapping to
hardware

B The biggest
opportunities are at
the highest level

B Build vertically,
learn horizontally

B The value of
generative and DSL
techniques

THEORY AND TECHNIQUES
FOR DESIGN OF
ELECTRONIC DIGITAL COMPUTERS

Lectures given at the Moore School
8 July 1946 —31 August 1946

Volume 1V
Lectures 34-48

UNIVERSITY OF PENNSYLVANIA
Moore School of Electrical Engineering

PHILADELPHIA, PENNSYLVANIA

June 30, 1948

B The first ever computer
architecture conference

B July 8th to August 31st
1946, at the Moore
School of Electrical
Engineering, University
of Pennsylvania

B A defining moment in
the history of computing

LECTURE 45 26 AUGUST 1946

A PARALIEL CHANNEL CCGIPUTING :iACHINE

Lecture by
J. P, Eckert, Jr,
Electronic Control Company

« =« Again T wish to reiterate the point that all the arguments
for parallel operation are only valid provided one applies them to
the steps which the bullt in or wired in programming of the machine
nﬁeratcs. Any steps which are progra.med by the operstor, who sets
up the machine, should be set up only in a serial fashion, It has

heen shown over and over again that any departure from this procedure

results in a system which is much too complicated to use,

See also http.//www.digital60.org/birth/themooreschool/lectures.htmi#45

ondon _ege Easy parallelism

Example: B Can the iterations
for (i=0; i<N: ++i) { of this loop be

to i _ 4. executed In
}p ointsfij->x += 1, parallel?

N S X |m—
N S X | omm—
N S X | omm—
N S X |—
N S X |m—
N S X |

X X X
y y y
Z Z z

B No problem: each iteration is independent

Imperial College

Easy parallelism

Example: B Can the iterations
for (i=0; i<N; ++i) { of this loop be

}points[i]->x +=1: g;fglyéleg in
g N R

X

y
z

N S X | umm—

N < X | ——

X X X
y y i1y
V4 Z z

B Oh no: not all the iterations are independent!

B You want to re-use piece of code in different contexts
B Whether it’s parallel depends on context!

Imperial College

London Another loss of abstraction...

n !”areg memory ma!es para”e’ :

programming much easier:
for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
Alij] = (A[i-1,j] + A[i.j])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; j<M; +1j)
Alij] = (Ali,j-1] + A[i,j])*0.5;

W First loop operates on rows in parallel i

w» Second loop operates on columns in
parallel

w With distributed memory we would have Loop 2:
to program message passing to
broadcast the columns in between

w With shared memory... no problem! \

Sarah Talbot and Paul Kelly, "Stable Performance for cc-NUMA using
First Touch Page Placement and Reactive Proxies". HPCS'98

Imperial Colleg

onaon - Self-optimising linear algebra library

A: blocked row-major 1: blocked row-wise x: blocked row-wise

B Each library function
comes with metadata
describing data layout
constraints

B Solve for distribution
of each variable that
minimises
redistribution cost

(Olav Beckmann and Paul H J Kelly, "A Linear Algebra Formulation for
Optimising Replication in Data Parallel Programs". LCPC'99)

Imperial College Automatic fusion of all-reduces

B Application:
ocean plankton
ecology model

00
e
(0] ..
o O
oN 0
z 0 0
‘A, % o
.IZ {
CO
22
. o
S
.. 0]

*Physics

}

*Phyto

|

*/.00

}

*Stats

|

*Carbon

h

l

*Move
T *Total Biomass
l computed here
*Used here
*Nutrient /
« *Cell Nitrogen

l / computed here
*Used here
*Energy / *And so on...

l B 27 reduction operations
in total
*Evolve |8 3 communications

actually required!

l B 60% speedup for 32-
processor AP3000

*A.J. Field, P.H.J. Kelly and T.L. Hansen, "Optimizing Shared Reduction Variables in MPI Programs". In Euro-Par 2002

