
Parallelization in Time

LRS Oslo June 2012 1/50

Parallelization in Time

Mark Maienschein-Cline
Department of Chemistry

University of Chicago

and

L. Ridgway Scott
Departments of Computer Science and Mathematics

University of Chicago

Initial value problems

LRS Oslo June 2012 2/50

Finite difference methods for solving initial value problem for an
ordinary differential equation exhibit limited natural parallelism.

However, for linear systems there are scalable parallel algorithms in
which the domain decomposition is in the time domain [11].

Such techniques are based on scalable methods for solving
banded triangular linear systems of equations and have been
known for some time (cf. [10, 6]).

What can provide the increasing data size needed for such
scalability is a long time interval of integration [9].

Indeed, there are many simulations in which the primary interest is
a very long time of integration.

For example, there is a celebrated simulation of the villin headpiece
by molecular dynamics [3], which involved 500 million time steps.

Easy HPC

LRS Oslo June 2012 3/50

Parallel Performance
I will pay $100 to the first person to demonstrate a speedup of at

least 200 on a general purpose, MIMD computer used for scientific

computing. E-mail challenge from Alan Karp, November 1985

Computer Architecture
What else do you expect from the country that invented

rock and roll? Chevrolet Camero advertisement, May 1994

Loop Tiling
The rumors of my demise are much exagerrated Mark Twain

Dependences I wish I didn’t know now what

I didn’t know then from the song “Against the Wind” by Bob Seger

Linear Systems In scientific computing,

performance is a constraint, not an objective one of the authors

Particle Dynamics
The Force will be with you, always Obi-Wan Kenobi in “Star Wars”

An example

LRS Oslo June 2012 4/50

We begin with a very simple example here motivated by a swinging
pendulum.
To a first approximation, the position u(t) of the pendulum satisfies
a differential equation

d2u

dt2
= f(u) (1)

with initial conditions provided at t = 0:

u(0) = a0, u
′(0) = a1 (2)

for some given data values a and a1.
The variable u can be taken to denote the angle that the pendulum
makes compared with the direction of the force of gravity.
Then f(u) = mg sin u where g is the gravitational constant and m is
the mass of the weight at the end of the pendulum.
(We are ignoring the mass of the rod that holds this weight.)

Discretization

LRS Oslo June 2012 5/50

We can approximate via a central difference method to get a
recursion relation

un+1 = 2un − un−1 − τf(un) (3)

where τ := ∆t2.
If displacements of the pendulum position from vertical are small,
then we can use the approximation sin u ≈ u to get a linear equation

d2u

dt2
= mgu. (4)

In this case, the difference equations become a linear recursion
relation of the form

un+1 = (2− τmg) un − un−1. (5)

The initial conditions (2) provide starting values for the the
recursion.

Dicretization as a linear system

LRS Oslo June 2012 6/50

initial values For example, we can take

u0 = a and u−1 = a0 − a1∆t. (6)

This allows us to solve (5) for n ≥ 0.

The recursion (5) corresponds to a banded, lower triangular system
of equations of the form

Lu = b (7)

where the bandwidth of L is w = 2, the diagonal and
subsubdiagonal terms of L are all one, and the subdiagonal terms
of L equal τmg − 2.

The right-hand side g is of the form

b1 = (1− τmg) a0 + a1∆t and b2 = −a0 (8)

and bi = 0 for i ≥ 3.

Solving triangular systems in parallel

LRS Oslo June 2012 7/50

Key to the scalability of Gaussian elimination (GE) is the fact that
the work/memory ratio ρWM = n.

However, triangular solution has a work/memory ratio ρWM = 1.

The latter is (sequentially) trivial to solve, but there are loop-carried
dependences in both the outer and inner loops, although the inner
loop is a reduction.

These loops cannot easily be parallelized, but we will see that they
can be decomposed in a suggestive way (see Figure 1).

