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A key feature in FEniCS is the translation from

symbolic equations to efficient low level code

I The symbolic equations are written in UFL code

I The translation is performed by the FEniCS Form Compiler

I FFC fails when the equations reach a certain complexity

I Uflacs is a project with new compiler algorithms to fix this



Uflacs can be installed today and used as a

third representation in ffc

bzr branch lp:uflacs; cd uflacs
python setup.py install --prefix=/your/fenics/path

1 from dolfin import *
2 # Use uflacs for everything:
3 parameters["form_compiler"]["representation"] = "uflacs"
4

5 # Or use uflacs for only this form:
6 p = {"representation":"uflacs"}
7 A = assemble(a, form_compiler_parameters=p)

ffc -r uflacs -l dolfin ffc/demo/HyperElasticity.ufl
g++ -c HyperElasticity.h



To reach full feature completeness with uflacs,

there are a bunch of (mostly small) fixes left

I Integrals: dx, ds; dS, dP

I Expressions:
almost everything;
conditionals, jump, avg, higher order derivatives

I Geometry:
x on cell, circumradius, facet normal, ...;
x on facet

I Elements:
full mixed element support;
non-standard element mappings, quadrature elements

(This is obviously not a complete list).
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For a form compiler, there are three kinds of

performace, all important

I Code generation time

I C++ compile time

I Assembly time

NB! The performance measurements presented next are done
quickly as a reality check, this is still work in progress.



A basic hyperelastic model (see ffc demo)

1 # Copyright (C) 2009 Harish Narayanan
2 element = VectorElement("Lagrange", tetrahedron, 1)
3 v = TestFunction(element) # Test function
4 du = TrialFunction(element) # Incremental displacement
5 u = Coefficient(element) # Previous displacement
6 B = Coefficient(element) # Body force per unit mass
7 T = Coefficient(element) # Traction force on boundary
8 F = Identity(3) + grad(u) # Deformation gradient
9 C = F.T*F # Right Cauchy-Green tensor

10 E = variable((C-Identity(3))/2) # Euler-Lagrange strain tensor
11 mu = Constant(tetrahedron) # Lame’s constants
12 lam = Constant(tetrahedron)
13 psi = lam/2*(tr(E)**2) + mu*tr(E*E) # Strain energy function
14 S = diff(psi, E) # Second Piola-Kirchhoff stress tensor
15 # The variational problem corresponding to hyperelasticity
16 L = inner(F*S, grad(v))*dx - inner(B, v)*dx - inner(T, v)*ds
17 a = derivative(L, u, du)



Comparing uflacs to quadrature representation

for HyperElasticity.ufl – time to build

All numbers provided by ffc bench suite:

Representation Generate Compile Compile -O2

uflacs 0.8 s 1.0 s 3 s

quadrature -O 12.9 s 1.6 s 5.1 s

Runtime without -O2 a L

uflacs 11.91 µs 4.25 µs

quadrature -O 9.37 µs 8.62 µs

Runtime with -O2 a L

uflacs 2.72 µs 1.10 µs

quadrature -O 2.65 µs 2.65 µs



Comparing uflacs to quadrature representation

for HyperElasticity.ufl – time to compute (1)

All numbers provided by ffc bench suite:

Representation Generate Compile Compile -O2

uflacs 0.8 s 1.0 s 3 s

quadrature -O 12.9 s 1.6 s 5.1 s

Runtime without -O2 a L

uflacs 11.91 µs 4.25 µs

quadrature -O 9.37 µs 8.62 µs

Runtime with -O2 a L

uflacs 2.72 µs 1.10 µs

quadrature -O 2.65 µs 2.65 µs



Comparing uflacs to quadrature representation

for HyperElasticity.ufl – time to compute (2)

All numbers provided by ffc bench suite:

Representation Generate Compile Compile -O2

uflacs 0.8 s 1.0 s 3 s

quadrature -O 12.9 s 1.6 s 5.1 s

Runtime without -O2 a L

uflacs 11.91 µs 4.25 µs

quadrature -O 9.37 µs 8.62 µs

Runtime with -O2 a L

uflacs 2.72 µs 1.10 µs

quadrature -O 2.65 µs 2.65 µs



Uflacs provides twice as fast assembly in dolfin

hyperelasticity demo

Assemble cells Average time

uflacs 0.27 s

quadrature 0.55 s

Assemble facets Average time

uflacs 0.02295

quadrature 0.02252

Numbers provided by timings().