Imperial College

London Easy parallelism — tricky engineering
e e

B Parallelism breaks

abstractions: How can we build
B Whether code should run in r ObU§tly -efficient
parallel depends on context multicore
B How data and computation software

should be distributed across
the machine depends on
context
B “Best-effort”, opportunistic
parallelisation is almost
useless:

B Robust software must

While maintaining
the abstractions
that keep code
clean, reusable
and of long-term

robustly, predictably, exploit value?
large-scale parallelism

It's a software enqgineering problem

Imperial College
London

Active libraries and DSLs

Domain-specific languages... Visual effects

Embedded DSLs
Active libraries

B Libraries that come with a
mechanism to deliver library-
specific optimisations

Domain-specific “active” library
encapsulates specialist performance
expertise

Each new platform requires new
performance tuning effort

So domain-specialists will be doing the
performance tuning

Our challenge is to support them
GPU

Finite element
Linear algebra
Game physics
Finite difference

Applications

Exotic hardware

Multicore FPGA Quantum?

Imperial College
London

B Classical compilers have two halves

Class-hierarchy
Points-to

B The right domain-specific ianguage or active library can give
us a free ride

§

NS
oy
9
S|
IS
<
\

Dependence
Class-hierarchy
Points-to

http://www.nikkie oA S B i

B [t turns out that analysis is not always the interesting part....

Imperial College

C,C++, C#, Java, Fortran

Code motion Capture dependence
optimisations and communication in

Vectorisation and programs over richer

parallelisation of affine data structures
loops over arrays

Specify application
requirements, leaving
implementation to select
radically-different solution

approaches

Imperial College
London 2 Encapsulating and delivering domain expertise

B Domain-specific languages & active
libraries Application-domain context

B Raise the level of abstraction
B Capture a domain of variability

B Encapsulate reuse of a body of
code generation expertise/

techniques =
B Enable us to capture design space g osontation

B To match implementation choice to
application context:

B Target hardware
B Problem instance

é
B This talk illustrates these ideas with Target hardware context

some of our recent/current projects

Imperial College

Having your cake and eating it

B If we get this right:

B Higher performance than you can

reasonably achieve by hand C/C++/Fortran
B the DSL delivers reuse of expert
techniques 5 S »
. S
B Implements extremely aggressive |4 Reusable
optimisations ® generator
©
L

B Performance portability

B |[solate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

B Raised level of abstraction

B Promoting new levels of
sophistication

Performance

B Enabling flexibility
B Domain-level correctness

Imperial College

B If we get this right:

B Higher performance than you can
reasonably achieve by hand

B the DSL delivers reuse of expert
techniques

B Implements extremely aggressive
optimisations

B Performance portability

B |[solate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

B Raised level of abstraction

B Promoting new levels of
sophistication

B Enabling flexibility
B Domain-level correctness

Having your cake and eating it

Powerful
magic

LN

compiler
MPI,

research

should be
OpenMP

CUDA

VHDL

C/C++/Fortran

Ease of use

Bad tools!

Performance

B Domain-specific active

library example

* Functor represents function over an image

* Kernel accesses image via indexers
* Indexers carry metadata that characterises kernel’s data access pattern

class DWT1D : public Functor<DWT1D, eParallel> ({
Indexer<eInput, eComponent, elD> Input;
Indexer<eOutput, eComponent, e0D> HighOutput;
Indexer<eQOutput, eComponent, e0D> LowOutput;
mFunctorIndexers (Input, HighOutput, LowOutput);

Indexed functor

DWT1D (Axis axls, Radius radius) : Input(axis, radius) {}

void Kernel() {
float centre = Input();
float high = (centre - (Input(-Input.Radius) +
Input (Input.Radius)) » 0.5f) x 0.5f;

=

HighOutput () = high; :
LowOutput () = centre - high; Vertical DWT

} (1:2 / Filter Skeleton)