Schematic of “toy duck”

LRS Oslo June 2012 8/50

0k

1
2

P-1

w

main
diagonal

k

k

Figure 1: Schematic of “toy duck” parallelization of a banded, triangular
matrix equation solution algorithm.

Processors 1 through P − 1 compute

bℓi :=
kℓ∑

j=min(i−w,1)

ai,jxj ∀i = 1 + (k + 1)ℓ, . . . , (k + 2)ℓ. (9)

Typical step in toy duck

LRS Oslo June 2012 9/50

In the simplest case (as we now assume) we will have

k = ν(P − 1) (10)

for some integer ν ≥ 1, so that each processor ≥ 1 computes ν
different bi’s using previously computed xj ’s.
Note that this requires access to the (previously computed) values
xj for j ≤ kℓ.
Simulaneously, processor 0 computes xkℓ+1, . . . , x(k+1)ℓ by the
standard algorithm, namely,

xi = a−1
i,i


fi − bℓ−1

i −
i−1∑

j=(k−1)ℓ+1

ai,jxj


 ∀kℓ < i ≤ (k + 1)ℓ. (11)

At end of this step, processor 0 sends xkℓ+1, . . . , x(k+1)ℓ to other
processors, and other processors send b(k+1)ℓ+1, . . . b(k+2)ℓ to
processor 0.

Analysis of toy duck

LRS Oslo June 2012 10/50

This completes the ℓ-th step for ℓ > 1.
These steps involve a total of 2k2 MAPS (multiply-add pairs).
Load balance in (9) can be achieved in a number of ways.
If ν = 2, then perfect load balance is achieved by having processor
1 doing the first and last row, processor 2 doing the second and
penultimate row, and so on.
The total number of operation to compute (9) is

k(w − k)− 1
2
k2 = kw − 3

2
k2 (12)

MAPS, where MAPS stands for “multiply-add pairs.”
Thus the time estimate for (9) is proportional to

(
w − 3

2
k
) k

P − 1
(13)

time units, where the unit is taken to be the time required to do one
multiply-add pair.

Continued analysis of toy duck

LRS Oslo June 2012 11/50

Processor zero does 3
2
k2 MAPS, and thus the total time for one

stage of the program is proportional to

max
{

3
2
k2,

(
w − 3

2
k
) k

P − 1

}
. (14)

These are balanced if

3
2
k2 =

(
w − 3

2
k
) k

P − 1
(15)

which reduces to having
P = 2

3

w

k
. (16)

Recalling our assumption (10), we find that

P (P − 1) = 2
3

w

ν
(17)

Scaling of toy duck

LRS Oslo June 2012 12/50

Optimal P depends only on the band width w and not on n.
Algorithm not scalable in usual sense if w remains fixed
independently of n.
Total amount of data communicated at each stage is 2k words.
(15) implies that computational load is proportional to k2, so this
algorithm is scalable if w → ∞ as n → ∞.
The case of a full matrix corresponds to w = n.
The “toy duck” algorithm has substantial parallelism in this case.

For fixed ν, (17) implies that P is proportional to
√
w, and this in

turn implies that k is proportional to
√
w.

The amount of memory per processor is directly proportional to the
amount of work per processor, so this is proportional to k2, and
hence w, in the balanced case (15).

A block inverse algorithm

LRS Oslo June 2012 13/50

The following algorithm can be found in [10]. Let us write the lower
triangular matrix L as a block matrix. Suppose that n = ks for some
integers k and s > w.




L1 0 0 0 0 0
R1 L2 0 0 0 0
0 R2 L3 0 0 0
0 0 · · · · · · 0 0
0 0 0 Rk−2 Lk−1 0
0 0 0 0 Rk−1 Lk




(18)

A triangular matrix is invertible if and only if its diagonal entries are
not zero (just apply the forward solution algorithm). Thus any
sub-blocks on the diagonal will be invertible as well if L is, as we
now assume. That is, each Li is invertible, no matter what choice of
k we make.

