Status of effective
translation of
complicated forms in

FEniCS
The UFLACS project

F_glob = I + grad(
orrable (B e o)
]

el 1o
+ b Eln, e+ s Sz vl
e (E1f.n]#+2 + Eln, el f1rea)
pot =T g - D ehampre) 3]

S 3 sl 4 063 % w1donl 0.+ w04 ¢ vl c1)
5 % v1_4100_c2 + (wo_c3 * (6] + wo, 124100,

2 IO § (0 + A A0N06D voeR s
22 (271 0.co szl w0 el 2 (D)
sizeh):

271 + (acs ¢ s(2al +
L e
5+ S[11] 1 (.c3 + sl12] +v0.ca * s
,5»s[/]+(vnca-s\m1u0c4»s[/11.
el I ‘e

Martin Sandve Alneaes

1+ sl14) * s[3
1.2) + pw(sml 20
3]+ s(a1])

:

Center for Biomedical Computing,
Simula Research Laboratory,
Oslo, Norway

ov(sI21l, 2
3B T e povtet
2+ pov(sleol, 200))

March 18th, 2013
FEniCS’13

©

Topics

The uflacs project - what is working, what is not

A key feature in FEnNICS is the translation from
symbolic equations to efficient low level code

» The symbolic equations are written in UFL code
» The translation is performed by the FEniCS Form Compiler
» FFC fails when the equations reach a certain complexity

» Uflacs is a project with new compiler algorithms to fix this

o)

Uflacs can be installed today and used as a
third representation in ffc

bzr branch lp:uflacs; cd uflacs
python setup.py install --prefix=/your/fenics/path

from dolfin import *
Use uflacs for everything:
parameters["form_compiler"]1["representation"] = "uflacs"

Or use uflacs for only this form:
{"representation":"uflacs"}
assemble(a, form_compiler_parameters=p)

N~ o U A W N M

ffc -r uflacs -1 dolfin ffc/demo/HyperElasticity.ufl
g++ -c HyperElasticity.h

o)

To reach full feature completeness with uflacs,
there are a bunch of (mostly small) fixes left

» Integrals: dx, ds; dS, dP

» Expressions:
almost everything;
conditionals, jump, avg, higher order derivatives

» Geometry:
x on cell, circumradius, facet normal, ...;
x on facet

» Elements:

full mixed element support;
non-standard element mappings, quadrature elements

(This is obviously not a complete list).

o)

Topics

Preliminary benchmark results

For a form compiler, there are three kinds of
performace, all important

» Code generation time
» C++ compile time
» Assembly time

NB! The performance measurements presented next are done
quickly as a reality check, this is still work in progress.

o)

A basic hyperelastic model (see ffc demo)

© O N o U A W N -

L e e < = =
N o U A W N R O

Copyright (C) 2009 Harish Narayanan

element = VectorElement("Lagrange'

v
du

psi
S=

TestFunction(element) #
TrialFunction(element) #
Coefficient(element) #
Coefficient(element) #
Coefficient(element) #
Identity(3) + grad(u) #
F.TxF #
variable((C-Identity(3))/2) #
Constant (tetrahedron) #
Constant(tetrahedron)

diff(psi, E)

', tetrahedron, 1)

Test function

Incremental displacement
Previous displacement

Body force per unit mass
Traction force on boundary
Deformation gradient

Right Cauchy-Green tensor
Euler-Lagrange strain tensor
Lame’s constants

lam/2x(tr(E)*x2) + muxtr(ExE) # Strain energy function
Second Piola-Kirchhoff stress tensor

The variational problem corresponding to hyperelasticity
inner(FxS, grad(v))xdx - inner(B, v)*xdx - inner(T, v)xds
a = derivative(L, u, du)

L =

o)

Comparing uflacs to quadrature representation
for HyperElasticity.ufl - time to build

All numbers provided by ffc bench suite:

‘ Representation H Generate ‘ Compile ‘ Compile -O2 ‘
‘ uflacs 0.8s 1.0s 3s ‘

‘ quadrature -0 12.9s 1.6s 51s ‘

o)

Comparing uflacs to quadrature representation
for HyperElasticity.ufl - time to compute (1)

All numbers provided by ffc bench suite:

Representation H Generate ‘ Compile ‘ Compile -O2 ‘

uflacs 0.8s 1.0s 3s
quadrature -0 12.9s 1.6s 51s
‘ Runtime without -O2 H a ‘ L ‘
uflacs 11.91 us | 4.25 us
quadrature -0 9.37 us | 8.62 us

o)

Comparing uflacs to quadrature representation
for HyperElasticity.ufl - time to compute (2)

All numbers provided by ffc bench suite:

Representation H Generate ‘ Compile ‘ Compile -O2 ‘

uflacs 0.8s 1.0s 3s
quadrature -0 12.9s 1.6s 51s
‘ Runtime without -O2 H a ‘ L ‘
uflacs 11.91 us | 4.25 us
quadrature -0 9.37 us | 8.62 us
] Runtime with -02 H a ‘ L ‘
uflacs 272 us | 1.10 us
quadrature -O 2.65us | 2.65 us

o)