' mOne-dimensional discrete wavelet transform, as indexed functor

B Compilable with standard C++ compiler
B Operates in either the horizontal or vertical axis
B Input indexer operates on RGB components separately
B /nput indexer accesses rradius elements in one (the axis) dimension

Imperial College

Image degrain example

— —

Image DeGrainRecurse (Image input, int level = 0) {
Image HY,LY,HH,HL,LH, LL, HHP, HLP, LHP, LLP, pSuml, pSum2, out;

DWT1D hDWT (eHorizontal, 1 << level); <,
DWT1D vDWT (eVertical, 1 << level); ~
hDWT (input, HY, LY);
vDWT (HY, HH, LH);
vDWT (LY, LH, LL);

Proprietary prop;
prop (HH, HHP);
prop (LH, LHP);
prop (HL, HLP);

Sum sum,;
sum (HHP, LHP, pSuml);
sum (HLP, pSuml, pSum2);

/* Go to the next level of recursion. =*/ | (i
LLP = (level < 3) ? DeGrainRecurse(LL, level+l) : LL; e

{ SE\ e

sum (pSum2, LLP, out);
return out;

} mRecursive wavelet-based degraining visual effect in C++
B Visual primitives are chained together via image temporaries to form a DAG
B DAG construction is captured through delayed evaluation.

*Collaboration with The Foundry Ltd, www.thefoundry.co.uk, visual effects for film post-production

(g

Imperial College

Performance — Multicore +SSE vs NVidia GPUs

70 T T T I T T T T
I In this example, + o+ R EIn this example,
60 | Tesla C1060 8800 GTX —f—Phenomoes0 —Ml— | CPU can beat a 60 - +h il \.#__,./"F' | /+“+’ \'/ + *\\j_ GPUs always
GTX 260 —>X— Xeon E5420 —[1— C2DE6600 —— GPU / j({ < ¢ . Win
@ X B VN
w | ke bttt +—+—+_TIlBecause loop o I NNtV VAR
X 50 | eyt e ™ fusion eliminates % 90 - BLooD fusion |
s)/;f DRAM bottleneck o O0p Tusion 1s
< 40y : = 40 - not possible
= , H,A 4] = R, e K
= s fk’%?f = SgHE V/El‘x," I Future work: loop = }kxﬁgﬁ x * TR R R Ry
£ 30 |4) 1o a / Tesla C1060 —+—
=) I8 S fusion for the GPU! £ 30 F GTX 260 _| BSo GPU DRAM
S =y " bandwidth
S 20 5 8800 GTX —¥— andwi
= miiig s " 2 g g SgEesSEg = ER , < o0 Xeon E5420 —F3— gives
/®Tesla C1060 (nvidia) |£ Phenom 9650 —ill— overwhelming
10 0080 00 6069 — G050 9 | ®asmccis C2D EBB00 —— advantage
EGTX 260 (nVidia) g
B 24.SM,CC13 10 iﬁi‘i%ii ii‘ﬁ‘_ iiii i_‘i i ﬂ i
0 | 1 I I 1 | 1 l8:300 GTX (nVidia) - 5 O o ¢ NN
0 2 4 6 8 10 12 14 16 whiiiuo NS AR RaLACANASMN A L 8 cores are no
i i E dcore etter than
Image Size (MPix) Bxeon £5420 (nte) 0 2 4 6 8 10 12 14 16 -
/C++ Compiler 11.0, CUDA B 8 cores, two sockets, two | S IVIP Cores Slnoe
o scaotseostn mage Size (MPix) bandwidih-
ty-standard \._¥ 2-Core Core2Duo limited
7 — ® Without loop 7 EQlder nVidia
SSE Vectorisation =1 fusion, SSE is Realignment ———] hardware was
T 6 Fuﬂg“é%‘;m]ri:;gg: B f limited T 6 | Thread Slock Minimisation == | very sensitive
w value — 0 Split Column Pere\lenem | — to al|gnment of
E 5 B memory is g 5 | Dual Transpose Ellmlnat?on [| global memory
=% 2 Staging
S] . bottleneck o T & accesses — hot
ransposition [N i
5 Degraining 5 imisati a problem with
-2 4 - B o 4+ No Optimisation I . .) . p
= = Diffusion Filtering GTX260 and
g B 8-core Intel 9
o 3 | 5 3| | C1060
o Xeon has less a
7 e DRAMand L2 | |2 »
§ 2 Diffusion Filtering bandwidth per § 2 Degraining B Staging and
& core, so & transposition
x 1 benefits more SOERTEEEE B B B B B e are crucial for
from fusion diffusion
0 0 filtering
4 4 Py Py
<, W T % W, o T, %, RICY %, RGN
% K S, B % G %6 % 0, 6 %, o
v %“5‘0 0 K4 %‘5‘0 = ¥ o ‘)05\ &+ 0 ‘)0
0