Some details

LRS Oslo June 2012 14/50

Let D denote the block diagonal matrix with blocks Di := L−1
i . If we

premultiply D times L, we get a simplified matrix:

DL =




Is 0 0 0 0 0
G1 Is 0 0 0 0
0 G2 Is 0 0 0
0 0 · · · · · · 0 0
0 0 0 Gk−2 Is 0
0 0 0 0 Gk−1 Is




(19)

where Is denotes an s× s identity matrix, and the matrices Gi arise
by solving

Li+1Gi = Ri, i = 1, . . . , k − 1. (20)

The original system Lx = f is changed to (DL)x = Df . Note that
we can write Df in block form with blocks (or segments) bi which
solve

Libi = fi, i = 1, . . . , k. (21)

Block inverse details

LRS Oslo June 2012 15/50

The blocks Li in (21) are s× s lower-triangular matrices with
bandwidth w, so the band forward solution algorithm is appropriate
to solve (21).
Depending on the relationship between the block size s and the
band width w, there may be a certain number of the first columns of
the matrices Ri which are identically zero.
In particular, one can see (exercize) that the first s− w columns are
zero.
Due to the definition of Gi, the same must be true for them as well
(exercize).
Let Ĝi denote the right-most w columns of Gi = (0 Ĝi)
let Mi denote the top s− w rows of Ĝi and
let Hi denote the bottom w rows of Ĝi.
Further, split bi similarly, with
ui denoting the top s− w entries of bi and
vi denoting the bottom w entries of bi.

Block inverse notation

LRS Oslo June 2012 16/50

We may then write the blocks (strips) xi of the solution vector in two
corresponding parts: yi denoting the top s− w entries of xi and zi
denoting the bottom w entries of xi.

The notation is summarized in

Ĝi =

(
Mi

Hi

)
xi =

(
yi
zi

)
bi =

(
ui

vi

)
}s− w
}w (22)

and the dimensions of Mi and Hi are

Mi

}
s− w

︸︷︷︸
w

Hi

}
w

︸︷︷︸
w

(23)

Block inverse reduction

LRS Oslo June 2012 17/50

All of these quantities have now simple relationships. First of all we
have

y1 = u1, z1 = v1 (24)

we can inductively determine the zi’s by

zi+1 = vi+1 −Hizi ∀i = 1, . . . , k − 1 (25)

Then we can separately determine the yi’s by

yi+1 = ui+1 −Mizi ∀i = 1, . . . , k − 1 (26)

There are no dependences in (26), but (25) appears at first to be
sequential.
However, if w is sufficiently large, there is an opportunity for
parallelism in each iteration of (25).
Moreover, (25) can be written as a lower-triangular system itself,
and we describe an appropriate parallel solution algorithm.

Two cases

LRS Oslo June 2012 18/50

There are two cases to distinguish: system is solved only once, and
the systems (20) become a major part of the computation, and the
system is solved many times, and the cost of solving the systems
(20) can be amortized since they need be solved only once.
The primary amount of work in (21) is

k
(
ws− 1

2
w2

)
= wn− 1

2

w2n

s
(27)

MAPS, whereas the primary amount of work in (25) is

w2(k − 1) =
w2(n− s)

s
(28)

MAPS, and the primary amount of work in (26) is (in MAPS)

w(s− w)(k − 1) =
w(s− w)(n− s)

s
= wn− w2n

s
− w(s− w). (29)

Block inverse analysis

LRS Oslo June 2012 19/50

The sum of (27), (28) and (29) is nearly 2nw, twice the amount of
work in the sequential case.
The amount of parallelism in (25) is complex to assess [11], but
once all the zi’s are computed (and appropriately distributed), (26)
can be done (trivially) in parallel.
Moreover, (27) can also be computed trivially in parallel.
If (25) is computed sequentially, then

TP ≥ wn

(
w

s
+

1

P

(
1− w

s

))
= wn

(
wP

n
+

1

P

(
1− wP

n

))
(30)

if P = k. Therefore

E−1
P ≥ wP 2

n
+

(
1− wP

n

)
(31)

Taking P ≤
√

n/w would be required for a scalable algorithm.

