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Mantle convection

Hot fluid mantle is heated from below, cooled at the top
Convection drives cold stiff plates — Coupled system
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Ridges and subduction zones

m Plates created at mid-oceanic ridges, move towards trenches,
recycled in subduction zones

m Mantle properties determine plate motion
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Mantle-magma interaction important in subduction zones: melting

in mantle wedge, formation of island arcs



Zooming in: convection and compaction

[ Holtzman et al, 2003 |

Deformation processes on
mm scale influence
large-scale features

Mantle is partially molten
— flow of magma through
compacting and convecting
porous matrix

Shear causes melt to
segregate — shear bands
— mechanism for
larger-scale melt transport



Zooming in: convection and compaction
Compare numerical models with shear banding in laboratory
experiments — material properties?
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Inclusion in porous medium under simple shear

Melt mapping in laboratory experiment: olivine + 10% MORB
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Inclusion in porous medium under simple shear

m |s formation of shear bands dominant over compaction around
the inclusion?

m What determines this balance?
m s there asymmetry between melt enrichment and depletion?

m What affects this asymmetry?

— nonlinearity, viscosity ratios, total strain



Equations: Compaction and advection

Conservation of mass for the solid phase:
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Conservation of mass for the two-phase mixture:

V-v+TA (1) =0
p

Conservation of momentum for the fluid:

V. (¢pos)+¢pjg—F =0

Conservation of momentum for the solid:

V-((1-¢)os)+(1-¢)psg+F=0



Equations

Compaction and advection simplified:
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Porosity-dependent rheology

Permeability
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Bulk viscosity )
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Shear viscosity
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Benchmark 1: Compaction around sphere

Analytical solution
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Benchmark 1: Compaction around sphere




Benchmark 2: Plane wave
Initial condition

oi(xi,y;) = 1.0 + Acos (kox; sin(0y) + koy; cos(p))

Analytical growth rate of planar shear bands
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Benchmark 2: Plane wave

Porosity and velocity perturbation at v =0




Benchmark 2: Plane wave

Porosity and velocity perturbation at v = 1.5




Benchmark 2: Plane wave

Porosity and velocity perturbation at v = 3.0




Benchmark 2: Initial angle

Increase in initial angle of porosity perturbation
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m Growth rate depends on initial shear band angle

m Fit analytical rates well



Relative error in shear band growth rate

Benchmark 2: Perturbation amplitude

Error with increase in porosity perturbation amplitude
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m Error increases for increasing perturbation amplitude

m Small perturbation assumption breaks down > 10~2



Pressure shadows and shear bands

Initial porosity perturbation amplitude 1073




Pressure shadows and shear bands

Initial porosity perturbation amplitude 10~2




Pressure shadows and shear bands

What affects relative importance?
m Nonlinearity of porosity dependence «
m Ratio of bulk to shear viscosity (/o
m Amplitude of initial perturbation A
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