Uflacs provides twice as fast assembly in dolfin
hyperelasticity demo

] Assemble cells H Average time

uflacs 0.27 s
quadrature 0.55s

Assemble facets H Average time

uflacs 0.02295
quadrature 0.02252

Numbers provided by timings().

o)

Uflacs enables new applications in FEniCS:
Here large deformation of a left ventricle with
anisotropic hyperelastic material

o)

An excerpt of a Fung type anisotropic
hyperelasticity model - previously not feasible

in FEniCS
1 |# Identity matrix and global deformation gradient
2 |F_glob = I + grad(u)
3 |F = variable(R.T*F_globx*R)
4 |E = 0.5%(F.TxF - I)
5 |J = det(F)
6 |# Fung-type material law
7 | f=0; s=1; n=2
g [W = (bffxE[f,f]*%2 + bxxx(E[n,n]*x2 + E[s,s]*x2 + E[n,s]*x*2)
9 + bfxx(E[f,n]*%x2 + E[n,f]*x2 + E[f,s]*x2 + E[s,f]*x*x2))
10 |psi = 0.5%Kx(exp(W) - 1) + Ccomprx(J*ln(J) - J + 1)
11 |P = Rxdiff(psi, F)*R.T # First Piola-Kirchoff stress tensor
12 |# Neumann boundary condition
13 |sigma = Constant(-0.02)
14 = dot(det(F_glob)x*sigmaxinv(F_glob.T), N)

o)

Time to jit and assemble matrix for Poisson
compared to Fung type anisotropic

hyperelasticity
assemble(a) || tensor/P | quadr/P | uflacs/P || uflacs/Fung
Clean cache 2.367s | 2.506s | 2.452s 7.077 s
Memory cache || 0.045s | 0.068s | 0.218 s 0.568 s
Disk cache 0.049s | 0.067s | 0.216s 1.644 s
Memory cache || 0.045s | 0.062s | 0.213s 0.567 s

o)

Topics

Short overview of algorithms

UFL represents symbolic expressions as a
Directed Acyclic Graph (DAG)

v

Each node is represented by a subclass of Terminal or
Operator

Each node can be tensor valued

v

v

Some operators represent computation (e.g. addition)

v

Other operators represent only reshaping (e.g. indexing)

o)

UFLACS was designed for tensor intensive
equations - that make heavy use of tensor
algebra features in UFL

» Algorithms produce in a lot of symbolic patterns similar to
indexing — scalar operators — indexed-to-tensor

» Operations such as A[i,j,k], as_tensor(A[i,j,k],(k,1,3)),
and A.T should not contribute to computations but
increase symbolic complexity

» Uflacs algorithms were designed with this in mind

o)

The initial stages of the uflacs compiler
algorithm

» Translate the DAG from node-based to list-based
representation

» Apply value numbering of each scalar subexpression
component involving a computation

» Value numbering “falls through” reshaping type operators

o)

After the initial stages, the expression has
been translated to a list of scalar expressions

» Each subexpression is either
» a scalar operator performing some computation, or
» a modified terminal
» Modified terminals are terminals with eventual grad,
restriction, and indexed operators applied

» A modified terminal represents a scalar expression that
uflacs does not know how to compute (needs geometry
or elements)

o)

In the intermediate stages, dependencies are
represented and analysed using integer arrays

v

Easy with array based DAG storage with scalar nodes

v

Edges are therefore efficient to invert and count

v

Only modified terminals that are referenced by operator
nodes are stored

v

Edge arrays are used to e.qg.
» Decide loop placement of subexpressions
» Prioritize intermediate variable storage of subexpressions
» (Quite crude algorithms at this stage)

o)

In the code generation stage, a generic code
generator delegates modified terminals to a
backend

» A generic compiler routine in uflacs produces C(++) code
with backend-specific code inserted on demand

» An ffc backend in uflacs generates code to compute
modified terminals based tables of element basis function
values passed from FFC

» A dolfin backend in uflacs generates a dolfin::Expression
subclass, including code to evaluate a GenericFunction
member inside the Expression::eval implementation

o)

Current state of ffc-uflacs project relations (it’s
not as messy as it may sound...)

» ffc uses ffc.uflacsrepr to generate tabulate_tensor

» ffc.uflacsrepr delegates most of the work to
uflacs.backends.ffc

» uflacs.backends.ffc uses the generic
uflacs.algorithms.compiler to do most of the work,
passing it callbacks to generate code for computing
modified terminals (geometry and functions)

o)

Questions?

» Try uflacs on your forms at the “Ask the developer”
session later today!

» Report bugs to http://bugs.launchpad.net/uflacs

» If you have a form that still takes long to build, send it to
me and | can use it for profiling later.

» martinal@simula.no

o)

	The uflacs project - what is working, what is not
	Preliminary benchmark results
	Short overview of algorithms

