
Status of effective

translation of

complicated forms in

FEniCS
The UFLACS project

Martin Sandve Alnæs

Center for Biomedical Computing,
Simula Research Laboratory,

Oslo, Norway

March 18th, 2013
FEniCS’13

Topics

The uflacs project - what is working, what is not

Preliminary benchmark results

Short overview of algorithms

A key feature in FEniCS is the translation from

symbolic equations to efficient low level code

I The symbolic equations are written in UFL code

I The translation is performed by the FEniCS Form Compiler

I FFC fails when the equations reach a certain complexity

I Uflacs is a project with new compiler algorithms to fix this

Uflacs can be installed today and used as a

third representation in ffc

bzr branch lp:uflacs; cd uflacs
python setup.py install --prefix=/your/fenics/path

1 from dolfin import *
2 # Use uflacs for everything:
3 parameters["form_compiler"]["representation"] = "uflacs"
4

5 # Or use uflacs for only this form:
6 p = {"representation":"uflacs"}
7 A = assemble(a, form_compiler_parameters=p)

ffc -r uflacs -l dolfin ffc/demo/HyperElasticity.ufl
g++ -c HyperElasticity.h

To reach full feature completeness with uflacs,

there are a bunch of (mostly small) fixes left

I Integrals: dx, ds; dS, dP

I Expressions:
almost everything;
conditionals, jump, avg, higher order derivatives

I Geometry:
x on cell, circumradius, facet normal, ...;
x on facet

I Elements:
full mixed element support;
non-standard element mappings, quadrature elements

(This is obviously not a complete list).

Topics

The uflacs project - what is working, what is not

Preliminary benchmark results

Short overview of algorithms

For a form compiler, there are three kinds of

performace, all important

I Code generation time

I C++ compile time

I Assembly time

NB! The performance measurements presented next are done
quickly as a reality check, this is still work in progress.

A basic hyperelastic model (see ffc demo)

1 # Copyright (C) 2009 Harish Narayanan
2 element = VectorElement("Lagrange", tetrahedron, 1)
3 v = TestFunction(element) # Test function
4 du = TrialFunction(element) # Incremental displacement
5 u = Coefficient(element) # Previous displacement
6 B = Coefficient(element) # Body force per unit mass
7 T = Coefficient(element) # Traction force on boundary
8 F = Identity(3) + grad(u) # Deformation gradient
9 C = F.T*F # Right Cauchy-Green tensor

10 E = variable((C-Identity(3))/2) # Euler-Lagrange strain tensor
11 mu = Constant(tetrahedron) # Lame’s constants
12 lam = Constant(tetrahedron)
13 psi = lam/2*(tr(E)**2) + mu*tr(E*E) # Strain energy function
14 S = diff(psi, E) # Second Piola-Kirchhoff stress tensor
15 # The variational problem corresponding to hyperelasticity
16 L = inner(F*S, grad(v))*dx - inner(B, v)*dx - inner(T, v)*ds
17 a = derivative(L, u, du)

Comparing uflacs to quadrature representation

for HyperElasticity.ufl – time to build

All numbers provided by ffc bench suite:

Representation Generate Compile Compile -O2

uflacs 0.8 s 1.0 s 3 s

quadrature -O 12.9 s 1.6 s 5.1 s

Runtime without -O2 a L

uflacs 11.91 µs 4.25 µs

quadrature -O 9.37 µs 8.62 µs

Runtime with -O2 a L

uflacs 2.72 µs 1.10 µs

quadrature -O 2.65 µs 2.65 µs

Comparing uflacs to quadrature representation

for HyperElasticity.ufl – time to compute (1)

All numbers provided by ffc bench suite:

Representation Generate Compile Compile -O2

uflacs 0.8 s 1.0 s 3 s

quadrature -O 12.9 s 1.6 s 5.1 s

Runtime without -O2 a L

uflacs 11.91 µs 4.25 µs

quadrature -O 9.37 µs 8.62 µs

Runtime with -O2 a L

uflacs 2.72 µs 1.10 µs

quadrature -O 2.65 µs 2.65 µs

Comparing uflacs to quadrature representation

for HyperElasticity.ufl – time to compute (2)

All numbers provided by ffc bench suite:

Representation Generate Compile Compile -O2

uflacs 0.8 s 1.0 s 3 s

quadrature -O 12.9 s 1.6 s 5.1 s

Runtime without -O2 a L

uflacs 11.91 µs 4.25 µs

quadrature -O 9.37 µs 8.62 µs

Runtime with -O2 a L

uflacs 2.72 µs 1.10 µs

quadrature -O 2.65 µs 2.65 µs

Uflacs provides twice as fast assembly in dolfin

hyperelasticity demo

Assemble cells Average time

uflacs 0.27 s

quadrature 0.55 s

Assemble facets Average time

uflacs 0.02295

quadrature 0.02252

Numbers provided by timings().