Uflacs enables new applications in FEniCS:

Here large deformation of a left ventricle with

anisotropic hyperelastic material



An excerpt of a Fung type anisotropic

hyperelasticity model – previously not feasible

in FEniCS

1 # Identity matrix and global deformation gradient
2 F_glob = I + grad(u)
3 F = variable(R.T*F_glob*R)
4 E = 0.5*(F.T*F - I)
5 J = det(F)
6 # Fung-type material law
7 f=0; s=1; n=2
8 W = (bff*E[f,f]**2 + bxx*(E[n,n]**2 + E[s,s]**2 + E[n,s]**2)
9 + bfx*(E[f,n]**2 + E[n,f]**2 + E[f,s]**2 + E[s,f]**2))

10 psi = 0.5*K*(exp(W) - 1) + Ccompr*(J*ln(J) - J + 1)
11 P = R*diff(psi, F)*R.T # First Piola-Kirchoff stress tensor
12 # Neumann boundary condition
13 sigma = Constant(-0.02)
14 T = dot(det(F_glob)*sigma*inv(F_glob.T), N)

Excerpt of code by Anders E. Johansen.



Time to jit and assemble matrix for Poisson

compared to Fung type anisotropic

hyperelasticity

assemble(a) tensor/P quadr/P uflacs/P uflacs/Fung

Clean cache 2.367 s 2.506 s 2.452 s 7.077 s

Memory cache 0.045 s 0.068 s 0.218 s 0.568 s

Disk cache 0.049 s 0.067 s 0.216 s 1.644 s

Memory cache 0.045 s 0.062 s 0.213 s 0.567 s



Topics

The uflacs project - what is working, what is not

Preliminary benchmark results

Short overview of algorithms



UFL represents symbolic expressions as a

Directed Acyclic Graph (DAG)

I Each node is represented by a subclass of Terminal or
Operator

I Each node can be tensor valued

I Some operators represent computation (e.g. addition)

I Other operators represent only reshaping (e.g. indexing)



UFLACS was designed for tensor intensive

equations – that make heavy use of tensor

algebra features in UFL

I Algorithms produce in a lot of symbolic patterns similar to
indexing → scalar operators → indexed-to-tensor

I Operations such as A[i,j,k], as_tensor(A[i,j,k],(k,i,j)),
and A.T should not contribute to computations but
increase symbolic complexity

I Uflacs algorithms were designed with this in mind



The initial stages of the uflacs compiler

algorithm

I Translate the DAG from node-based to list-based
representation

I Apply value numbering of each scalar subexpression
component involving a computation

I Value numbering “falls through” reshaping type operators



After the initial stages, the expression has

been translated to a list of scalar expressions

I Each subexpression is either
I a scalar operator performing some computation, or
I a modified terminal

I Modified terminals are terminals with eventual grad,
restriction, and indexed operators applied

I A modified terminal represents a scalar expression that
uflacs does not know how to compute (needs geometry
or elements)



In the intermediate stages, dependencies are

represented and analysed using integer arrays

I Easy with array based DAG storage with scalar nodes

I Edges are therefore efficient to invert and count

I Only modified terminals that are referenced by operator
nodes are stored

I Edge arrays are used to e.g.
I Decide loop placement of subexpressions
I Prioritize intermediate variable storage of subexpressions
I (Quite crude algorithms at this stage)



In the code generation stage, a generic code

generator delegates modified terminals to a

backend

I A generic compiler routine in uflacs produces C(++) code
with backend-specific code inserted on demand

I An ffc backend in uflacs generates code to compute
modified terminals based tables of element basis function
values passed from FFC

I A dolfin backend in uflacs generates a dolfin::Expression

subclass, including code to evaluate a GenericFunction

member inside the Expression::eval implementation



Current state of ffc-uflacs project relations (it’s

not as messy as it may sound...)

I ffc uses ffc.uflacsrepr to generate tabulate_tensor

I ffc.uflacsrepr delegates most of the work to
uflacs.backends.ffc

I uflacs.backends.ffc uses the generic
uflacs.algorithms.compiler to do most of the work,
passing it callbacks to generate code for computing
modified terminals (geometry and functions)



Questions?

I Try uflacs on your forms at the “Ask the developer”
session later today!

I Report bugs to http://bugs.launchpad.net/uflacs

I If you have a form that still takes long to build, send it to
me and I can use it for profiling later.

I martinal@simula.no
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