Decision process

LRS Oslo June 2012 20/50

We have two algorithms with complementary scalability regimes.
We can choose one or the other to match the data.

If n ≤ w2, choose Toy Duck and use P ≤ √
w.

If n ≥ w2, choose Block Inverse and use P ≤
√

n/w ≥ √
w.

In the latter case, note that the scalability limit on P is
√

n/w ≥ √
w.

Combining the two options, we get scalability for large n as desired:

P ≤ max{
√

n/w,
√
w}

Setting k = n/w2 (so that w =
√

n/k) we have scalability for

P ≤ n1/4 max{k1/4, k−1/4}

Now we consider how these ideas can be applied to nonlinear
equations.

Nonlinear systems

LRS Oslo June 2012 21/50

When f is not linear, such algorithms are not directly applicable.
We can formulate a set of equations to define the entire vector of
values ui as an ensemble, but it is no longer a linear equation.
We can write it formally as

F (U) = 0 (32)

where F is defined by

F (U) = L0U + τmgφ(U)− b (33)

with L0 the same as L above with τ = 0, that is L0 is a lower
triangular matrix with bandwidth w = 2, the diagonal and
subsubdiagonal terms of L0 are all one, and the subdiagonal terms
of L0 equal −2. The function φ thus contains all of the nonlinearity
and has the simple form (δi,j is the Kronecker delta)

φ(U)ij = δj,i−1 sin ui−1. (34)

Newton’s method

LRS Oslo June 2012 22/50

The Newton-Raphson method can be written in the form

F ′(Un)
(
Un+1 − Un

)
= −F (Un). (35)

where F ′ is the Jacobian matrix of all partial derivatives of F with
respect to the vector U .
To see how this works, let us return to the pendulum problem. In
the case of the pendulum, we have F defined by (33). It takes a
careful look at the definition, but it is not hard to see that the
Jacobian matrix for a linear function of the form U → L0U is the
matrix L0. Thus JF (U) = L0 + τmgJφ(U). With φ of the form (34), it
can be shown that

Jφ(U)ij = δj,i−1φ
′(ui−1) = δj,i−1 cosui−1. (36)

The Jacobian has the same form as the original matrix L. In fact, if
F is linear, Newton’s method is equivalent to just solving the system
(7) and converges in one step.

Linearized initial value problem

LRS Oslo June 2012 23/50

There is another way to interpret the Newton algorithm for solving
the initial value problem.

Suppose that we have an approximate solution u to (1) which
satisfies the initial conditions (2), and define the residual R(u) by

R(u) :=
d2u

dt2
− f(u) (37)

which is a function of t defined on whatever interval u is defined on.

We can apply Newton’s method (in the appropriate infinite
dimensional setting) to solve

R(u) = 0. (38)

Let us derive the resulting equations by an elementary approach.

Newton step derivation

LRS Oslo June 2012 24/50

Suppose that we try to add a perturbation v to u to get it to satisfy
(1) (more) exactly. We use a Taylor expansion to write

f(u+ v) = f(u) + vf ′(u) +O(v2) (39)

Thus the sum u+ v satisfies an initial value problem of the form

d2(u+ v)

dt2
− f(u+ v) =

d2v

dt2
− vf ′(u) +R(u) +O(v2). (40)

With (40) as motivation, we now define v by solving the initial value
problem

d2v

dt2
= vf ′(u)−R(u) (41)

with initial conditions provided at t = 0:

v(0) = 0, v′(0) = 0. (42)

Newton versus discretization

LRS Oslo June 2012 25/50

Then the Newton step for solving (38) is the solution v of (41-42).
Now (35) can now be seen as just a discretization of the initial value
problem (41).
This can be depicted in a diagram:

ODE (1)
Newton−−−−−−→ linearized ODE (41− 42)yδ

yδ

diff. meth. (5− 6)
Newton−−−−−−→ discrete Newton method (35),

(43)

where the symbol δ denotes time discretization.
Thus we expect that, in the limit of small time step, the number of
Newton iterates as a function of time would approach a limit.
Note that Newton’s method for ODEs always has a unique solution,
at least on appropriate time intervals.