This research prototype is part of the foundation for The Foundry’s forthcoming BLINK developer tool

Imperial College
London

Active libraries domain-

specific languages anda | "=N'CS YrL - Other
o finite element application-

unifying common discretisation level program

framework DSL generators

AEcute: Kernels, iteration spaces, and access descriptors

OpenCL Other back-ends, eg AVX

intrinsics, FPGAs

Imperial College
London

specific languages and a e e ==

_ _ finite element application-
unifving common discretisation level program
framework DSL generators

What does this have to do?

v v v v v

*AEcute: Kernels, iteration spaces, and access descriptors

e s

OpenClL

Other back-ends, eg AVX
iNntrinsics, FPGASsS

Imperial College
London

Active libraries domain-

specific languages and a s=alies e s ==

_ _ finite element application-
unifving commaon discretisation level program
framework DSL generators

v v v v v

*AEcute: Kernels, iteration spaces, and access descriptors

Automate synthesis of data movement code
Automatically partition and parallelise

Automatically select storage layouts and schedules to
maximise spatial locality and alignment

B Automatically fuse loops and contract intermediate arrays

OpencL Other back-ends, eg AVX

iNntrinsics, FPGASsS

Imperial College
London

Active libraries domain-

specific languages and a s=alies e s ==

_ _ finite element application-
unifving commaon discretisation level program
framework DSL generators

B Explicitly characterise what data will be accessed
B At each point in the kernel’s iteration space
B As a function of its position

v v v v v

*AEcute: Kernels, iteration spaces, and access descriptors

B Automate synthesis of data movement code
B Automatically partition and parallelise

B Automatically select storage layouts and schedules to
maximise spatial locality and alignment

B Automatically fuse loops and contract intermediate arrays

OpencL Other back-ends, eg AVX

iNntrinsics, FPGASsS

Imperial College
London

MNMeaecuiwve IElsr=arice= slcoEan=mEER—
sppecific I=amsusase= =amancl =a | FEIcsS UL — | | —ther |

- . Fimite eleeryrmayenrmt S licaticor —
EEERETWwiESrneS cCCPETRERTRaPER

AdAiscretis=aticon Tlevel progr=arn
TEr=aEnnewweas i L= Oenaerators

m Explicitly characterise what data will be accessed
m Af each point in the kernel’s iteration space
m As a function of its position

+ + +

ddea:aecoupﬁng

(the essence of streaming)

(generaiisea)

Write back

| e == | COoOthier ol =1t L e A<

=
imtrinsices. P csAas

Automate synthesis of dafta movement code
Automatically partition and parallelise

Automatically select storage layouts and schedules fo
maximise spatial locality and alignment