Uflacs enables new applications in FEniCS:

Here large deformation of a left ventricle with

anisotropic hyperelastic material

An excerpt of a Fung type anisotropic

hyperelasticity model – previously not feasible

in FEniCS

1 # Identity matrix and global deformation gradient
2 F_glob = I + grad(u)
3 F = variable(R.T*F_glob*R)
4 E = 0.5*(F.T*F - I)
5 J = det(F)
6 # Fung-type material law
7 f=0; s=1; n=2
8 W = (bff*E[f,f]**2 + bxx*(E[n,n]**2 + E[s,s]**2 + E[n,s]**2)
9 + bfx*(E[f,n]**2 + E[n,f]**2 + E[f,s]**2 + E[s,f]**2))

10 psi = 0.5*K*(exp(W) - 1) + Ccompr*(J*ln(J) - J + 1)
11 P = R*diff(psi, F)*R.T # First Piola-Kirchoff stress tensor
12 # Neumann boundary condition
13 sigma = Constant(-0.02)
14 T = dot(det(F_glob)*sigma*inv(F_glob.T), N)

Excerpt of code by Anders E. Johansen.

Time to jit and assemble matrix for Poisson

compared to Fung type anisotropic

hyperelasticity

assemble(a) tensor/P quadr/P uflacs/P uflacs/Fung

Clean cache 2.367 s 2.506 s 2.452 s 7.077 s

Memory cache 0.045 s 0.068 s 0.218 s 0.568 s

Disk cache 0.049 s 0.067 s 0.216 s 1.644 s

Memory cache 0.045 s 0.062 s 0.213 s 0.567 s

Topics

The uflacs project - what is working, what is not

Preliminary benchmark results

Short overview of algorithms

UFL represents symbolic expressions as a

Directed Acyclic Graph (DAG)

I Each node is represented by a subclass of Terminal or
Operator

I Each node can be tensor valued

I Some operators represent computation (e.g. addition)

I Other operators represent only reshaping (e.g. indexing)

UFLACS was designed for tensor intensive

equations – that make heavy use of tensor

algebra features in UFL

I Algorithms produce in a lot of symbolic patterns similar to
indexing → scalar operators → indexed-to-tensor

I Operations such as A[i,j,k], as_tensor(A[i,j,k],(k,i,j)),
and A.T should not contribute to computations but
increase symbolic complexity

I Uflacs algorithms were designed with this in mind

The initial stages of the uflacs compiler

algorithm

I Translate the DAG from node-based to list-based
representation

I Apply value numbering of each scalar subexpression
component involving a computation

I Value numbering “falls through” reshaping type operators

After the initial stages, the expression has

been translated to a list of scalar expressions

I Each subexpression is either
I a scalar operator performing some computation, or
I a modified terminal

I Modified terminals are terminals with eventual grad,
restriction, and indexed operators applied

I A modified terminal represents a scalar expression that
uflacs does not know how to compute (needs geometry
or elements)

In the intermediate stages, dependencies are

represented and analysed using integer arrays

I Easy with array based DAG storage with scalar nodes

I Edges are therefore efficient to invert and count

I Only modified terminals that are referenced by operator
nodes are stored

I Edge arrays are used to e.g.
I Decide loop placement of subexpressions
I Prioritize intermediate variable storage of subexpressions
I (Quite crude algorithms at this stage)

In the code generation stage, a generic code

generator delegates modified terminals to a

backend

I A generic compiler routine in uflacs produces C(++) code
with backend-specific code inserted on demand

I An ffc backend in uflacs generates code to compute
modified terminals based tables of element basis function
values passed from FFC

I A dolfin backend in uflacs generates a dolfin::Expression

subclass, including code to evaluate a GenericFunction

member inside the Expression::eval implementation

Current state of ffc-uflacs project relations (it’s

not as messy as it may sound...)

I ffc uses ffc.uflacsrepr to generate tabulate_tensor

I ffc.uflacsrepr delegates most of the work to
uflacs.backends.ffc

I uflacs.backends.ffc uses the generic
uflacs.algorithms.compiler to do most of the work,
passing it callbacks to generate code for computing
modified terminals (geometry and functions)

Questions?

I Try uflacs on your forms at the “Ask the developer”
session later today!

I Report bugs to http://bugs.launchpad.net/uflacs

I If you have a form that still takes long to build, send it to
me and I can use it for profiling later.

I martinal@simula.no

	The uflacs project - what is working, what is not
	Preliminary benchmark results
	Short overview of algorithms