Atypical for Newton’s method.

Getting Newton started

LRS Oslo June 2012 26/50

Newton’s method (35) converges rapidly once you get close to a
solution, but how do you get close in the first place?

Does not have a general answer, but we indicate one approach
here.

Suppose that we had a simplified approximation f̃ to f and we
solved

d2u

dt2
= f̃(u) (44)

exactly, together with the initial conditions (2).

For example, with f(u) = sin u we might have f̃(u) = u as an
approximation.

This makes (44) linear, and in this simple case we can even solve
the equation in closed form (in terms of sines and cosines).

It is much faster to evaluate f̃(u) in this case than it is f(u), so the
computation of the initial guess would be much less costly.

Newton start

LRS Oslo June 2012 27/50

If we use the solution u to (44) as the starting guess for Newton’s
method, then the initial residual R(u) has a simple interpretation.
We can express it simply as

R(u) =
d2u

dt2
− f(u) = f̃(u)− f(u). (45)

The size of the residual is simply related to the error in
approximation of f by f̃ .
Since the first Newton step v satisfies (41), we can bound the size
of v in terms of R(u), and hence f − f̃ . More precisely, (41)
becomes

d2v

dt2
= vf ′(u)−

(
f̃(u)− f(u)

)
. (46)

Since v is zero at the start (see (2)), it will be small for at least some
reasonable interval of time.
The size of v can be predicted as u is computed, and the process
can be stopped if the prediction gets too large.

Using a constant solution to start

LRS Oslo June 2012 28/50

Thus there is a natural way to control the size of the Newton step in
this case.
If we take f̃ ≡ 0, this corresponds taking the initial guess to be
constant in time.
We will explore this option in detail.

Using a coarse time-step to start It would also be possible to
define an initial start for Newton by approximating on a coarser
mesh.
That is, we could use a larger ∆t in (3) (recall that τ = ∆t2).
It would then be necessary to interpolate onto a finer mesh to
define the residual appropriate for (41) (or equivalently in (35) in the
discretized case).
In this way, a multi-grid approach could be developed in the time
variable.
We will explore this option in detail.

Application to orbit simulation

LRS Oslo June 2012 29/50

We consider the simple two body problem of planetary motion, with
one body (the “sun”) fixed at the origin (0, 0). Thus the number of
unknown particle positions is N = 1, and the number of dimensions
D = 2. Let the state be z = (x, y) (or (r, θ) in polar coordinates).
The particle moves on a potential surface U = G/r = G

(x2+y2)1/2
, so

the force field is

F (x, y) = (F1(x, y), F2(x, y)) =

(−Gx

(x2 + y2)3/2
,

−Gy

(x2 + y2)3/2

)
.

Note as well that

JF (x, y) =




G(2x2
−y2)

(x2+y2)5/2
3Gxy

(x2+y2)5/2

3Gxy
(x2+y2)5/2

G(2y2−x2)

(x2+y2)5/2


 (47)

Orbit system

LRS Oslo June 2012 30/50

Additionally, any given orbit can be mapped onto one with the
gravitational source at (0, 0) and initial conditions (x0, y0) = (−1, 0),
(ẋ0, ẏ0) = (1, 0), and the parameter G variable. The previous values
are used as initial conditions.