Automatically fuse loops and contract intermediate arrays

Imperial Colleg

onaon - 1he AEcute programming model

AEcute

B Decoupled Access/Execute descriptors

*ldea: decoupling

TETRMTEIEEIL Reec sccesses

4

‘ Read access descriptor

CEEEREEEEFEFEERERRERE rreration space

‘ ‘ Write access descriptor
LPRTPATEAEATR write accesses

B Explicitly characterise what data will be accessed
B At each point in the kernel’s iteration space
B As a function of its position

meeraollese AEcute and Indexed functors

— ——

« The “indexed functors” from our visual effects framework are an
instance of the AEcute idea

class DWT1D : public Functor<DWT1D, eParallel> {
/Indexer<eInput, eComponent, elD> Input;)
Indexer<eOutput, eComponent, e0D> HighOutput;
Indexer<eQOutput, eComponent, e0D> LowOutput;
mFunctorIndexers (Input, HighOutput, LowOutput);

QWTID(Axis axls, Radius radius) : Input(axis, radius) {U

A

ﬁid Kernel () { \
float centre = Input();

float high = (centre - (Input (-Input.Radjius) +
Input (Input/Radius)) » 0.5f) * 0.5f;

=

HighOutput () = high; :
LowOutput(= cehtre 4 high; Vertical DWT

2 (1:2 / Filter Skeleton)
Kernel\g Indexers _, Access descriptors

Imperial College OP2 — a decoupled access-execute active library
London for unstructured mesh computations

// declare sets, maps, and datasets float u_sum, u_max, beta = 1.0f;

op_set nodes = op_decl set(nnodes); for (int iter = 0; iter < NITER; iter++)

{

op_set edges = op_decl_set(nedges);

u_sum = 0.0f; u_max = 0.0f;

/I global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl_const (2, alpha);

Example - Jacobi solver '

e College OP2- Data model

/] declare sets, maps, and datasets

A A A A A
Pedge1 Pedge1 Pedge1 Pedgel1 Pedgel
op_set edges = op_decl_set(nedges), Pedge2 Pedge2 Pedge2 Pedge2 Pedge?2

il

op_set nodes = op_decl set(nnodes);

/I global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl_const (2, alpha);

OP2’s key data structure is a set
A set may contain pointers that map into another set
Eg each edge points to two vertices

Imperial College OP2 —a decoupled access-execute active library

London for unstructured mesh computations
e e e ... e

float u_sum, u_max, beta = 1.0f;

: for (intiter = 0; iter < NITER; iter++)
B Each parallel loop precisely

characterises the data that will be 1
accessed by each iteration

B This allows staging into
scratchpad memory

B And gives us precise dependence
information

: “ ” u sum = 0.0f; u max = 0.0f;
B [n this example, the "res” kernel - =

visits each edge
B reads edge data, A
B Reads beta (a global),

B Reads u belonging to the vertex
pointed to by “edge2”

B Increments du belonging to the
vertex pointed to by “edge1”

Example - Jacohi solver’

inline void res(const float A[1], const float uf1],
float du[1], const float beta[1])

duf0] += beta[0]*A[0]*u[0]:

/
inline void update(const float r[1], float :

float u[1], float u_sum[1], float u_max[1])
{
u[0] += du[0] + alpha * r[0];
duf[0] = 0.0f;
u_sumf0] += u[0]*uf0];
u_max[0] = MAX(u_max[0],u[0)),

}

B In this example, the “res” kernel “_

visits each edge
B reads edge data, A
B Reads beta (a global),

B Reads u belonging to the vertex
pointed to by “edge2”

B Increments du belonging to the
vertex pointed to by “edge1”

OP2 - parallel loops

I — —

float u_sum, u_max, beta = 1.0f;

for (intiter = 0; iter < NITER,; iter++)

u_sum = 0.0f; u_max = 0.0f;

Example - Jacohi solver’

D

Two key 4‘ A-.‘ A

/\
optimisations: v v v§§
Partitioning “’ ' I\
Colouring ‘
)\ 4

Partition #53 Partition #54 Partition #55

A
(N N A

Edges

Shared Memory

i TTT T T I ~

Vertices

v
Partition #54

Two key
optimisations:

Partitioning
Colouring

B Elements of
the edge set
are coloured
to avoid

i
\/

races due to
concurrent

updates to o \iiion #53
shared A

Partition #54
AN

VAL
A VI‘V‘&
ANAAAA

\ 1\ N7
TAVAVA

/\
\

Partition #55

nodes

N\ [

N\

Edges

e A AN

Shared Memory

Cross-partition
edges//v'

L1111

]

{

T~

~
]

v
Partition #54

B Two key
optimisations:

it

Partition #53 Partition #54 Partition #55

B Partitioning

B Colouring
B Attwo levels

/

\/

e TTIIIITIT

Partition #54

Vertices

Imperial College

OP2 - performance

600 Y T 200 T
OpenMP Threads 1 - Block Size 64
OpenMP Threads 2 128
500 OpenMP Threads 4 T |, 256
OpenMP Threads 8 0 512 ——
OpenMP Threads 16 ——] 150
400
B 3
5 5
S 3]
2 300 2 100
2 2
A= k=
= =
200
50 M
100
0 0 -
64 128 256 512 64 128 256 512
Partition size Partition size

(a) Intel Xeon E5540 (Nehalem) (ICC 11.1) (b) Tesla €2050

: C. e T8 ' A
B Example: non-linear 2D inviscid unstructured airfoil Jeetly
code, double precision (compute-light, data-heavy) % .

2

B Two backends: OpenMP, CUDA (OpenCL coming)
B For tough, unstructured problems like this GPUs can ‘
win, but you have to work at it 53‘5 T
i - i L OSSR AT AL T+
B X86 also benefits from tiling; we are looking at how to "I ds i/
enhance SSE/AVX exploitation e hedsiteossma SN a Al

Imperial College

Combining MPI, OpenMP and CUDA
T —— . e o m—

B non-linear 2D 60 ' . . . ;
inviscid airfoil 1 1 1 1 ‘ CX1Pred. —A—
code HECTOR Actu. @

O HECToR Pred. —o— |

¥ 26M—edge C207O cluster Pred. —o—
unstructured | | | ‘ 3
mesh 0 ol e S SRS B -

B 1000 | | Unmod/f/ed C++ OP2 source
jterations =2 L \\ CodeeprOItslnterfnode ,,,,,,,,,,,,, -

B Analytical

Execution time (Seconds)
('S
S

parallelism using MPI, and
intra-node parallel/sm usmg

model Prley Opéhl\/lP"éhd"CUDA ********** D .
validated on o | | | |

up to 120 0F \ Na e O — R S—
Westmere A A

X5650 cores o o — N .
and 1920 0 : : ' ' ' ' a— !
HECTOR 50 100 150 200 250 300 350 400 450 500
(Cra y XE 6) Number of nodes

cores

(Preliminary results under review)

Imperial College What does a DSL give you?
e e . o——

B Semantic properties deriving from the domain-level
B example: SPIRAL's rewrite rules for decomposing linear transforms

B Simplified reasoning deriving from operating at a higher
level of representation

B example: SPIRAL but also DESOLA's treatment of fusion of loops over
sparse matrices

B Delivering optimisations and implementation techniques
specifically known to be valuable for a class of
applications

B example: OP2's partitioning, staging and colouring schemes for indirect
loops over unstructured meshes

B Opening-up the design space, so that we can freely
navigate to the optimum implementation technique for
each application context and each hardware platform.

»

Domain
developer:
expert in
application

Unified Form Language (UFL)

Domain-specific language developed by
the FEniCS project: high-level description of
weak forms of PDEs, very close to
mathematical notation

field

»

Numerical
analyst:
expertin
finite-
element
methods

UFL code

UFL Code Generation Engine
Implements local assembly strategies for

finite element forms: breaks the link
between numerical problem specification
and algorithmic implementation

An expert for
each fayer

»

Domain
developer:
abstractions

Local assembly
kernels and

OP2 Interface

Abstraction for the specification of explicit
parallel loop computations declared over
an abstract data representation of
unstructured meshes

data dependencies

not
expressible
in UFL

»

Computer
scientist:
expertin
parallel
programming,

Parallel loops over
kernels with access
descriptors

OP2 Transformation/Scheduling

Implements threading, colouring, message
passing, data marshalling for different

platforms: breaks the [ink between
algorithmic and parafle! implementation

[A weak form of the shallow water equations

LqV-MV=—LEu~n(q+—Q‘JGS

/v-Vth=c’ (kT —h " m-vdS
o

TE
can be represented in UFL as

¥ = FunctionSpace(mesh, *Raviart-Thomas®, 1)
H = FunactioanSpace (mesh, *DG', ©)

¥ = VsH

{v¥, q) = TestFunctians{W)

{u, h) = TrialFunctiona{¥)

M_u = inner(v,u)*dx

M_bh = grh*dx

Ct = -ianer (avg{u), junp{g,n)}*ds

C = cea2sadjoint {(Ct)

F = fwinner{v,as_vsctor([-u[1] ,u[0]1]))=dx
A = aggembla(M_u+M_h+0.5edte(C-Ct+F))

AT = N _ut+tM_h-0.6*dt*(C-Ct+F)

~

Local assembly kernel

void Masm(donble localTsnsor [3][3])
{

const double qw(8] = { .., };

const doubls CG1[3106] = { ... *;

for(int 1 = 0; 1 < 8; i++)

for(int j = 0; j < 3; j++)
for{int g = 0; g < 6; g++)
lacalTaensar [1][j]
+= CGL[11[g] = CGLLI1Lg]l = qwlgl);

parallel loop

over all grid cells,

in unspecified order,
partitioned

unstructured grid
defined by vertices,

edges and cells

optimisation

Multicore CPU + MPI

'.".'"‘a

o,
sy,
ay,
"'"-..m_
"I..-.

GPU + MPI

ea,

Explicitely parallel
hardware-specific

e, IMplementation

Future hardware

nle

nf:2

nf:

3

nf:4

Q T

E BE

Q T

E

BE

Q T

E BE

Q T E BE

218 27
820 76
4946 126
17316 435

28 0.96
89 0.85
161 0.78
485 0.89

260 80

1483 193
7915 490
24915 1111

70
160
410
1048

1.14
1.20
1.19
1.06

350 267
2092 651
8057 1559
25331 2542

121 2.20
284 2.29
922 1.69
2024 1.25

679 751 215 3.15
3432 1949 501 3.89
11851 3123 1205 2.59
34526 4159 2797 1.48

253 49
1533 117
7857 318
24930 853

5o 0.8
134 0.87
396 0.89
979 0.87

695 315
3424 998
11779 1966
34435 4306

218
H84
1431
3603

1.44
1.70
1.37

1.19] -

1690 1970
5339 5899
16690 7860

p=3,q=2
p=3,q=3
p=3,q=4

396 106
2122 223
8113 756
25165 1661

9 117
217 1.02
838 0.90
2006 0.82

1767 1023
H443 2743
16927 5684
46034 9856

501

1473
4552
9746

2.04| -
1.86| -
1.24] -
1.01) -

941 1.79

2372 2.25] -
4732 1.66| -

subexpressions

2896 10637 2421 1.19

Evaluation of variational forms
involves hard-to-exploit redundant

Major savings are possible through
aggressive large-scale factorisation

#FLOPs for local assembly of pre-multiplied mass matrices of varying complexity
over a two-dimensional triangular cell

Forms use an order q Lagrangian basis multiplied with n;functions of order p, also
discretised using a Lagrangian basis.