(a) (b)

Figure 2: Integration of orbit system, with G = 4, gravity from origin, △t = 0.01, run for 50 time units, initial condition
(x0, y0) = (−1, 0), (ẋ0, ẏ0) = (0, 1). Exact solution in polar coordinates is r = p

1+e cos θ
, where p = (~r×~v)/G, a conserved

quantity (p = 1/G here), and e = 1 −
2

ra/rp+1
, where ra is the farthest the the orbit gets from the origin and rp is the closest;

e = p − 1 here. The period is 2π
√

r3a/G. (a) Euler scheme, (b) Verlet.

Computational results for the orbit problem

LRS Oslo June 2012 31/50

Figure 3 depicts eight iterations of Newton’s method for the orbit
problem, each one offset artificially along the time axis.

The dashed (green) line indicates the exact orbit, and the solid
(red) line indicates the computed Newton step.

The initial step has a constant state, as indicated by the straight line
for the left most pair of curves.

Subsequent iterates follow the orbit more and more, but the first few
eventually move away from the orbit.

The fifth iterate agrees with the exact orbit to graphical accuracy,
and the remaining iterates home in to the orbit to a tolerance of
10−10.

Whether we require only 5 iterations or insist on 8 iterations, the
Newton strategy provides a substantial amount of parallelism for
the orbit problem.

Orbit problem

LRS Oslo June 2012 32/50

Figure 3: Orbit problem: period = 1.36. 1000 times steps with ∆t = 0.001.
Converged in 8 iterations.

Longer time integration

LRS Oslo June 2012 33/50

The computations in Figure 3 are carried out for a longer time
integration in Figure 4.

It appears that for longer times, the number of iterations I of
Newton’s method required for convergence grows linearly with the
number N of time steps.

Figure 4 suggests that

I ≈ 0.004N = 4∆t τ, (48)

where τ is the time of integration.

Figure 5 confirms this for other time steps and supports the
theoretical prediction in (43).

Summary of computations

LRS Oslo June 2012 34/50

Figure 4: Summary of computations depicted in Figure 3 for different
lengths of computation. Vertical axis is number of Newton iterations re-
quired to converge.

Orbit simulations

LRS Oslo June 2012 35/50

Figure 5: Orbit simulations for different time steps. Horizontal axis: sim-
ulation time. Vertical axis: number of Newton iterations. Constant initial
guess.

Parallel computation of the orbit problem

LRS Oslo June 2012 36/50

The parallel tridiagonal linear solves can be performed efficiently
with

P logP = aN (49)

for some constant a, with the parallel time T̃P,N ≈ cN/P for each
Newton step for a constant c.
The constant a is ours to adjust; the larger we make it, the larger
the granularity of the parallel solution algorithm, although the
smaller is P .
Thus we can assume that c does not increase when a is increased.
Assume that the sequential problem takes about T1,N ≈ cN time for
simplicity.
The number of Newton iterations I required is bN = β∆t τ , as
suggested by (48), so the asymptotic total parallel execution time
(for N large) is

TP,N ≈ IcN

P
=

bcN2

P
=

b

a
T1,N logP. (50)

Speedup of the orbit problem

LRS Oslo June 2012 37/50

This says that the speedup would be estimated by the relation

SP,N ≈ a

b logP
=

a

β∆t τ
. (51)

In particular, this says that the speedup can be arbitrarily large for
fixed τ as ∆t → 0.
On the other hand, (51) also says that the efficiency would be
restricted by the relation

EP,N ≈ a

bP logP
=

1

bN
=

1

I
, (52)

consistent with the observation that our algorithm simply duplicates
the sequential algorithm I times.
Note that the adjustable parameters (a and P) drop out of the
relation (52) for efficiency.