Columns Q, T and E show #FLOPs for quadrature, tensor contraction and our

optimised implementations, respectively
(Preliminary results presented at

B/E denotes improvement over min(Q,T) FEniCS’11, paper under review)

Imperial College

Mapping the design space — h/p
= = —— e

B The balance T
between local- vs
global-assembly
depends on
multiple factors

B Eg tetrahedral vs

—_
oo

| | | | |
Sum-Factorisation I
Local Element mmammm |
Global Matrix

—_
(o))
1

—
'S
T
L

—_
N
1
1

hexahedral 10 - Relative execution time -
B Eg higher-order g | on CPU (dual quad Core2)
elements

Helmholtz problem with 4
Hex elements
With increasing order

»
I

B Local vs Global
assembly is not
the only
interesting option

i SN
1

N
1
1

Execution time normalised wrt local element approach

o

1 2)[3 4 5 67 8 9 10|
(C.D.Cantwell, S.J.Sherwin, R.M.Kirby, PH.J.Kelly, From h to p efﬁcﬁsntly)

Imperial College

Mapping the design space — h/p

30 | | | | | | | | | |
B Contrast: with 28 - Sum-Factorisation mmmmm _
Local Element mmomamn
tetrahedral 26 Global Matrix e -
elements 4T Relative execution time -
T2+ on CPU (dual quad -
_ % 20 F Core2) _
B Local is faster 3
than globalonly &' i
an giobalonly & 6l Helmholtz problem with _
for much higher- ¢ " Tet elements
order > , i With increasing order |
o 12 F -
S 10| i
B Sum factorisation £ 8 -
never wins E 6 _
S 4F _
3 2F i
<
w 0

(12 3 45 6 7 & 9 10|

(Cantwell et al, provisional results under review) P

Imperial College

End-to-end accuracy drives algorithm selection

s1) awinuny

‘6
. \\
o_o AlY
o \
e
. \
L |
il BV
...m \
N~ © < (4p] (QV ’._I[
S S S
5 5 5
) mm%w mm%
ELQ 5 AP
35 % 8 3.5 =
0T & 3 - O &
X7 e v S -
Y
O) Qo S O C > O
C O - - — £
= o S c O > ® o
= 2Ly B n © R
OCETE T T c9 =% ©
mbhamu._nua...mpe.._u.w.mr._ht%nla
auwmehmd wmnuqum._n_lueow
S0qg = Q S OeWehhl
ol o Om O ¢ & T =00
- - - -

accuracy

Blue dotted lines show runtime of optimal strateqy: Red solid lines show L. error

ondon _ege Conclusions and Further Work
B From these experiments:
B Algorithm choice makes a big Application-domain context

difference in performance

B The best choice varies with the
target hardware

B The best choice also varies with
problem characteristics and
accuracy objectives

representation
B \We need to automate code
generation

B S0 we can navigate the design
space freely

}
B And pick the best implementation 7arget hardware context
strategy for each context

Imperial College Where thiS iS gOing
e e . o——

B For OP2:

B For aeroengine turbomachinery CFD, funded by Rolls Royce and the
TSB (the SILOET programme)

E In progress:
B For Fluidity, and thus into the Imperial College Ocean Model

E Feasibility studies being pursued: UK Met Office ("“Gung Ho" project),
Deutsche Wetterdienst ICON model, Nektar++

B For UFL and our Multicore Form Compiler
B For Fluidity, supporting automatic generation of adjoint models

B Beyond:
B Similar DSL ideas for the ONETEP quantum chemistry code
B Similar DSL ideas for 3D scene understanding

Imperial College

Acknowledgements
e

B Partly funded by

B NERC Doctoral Training Grant (NE/
G523512/1)

B EPSRC “MAPDES” project (EP/I00677X/1)
B EPSRC "PSL" project (EP/1006761/1)

B Rolls Royce and the TSB through the
SILOET programme

B AMD, Codeplay, Maxeler Technologies