Smarter start

LRS Oslo June 2012 38/50

The data presented so far relate to an initial guess for the Newton
iteration in which the initial solution is just constant in time.
It is remarkable that this works at all, but it would not be surprising
that there are smarter ways to start.
The number of possible ways to do so is unlimited, so we
experimented with just a simple approach: solving sequentially with
a larger time step.
We chose a time step ten times larger to produce the initial guess.
Figure 6 shows that benefit of coarser time step improves when
ultimate goal is to approximate with a smaller time step.
In view of (43), we can interpret these data as being equivalent to
solving the continuous Newton problem with an initial guess
corresponding to a discretization using increasingly finer time
steps.
Thus it is not surprising that the curves in Figure 6 appear to tend
to a constant as the time step is decreased.

Orbit simulations

LRS Oslo June 2012 39/50

Figure 6: Orbit simulations for different time steps. Horizontal axis: sim-
ulation time. Vertical axis: number of Newton iterations. Initial guess is
solution using a (ten-times) coarser time step.

Orbit simulations

LRS Oslo June 2012 40/50

Figure 7: Orbit simulations for different time steps. Horizontal axis: sim-
ulation time. Vertical axis: number of Newton iterations. Initial guess is
solution using a (ten-times) coarser time step.

Lorenz attractor

LRS Oslo June 2012 41/50

Another example was considered, the Lorenz system

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz,

(53)

where
σ = 10, b = 8/3, and r = 28. (54)

Typical behavior is shown in Figure 8 which depicts two solutions
that start near each other but quickly diverge.

However, the solutions exhibit a type of near-periodic behavior,
cycling around two attractors indicated by plus signs.

Lorenz solutions

LRS Oslo June 2012 42/50

Figure 8: Solutions of the Lorenz system (52) with the coefficients (54).

Lorenz attractor Newton parallelization

LRS Oslo June 2012 43/50

Figure 9 indicates the number of Newton iterations required to
solve the difference approximation to the Lorenz system (52) with
the coefficients shown in (54) using a constant initial guess for
various time steps.

We see confirmation of the prediction in (43).

Figure 10 indicates the decrease in the required number of Newton
iterations to solve the difference approximation to the Lorenz
system (52) with the coefficients shown in (54) using an initial
guess based on a (ten times) coarser time step.

Number of Newton iterations

LRS Oslo June 2012 44/50

Figure 9: Number of Newton iterations required to solve the difference
approximation to the Lorenz system (52) with the coefficients shown in
(54) using various time steps. Horizontal axis is time. The initial guess for
the Newton iteration is constant in time.

Number of Newton iterations

LRS Oslo June 2012 45/50

Figure 10: Number of Newton iterations required to solve the difference
approximation to the Lorenz system (52) with the coefficients shown in
(54) using various time steps. Initial guess based on a (ten times) coarser
time step.

Parallel implementation

LRS Oslo June 2012 46/50

P21 30 N

k

. . . .
processors idle at first

Figure 11: Parallel implmentation. At stage k, ℓ = k for processor 0 and
ℓ = k − 1 for the rest.

Cyan indicates processors computing solution for time values

2ℓδt ≤ t ≤ (2ℓ+ 1)δt (ℓ = 0, 1, 2, . . .)

and magenta indicates processors computing solution for

(2ℓ+ 1)δt ≤ t ≤ 2(ℓ+ 1)δt (ℓ = 0, 1, 2, . . .).

Other approaches

LRS Oslo June 2012 47/50

Many high-order methods have been proposed that exhibit
parallelism in the high-order steps [2].

“Parareal” methods provide efficient parallelizations of non-linear,
time-dependent problems via domain decomposition in the time
domain [1, 7, 8, 4].

One limitation is the inclusion of a serial section which plays the
role of a preconditioner.

Techniques presented here can be integrated with those of [1, 7, 8]
to potentially improve scalability.

The techniques here may provide a scalable parallel algorithm for
this or a similar preconditioner.

Conclusions (and Perspectives)

LRS Oslo June 2012 48/50

We have demonstrated that the Newton parallel method can
provide significant speedup for solving ODE’s.

The efficiency is limited by the number of required Newton
iterations, but the speedup can be arbitrarily large as the time step
is decreased.

The main reason that efficiency is limited by the number of required
Newton iterations for the problems considered here is that we
focused on explicit time-stepping schemes.

Thus the sequential algorithm gets replicated in each Newton
iteration.

But for problems requiring implicit time-stepping schemes, a
Newton (or similar) iteration might be required even in the
sequential case.

In this scenario, the efficiency might be significantly better.

(Conclusions and) Perspectives

LRS Oslo June 2012 49/50

The Newton parallel method benefits greatly from a good initial
guess.
What is the best way to use P processors to collectively
approximate a solution to an ODE?

• Sounds like original question but now Newton parallel method
computes refinement, so initial step need not be convergent.

• One idea: each processor solves slightly different problems and
then we use this data to synthesize an approximation.

• Something like the data assimilation problem?

Applying these ideas to ODE’s arising from the semi-discretization
of PDE’s will be a significant challenge.

• Molecular dynamics is typically done with explicit time-stepping
methods (e.g., Verlet)

• flow problems (Navier-Stokes) often involve implicity methods
(Euler or backward differentiaion) [5].

References

LRS Oslo June 2012 50/50

[1] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-dynamics simulations. Phys. Rev. E,
66:057701, 2002.

[2] Kevin Burrage. Parallel and sequential methods for ordinary differential equations. Oxford University Press, 1995.

[3] Y. Duan and P. Kollman. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution.
Science, 282:740–744, 1998.

[4] M. Emmett and M. Minion. Toward and efficient parallel in time method for partial differential equations. Communications in
Applied Mathematics and Computational Science, 7(1):105–132, 2012.

[5] Hector Juarez, L. R. Scott, R. Metcalfe, and B. Bagheri. Direct simulation of freely rotating cylinders in viscous flows by
high–order finite element methods. Computers & Fluids, 29:547–582, 2000.

[6] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes. Morgan Kaufmann,
San Mateo, CA, 1992.

[7] Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci.
Paris, 332(7):661–668, 2001.

[8] Yvon Maday and Gabriel Turinici. A parareal in time procedure for the control of partial differential equation. C. R. Acad. Sci.
Paris, 335(4):387–392, 2002.

[9] Mark Maienschein-Cline and L. Ridgway Scott. Scalable solution of non-linear time-dependent systems. Research Report UC/CS
TR-2011-1, Dept. Comp. Sci., Univ. Chicago, 2011.

[10] U. Schendel. Introduction to numerical methods for parallel computers. Chichester: Ellis Horwood Limited, 1984.

[11] L. R. Scott, T. W. Clark, and B. Bagheri. Scientific Parlallel Computing. Princeton University Press, 2005.

	Parallelization in Time
	Initial value problems
	Easy HPC
	An example
	Discretization
	Dicretization as a linear system
	Solving triangular systems in parallel
	Schematic of ``toy duck''
	Typical step in toy duck
	Analysis of toy duck
	Continued analysis of toy duck
	Scaling of toy duck
	A block inverse algorithm
	Some details
	Block inverse details
	Block inverse notation
	Block inverse reduction
	Two cases
	Block inverse analysis
	Decision process
	Nonlinear systems
	Newton's method
	Linearized initial value problem
	Newton step derivation
	Newton versus discretization
	Getting Newton started
	Newton start
	Using a constant solution to start
	Application to orbit simulation
	Orbit system
	Computational results for the orbit problem
	Orbit problem
	Longer time integration
	Summary of computations
	Orbit simulations
	Parallel computation of the orbit problem
	Speedup of the orbit problem
	Smarter start
	Orbit simulations
	Orbit simulations
	Lorenz attractor
	Lorenz solutions
	Lorenz attractor Newton parallelization
	Number of Newton iterations
	Number of Newton iterations
	Parallel implementation
	Other approaches
	Conclusions (and Perspectives)
	(Conclusions and) Perspectives
	References

